
Associative and commutative tree representations for Boolean
functionsI

Antoine Genitrinia, Bernhard Gittenbergerb, Veronika Krausb, Cécile Maillerc

aLaboratoire LIP6, CNRS UMR 7606 and Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris
cedex 05, France.

bTechnische Universität Wien, Wiedner Hauptstrasse 8-10/104, A-1040 Wien, Austria.
cLaboratoire de Mathématiques de Versailles, CNRS UMR 8100 and Université de Versailles

Saint-Quentin-en-Yvelines, 45 avenue des États-Unis, 78035 Versailles, France.

Abstract

Since the 1990s, the probability distribution on Boolean functions, induced by some random
formulas built upon the connectives And and Or, has been intensively studied. These formulas
rely on plane binary trees. We extend all the results, in particular the relation between the
probability and the complexity of a function, to more general formula structures: non-binary or
non-plane trees. These formulas satisfy the natural properties of associativity and commutativity.

Keywords: Boolean functions, Probability distribution, Random Boolean formulas, Random
trees, Asymptotic ratio, Analytic combinatorics.

1. Introduction

Since the 1980s, several papers have focused on probability distribution on Boolean functions
induced by random Boolean formulas. We first mention the result of Valiant [24] who constructs a
small formula that with high probability represents the Boolean function Majority. The method
he developed, often called the probabilistic amplification, has then been adapted to build other
Boolean functions [2, 7, 17, 23]. The main goal of such studies was to build explicitly a small
formula (of size polynomial in the number of variables) for important Boolean functions. All these
results are based on very constrained Boolean formulas: the formulas, seen as trees, are balanced
and the labelling of the internal nodes is very regular. Later, some results on larger classes of
formulas have been obtained, still based on the approach of amplification: [3, 10, 5].

During the 90s, other authors [21, 19] aimed at defining some “natural” probability distributions
for Boolean functions based on large random Boolean formulas seen as trees. In these papers no
structural constraints are imposed. The internal nodes of the trees are usually labelled by two
connectives And and Or and the external nodes by symbols taken from fixed set of literals. The
support of the resulting probability distribution on Boolean functions is the whole set of functions
and no more a distribution concentrated on a small subset of functions, like the one of Valiant.

Other papers appeared during the last 15 years: their central goal was to obtain quantitative
results from a logic point of view. The first result in this direction has been obtained in 2000
by [20]. It is based on formulas built with the single connective Implication and is dedicated to
the study of the quantitative ratio of intuitionistic logic within classical logic. The paper presents
exact results for the logics induced by a very small number of variables and states a conjecture

IThis research was partially supported by the A.N.R. project BOOLE, 09BLAN0011, and by the P.H.C. Amadeus
project Probabilities and tree representations for Boolean functions. The Austrian authors’ work has been supported
by FWF (Austrian Science Foundation), National Research Area S9600, grant S9604 and ÖAD, grants F03/2010
and F03/2013.

Email addresses: antoine.genitrini@lip6.fr (Antoine Genitrini), gittenberger@dmg.tuwien.ac.at
(Bernhard Gittenberger), veronika.kraus@gmx.at (Veronika Kraus), cecile.mailler@math.uvsq.fr (Cécile
Mailler)

Preprint submitted to Elsevier September 26, 2013

on the asymptotic behaviour of the ratios of both logics, when the number of variables tends to
infinity. The conjecture has then been proved in [13].

This model, based on a single connective, has then been studied in detail in order to understand
the behaviour of the whole probability distribution on Boolean functions. The first results on
tautologies [13] have proven to be crucial for the study of the whole distribution. The complete
study by Fournier et al. [11, 12] has linked together the complexity and the probability of a
function.

In parallel, models based on Boolean formulas built with two connectives, And and Or, have
been studied. First, Lefmann and Savický [19] established some bounds for the probability of
a function, bounds that are linked to the complexity of the functions. These bounds have been
improved by Chauvin et al. [4] where other models based on Galton-Watson branching processes
have been studied as well. Then Kozik [18] has developed a powerful tool based on pattern
languages that allows to classify and count large trees according to some structural constraints.
Using this tool he managed to compute the asymptotic order of the probability of a function. Both
implicational and And/Or models exhibit the same relation between complexity and probability
and, though the way to prove it is not at all the same, the same paradigm is underlying. Namely,
almost all trees computing a fixed function can be constructed in a particular way: Start with a
minimal tree and attach a large tree such that the function computed is not changed.

