# **Modellieren mit MicroStation**

Das Objekt der Aufgabe 75 c) aus dem Lehrbuch DG II - Darstellende Geometrie für Bautechnik, Innenraumgestaltung und Holztechnik u.a. (Müllner, Löffler, Asperl) soll mit MicroStation modelliert werden.



#### Konstruktionsweg:

- a) Kugel und berührenden Kegel als parametrische Volumina erzeugen
- b) horizontalen Bohrzylinder ausfräsen
- c) zweitprojizierende Bohrung als Projektionskörper erzeugen
- $\overset{_{}_{}_{}}{\overset{_{}_{}}{\overset{}_{}}}$  d) Differenz bilden  $\overset{_{}_{}}{\overset{}_{}}$  e) Schnitt erzeugen

# Konstruktionsbeschreibung

#### (Schritt für Schritt – Anleitung):

1. Starten von MicroStation, Angabe des Dateinamens und Auswahl einer Seeddatei (Vorlage):

| Zeichnungsdatei erstelle<br>Verzeichnis | en 😽                           | ×             |  |
|-----------------------------------------|--------------------------------|---------------|--|
| Datejen:                                | Verzeichnisse:                 |               |  |
| ▼ aufgabe_75d                           | d:\dombirn 2000 (cad)\         | <u>0</u> K    |  |
| angaben.dgn<br>kugelteil.dgn            | 🗁 d:\<br>🎦 dornbirn 2000 (cad) | Abbrech.      |  |
|                                         |                                | <u>H</u> ilfe |  |
|                                         |                                |               |  |
|                                         |                                |               |  |
| Dateiformat:                            | Laufwerke                      |               |  |
| <br>MicroStation Zeichnungs             | dateien [*.dgn] 🔻 🔤            | <b>v</b>      |  |
| Seed-Datei                              |                                |               |  |
| d:\microstation dateien                 | \\my3d.dgn                     | Wählen        |  |
|                                         |                                |               |  |

- MicroStation Manager Fenster: Menü Datei - Neu
- > Fenster Zeichnungsdatei erstellen: Eingabe folgender Daten:
  - I. Laufwerk auswählen
  - II. Dateiname (Aufgabe\_75c)
  - III. Seed-Datei wählen (my3d.dgn in .....)

#### IV. OK-Button betätigen

 MicroStation Manager – Fenster: Wahl der Datei "Aufgabe\_75c" mit OK bestätigen

#### 2. Einstellen von Tastenzuordnungen und Hintergrundfarbe:

#### Menü Arbeitsbereich – Voreinstellungen (Preferences)

Image: Scroll Bars on View Windowsin der Kategorie View Windows das Kästchen BlackImage: Black Background -> WhiteBackground -> White ankreuzen; mit OK bestätigen

#### > Menü Arbeitsbereich – Tastenzuordnungen

| stenzuordnungen   |                                                                                                                         |        |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|--------|
| Tasten            | Aufgerufen von                                                                                                          |        |
| Datenpunkt        | Linke Taste 💽 🖈                                                                                                         | OK     |
| Tentativpunkt     | Linke Taste - Rechte Taste Verbindung                                                                                   |        |
| Reset             | Rechte Taste                                                                                                            | hbrech |
| Befehl            | Alt-Rechte Taste                                                                                                        | DDICCH |
| 3D-Datenpunkt     | Alt-Linke Taste 🕅 💽                                                                                                     | Landar |
| 3D-Tentativpunkt  | Alt-Linke Taste - Rechte Taste Verbindun 🛛 🗖 🗳                                                                          | lanuan |
| Schaltflächendefi | nitionsbereich                                                                                                          |        |
| Dr<br>Sie könner  | ücken Sie hier die für <befehl> vorgesehene Taste<br/>n die Alt-Taste bzw. eine Zweitastenverbindung verwenden</befehl> | I      |

Kontrolle folgender Einstellungen:

