1) Wir erzeugen eine neue Rhino-Datei mit dem Namen BOESCHUNGSTOR-SE.3DM.

Konstruktion der Böschungstorse:

- 2) Installation des Math-Plugin für Rhino (www.rhino3.de).
- Zeichnen der Traufenellipse mit Mitte (0,0,0) und a = 30, b = 20.
- 4) Wir starten die Eingabe einer Fläche über die Kommandozeile mit dem Math-Plugin Befehl "MathSurface". Im Dialogfenster tippen wir die Parameterdarstellung der Böschungstorse ein.

lathsurface Enter Parameters	
Minimum u	0
Maximum u	2*PI
Minimum v	0
Maximum v	22
PointCount u	20
PointCount v	10
Function X(u,v)	a * cos(u) - v * b * cos(u) / sqr(b^2 * cos(u)^2 + a^2 * sin(u)^2)
Function Y(u,v)	b * sin(u) - v * a * sin(u) / sqr(b^2 * cos(u)^2 + a^2 * sin(u)^2)
Function Z(u,v)	v*h
Variables	a = 30, b = 20, alpha = Pi/5, h = tan(alpha)
0	K Abbrechen

Trimmen der Böschungstorse:

- Konstruktion der Krümmungsmittelpunkte für die beiden Hauptscheitel der Traufenellipse und zeichnen der Verbindungsstrecke.
- 5) **Extrusion** ("_ExtrudeCrv") der Verbindungsstrecke in z-Richtung (Höhe = 23) gibt die Schnittebene.
- 6) Für das **Trimmen** der Fläche verwenden wir nur eine Hälfte (Parameter u auf Intervall [0,PI] ändern. Mit dem Befehl "_Trim" zunächst die vertikale Schnittebene anklicken und dann jenen Teil des Dachs welcher weggeschnitten werden soll.
- Nun drehen "_Rotate" (14b) wir im Kopiermodus die getrimmte Fläche um 180 Grad um die z-Achse.
- 8) Wir verbinden die beiden Flächen mit dem Befehl "_Join" (9a) und erhalten das gewünschte Dach.

(O^{ft u}

Offsets