As pointed out by Gardy [14] the results discussed above have a fundamental weakness. All
models use plane binary trees as their underlying tree model. This implies that formulas which
should be considered the same are counted separately in the models: Indeed, since And and Or
are commutative and associative operations, the underlying trees should neither be plane nor
binary. Similarly, plane trees are not appropriate for the implication model since the premises
of an implicational formula can be interchanged without changing the function. This issue was
addressed in [16] where a model of Implication which is insensitive to the commutation of premises
has been studied.

This paper aims at a thorough analysis of the relation between complexity and probability of a
Boolean function given by a large random And/Or-formula as well as at the study of the influence
of associativity and commutativity on the behaviour of the model. Thus we will present results
for four models: Formulas with or without associativity and with or without commutativity of
the connectives. We will derive precise asymptotic results (including numerical constants) for the
probability of functions of smallest complexity (literals and constants) as well as the asymptotic
behaviour for functions of higher complexity. The paradigm mentioned above (a typical tree is a
minimal tree expanded once) still holds for all our models. In this paper we also analyse where such
expansions can take place which enables us to derive bounds for the multiplicative constants of the
asymptotic expressions. Our method would allow also the precise computation of the constants in
this case, though the derivation would be much more involved. The analysis will utilize and extend
Kozik’s theory of pattern languages [18]. This method was designed for and successfully applied
to the binary plane case. However, the non-binary cases require a modification of the method
and in the non-plane case there are no exact formulas available any more, but only approximate
ones. We have to utilize Pólya’s enumeration theory which makes the analysis of the models
technically more difficult. Moreover, we have to work with more general pattern languages and
introduce semi-planar structures (which we call mobiles) in Sections 3.3 and 3.4. Unfortunately,
these pattern languages are not subcritical any more which was a crucial property in the analysis
of the binary plane case. For a global reference on non-plane tree-structures and the techniques
that are necessary the reader can take Drmota’s book [6].

The results for the first of these models (neither associative nor commutative) are partially
known ([25, 18]). However, for comparison and in order to put all the models under a common
roof, we will include this model as well.

The paper is organized as follows. Section 2 is dedicated to introduce the whole context of
Boolean formulas seen as trees and presents the models and probability distributions we will study.
Then the complete study of the distributions is presented. It is decomposed in three sections:
Sections 3, 4 and 5. Each section is presented is the same way. First we present an overview of
the corresponding result of Kozik in the case of binary and plane formulas in order to point out

2

precisely the technical arguments that must be adapted to address our context of non-binary or
non-plane formulas. And then we prove the generalised versions of the key-tools we need. We will
prove that the probability of a given Boolean function is asymptotically proportional to a power
of the number of allowed variables with exponent related to the complexity. The results are stated
in Section 5, Theorems 5.3, 5.8 and 5.9. Moreover, we derive narrow bounds for proportionality
factors for the probability of any Boolean function and the proofs of these theorems exhibit what
most of the formulas for a fixed function look like.

2. Associative and commutative trees: definitions, generating functions

Kozik [18] has shown that in binary plane trees the order of magnitude of the limiting probabil-
ity of a given Boolean function is related to its complexity. We generalise this result and therefore
define the complexity of a function by the following:

Definition 2.1. An And/Or tree is a labelled tree, where each internal node is labelled with one of
the connectors {∧,∨} and each leaf with one element of the set of literals Ln = {x1, x̄1 . . . , xn, x̄n}.
We define the size of an And/Or tree to be its number of leaves. The set of variables is Xn :=
{x1, . . . , xn}.

Definition 2.2. The complexity L(f) of a non-constant function f (i.e. f /∈ {True, False}) is
given by the size of a smallest And/Or tree computing f (in the rest of the paper such trees will
be called minimal for f), while we define the complexity of True and False to be L(True) =
L(False) = 0.