Datenpunkt – Linke Taste Reset – Rechte Taste

entspricht der Eingabetaste entspricht der Escapetaste

Tentativpunkt auf mittlere Maustaste einstellen:

- Zeile "Tentaivpunkt ....." (mit linker Maustaste) auswählen
- Maus in den Schaltflächendefinitionsbereich bewegen und mittlere Maustaste betätigen
- alternativ kann auch eine Tastenkombination (z.B. <ALT> + linke Maustaste gewählt werden

Mit OK die getroffene Wahl bestätigen

#### 3. Kugel entwerfen

- > AccuDraw aktivieren
- > Kugel mit Radius 45mm und Mitte (0|0|70) platzieren:



• Werkzeug *Kugel platzieren* wählen

| 🗷 🖻 Arametrisches Volumen: |                   |         |   |  |  |
|----------------------------|-------------------|---------|---|--|--|
| <u>A</u> chse:             | Punkte (AccuDraw) |         | • |  |  |
| 💌 <u>R</u> adi             | ius:              | 45.0000 |   |  |  |

- Parametrisches Volumen Kästchen ankreuzen
- Radius 45mm eingeben Kästchen ankreuzen
- Koordinatenursprung einfangen (mittlere Maustaste)
- Ursprung des Kompass festlegen (Taste <O> ... Origin)
- *Kompass* in die yz-Ebene drehen (Taste <F>) <F> ... Front <T> ... Top <S> ... Side
- Maus in richtige Richtung (Bild der z-Achse) bewegen und den Wert 70 eingeben
- Mit der linken Maustaste bestätigen und "Hauptachsen" in Koordinatenebenen legen

#### 4. Berührenden Kegel konstruieren



- > Ebene 2 als Hilfsebene für die Konstruktion der Hilfslinien wählen
- > Zeichenfarbe für die Hilfslinien wählen
- > Hilfslinie der Länge 30mm auf der y-Achse zeichnen:

• Werkzeug Eine Linie platzieren oder konstruieren wählen

- Koordinatenursprung einfangen (mittlere Maustaste)
- Maus in richtige Richtung (Bild der y-Achse) bewegen und den Wert 30 eingeben
- Mit der linken Maustaste bestätigen
- > Hilfslinie als Tangente an den Großkreis konstruieren
  - Snapart *Tangential* wählen (Symbol in der Statuszeile anklicken PopUp-Menü)
  - Kreis anklicken und bestätigen
- > Hilfslinie (für den Basiskreisradius) normal zur z-Achse konstruieren
  - Snapart Normal wählen (Symbol in der Statuszeile anklicken PopUp-Menü)
  - Kante auf der z-Achse anklicken, bestätigen
  - Linie zum Ursprung zeichnen und Linienzug abbrechen
- Kegelspitze konstruieren:



- Werkzeug Zwei Elemente zum
  Schnittpunkt verlängern
- Linie auf z-Achse und Tangente antippen
- > Parametrischen Kegel konstruieren:
  - Ebene 1 aktivieren



- Werkzeug Kegel platzieren
- Typ "Parametrisches Volumen"
- Orthogonal Kästchen ankreuzen
- Radius Oben 0mm Kästchen ankreuzen
- Kegelmittelpunkt einfangen
- Kompass parallel xy-Ebene einstellen (Taste <T>)
- Punkt am Basiskreis und Spitze einfangen

# 5. Volumenvereinigung bilden



Werkzeug Volumvereinigung konstruieren

- Kein Original beibehalten (Fenster beachten!)
- die beiden Volumina auswählen

#### 6. Kegelspitze abschneiden

Quader (100 x 100 x 200) erzeugen

• Werkzeug Eine Platte platzieren

- Basisfläche = Basisfläche des Hilfswürfels
- Quader in negative z-Richtung aufziehen
  - Werkzeug Volumdifferenz konstruieren
- Kein Original beibehalten (Fenster beachten!)
- Kegel-Kugel-Objekt antippen

- Hilfsquader wählen
- Objekt bestätigen

#### Alternativlösung:

 $\bigcirc$ 

뼯

Die tangentiale Hilfsstrecke wird als Meridian einer Drehfläche verwendet.



# Werkzeug Parametrisches Rotationsvolumen konstruieren

- Drehwinkel 360° Kästchen ankreuzen
- Achse rotieren "Punkte"
- Strecke auswählen
- zwei Punkte auf der z-Achse (Kante des Hilfswürfels) snapen

# 7. horizontalen Bohrzylinder entwerfen



- Werkzeug *Zylinder* wählenFarbe ändern
- Typ "Parametrisches Volumen"
- Achse "Punkte (AccuDraw)
- Radius 22,5mm Kästchen ankreuzen
- Höhe 100mm Kästchen ankreuzen
- Würfeleckpunkte auf der y-Achse antippen

# > Zylinder in die richtige Position verschieben



6

Werkzeug *Element auf neue Position oder Ebene verschieben*

- Zylinder auswählen
- Kompass parallel zur yz-Ebene einstellen (Taste <F>)
- Maus in die richtige Richtung (negative y-Achse) bewegen und 50 eingeben
- Maus parallel zur z-Achse bewegen, 70 eingeben und Position bestätigen

٠

# 8. Volumendifferenz bilden ("ausbohren")

- Werkzeug Volumdifferenz konstruieren wählen
- Kein Original beibehalten (Fenster beachten!)
- Kegel-Kugel-Objekt antippen

• •

- Zylinder wählen
- Objekt bestätigen

#### 9. Zweitprojizierende Bohrteile erzeugen:

- Quader (100 x 45 x 80) erzeugen
  - Werkzeug Eine Platte platzieren
  - In der xy-Ebene konstruieren
- > Quader in richtige Position **verschieben**:

Werkzeug Element auf neue Position oder Ebene verschieben

• Quader auswählen

 $\oslash$ 

5

- Kompass parallel zur xy-Ebene einstellen (Taste <T>)
- Maus in die richtige Richtung (negative y-Achse) bewegen und 22.5 eingeben
- Maus in die richtige Richtung (negative x-Achse) bewegen und 50 eingeben
- Kompass parallel zur yz-Ebene einstellen (Taste <F>)
- Maus in die richtige Richtung (positive z-Achse) bewegen und 40 eingeben
- Maus parallel zur z-Achse bewegen, 70 eingeben und Position

#### > x-parallelen Bohrzylinder entwerfen



- Werkzeug Zylinder wählen
- Typ "Parametrisches Volumen"
- Achse "Punkte (AccuDraw)
- Radius 22,5mm Kästchen ankreuzen
- Höhe 100mm Kästchen ankreuzen
- Mittelpunkte der unteren "Quaderbreiten" antippen

# Volumenvereinigung bilden



• Werkzeug Volumvereinigung konstruieren

- Kein Original beibehalten (Fenster beachten!)
- Quader und Zylinder auswählen

# 10. Volumendifferenz bilden ("ausbohren")

| $\square$ |  |
|-----------|--|
|           |  |
|           |  |

- •
- Werkzeug *Volumdifferenz konstruieren* wählen Kein Original beibehalten (Fenster beachten!)
- Kegel-Kugel-Objekt antippen
- Quader-Zylinder wählen

# 11. Schnittdarstellung (analog CAD-3D)

- > Quader (100 x 100 x 200) erzeugen
  - Eckpunkte des Hilfswürfels einfangen und Quader in positive z-Richtung aufziehen
- Volumendifferenz bilden
  - Fertiges Objekt antippen
  - Quader auswählen

# 12. Verschiedene Darstellungsmöglichkeiten

- Verschiedene Sichtbarkeitsdarstellungen
- Parallelrisse und Zentralrisse
- > 2D-Darstellungen (Hauptrisse, Schnitte, ...)
- Lichtquellen
- Materialbelegungen
- Änderung der Angabeparameter
- Animationen