As it will be clear later, the complexity of a function does not depend on the chosen tree model.

Definition 2.3. We are considering a set Tm,n of And/Or trees of size m. Let Um,n be the
uniform distribution on Tm,n, and Pm,n its image on the set of Boolean functions. We call

Pn = lim
m→∞

Pm,n

the limiting distribution.

Remark: In all models we will take into consideration, the probability of a function f is equal to
the one of its negation. In fact, a tree computing f can be relabelled in the following way: each
connector is substituted by the other one and each literal by its negation (x → x̄ and x̄ → x).
The new tree we obtain belongs to the same model as t and computes the function f̄ .

At first, we will present the result proven by Kozik. This result will be generalised in the
subsequent sections of the paper.

2.1. The classical model.
First, let us consider the set T of binary plane trees, whose internal nodes are labelled with ∧

or ∨, and whose external nodes are labelled with literals chosen in Ln: each such tree computes
a Boolean function on n variables. We denote by T (z) =

∑
m≥0 Tmz

m the generating function
enumerating this set of trees1, and by Tf (z) the generating function of such trees computing the
Boolean function f . Let us remind some well known results about this generating function. These
rely on the so-called symbolic method (see [9, Ch. I] for an introduction):

1More generally, in the rest of this paper, a generating function and its coefficients will be denoted by the same
capital letter Z(z) for the generating function and Zm for its coefficients.

3

Proposition 2.4. Let T denote the set of binary And/Or trees and Z = Ln the set of leaves.
Then a tree is either a single leaf or an And-node with two binary trees attached to it or an
Or-node with two binary trees attached to it. This gives rise to the symbolic equation

T = Z | T ∧ T | T ∨ T . (1)

Thus the generating function T (z) verifies T (z) = 2nz + 2T (z)2 and therefore we have

T (z) = 1−
√

1− 16nz
4

and the singularity ρn of T (z) is 1
16n .

Let us consider the uniform distribution on the set of trees of size m and then the probability
distribution Pm,n it induces on the set Fn of Boolean functions on n variables. The limit of this
distribution when m tends to infinity (cf. Definition 2.3), denoted by Pn has already been studied,
in particular by Lefmann and Savický [19], Chauvin et al. [4] and Kozik [18], who has shown the
following theorem.

Theorem 2.5 (Kozik [18]). Let f be a Boolean function. Then,

Pn(f) ∼ λf
nL(f)+1 as n→∞,

where L(f) is the complexity of f , i.e. the size of a minimal tree computing f , and λf is a constant
depending on f , which will be specified later in this paper.

Remark: Note that in [18], the result Pn(f) = Θ
(1
nL(f)+1

)
is rigorously proven for the binary

plane model, while the actual existence of the constant is suggested. In Section 3 we will compute
λf for the constant functions True and False (already shown in [25] and later in [18] as well), in
Section 4 for literals. We show its existence in general and derive bounds in Section 5.

Definition 2.6. A variable x is essential for a function f = f(x, x1, . . . , xn−1) if there exists an
assignment of True or False to the variables x1, . . . , xn−1, which we denote by x0, such that
f(True, x0) 6= f(False, x0).

Remark: An essential variable of f appears in every tree representation of f .
Remark: Note that in this theorem, f (and thus L(f)) is fixed, and n tends to infinity. The set
of essential variables of the function is finite (and does not depend on n).

First of all, let us define associative trees, commutative trees and then associative and com-
mutative trees, and the induced distributions on the set of Boolean functions Fn.

2.2. The associative plane model.
Definition 2.7. An associative tree is a plane tree where each node has out-degree chosen in
N \ {1}. A labelled associative tree is an associative tree in which each external node has a label
in Ln and each internal node has an ∧-label or an ∨-label but cannot have the same label as its
father. We denote by A the family of associative trees and by Am the set of such trees of size m.

Hence these trees are stratified: the root can be labelled either by ∧ or ∨ and it determines the
labels of all other internal nodes.

We denote by Pan = limm→∞ Pam,n the limiting distribution of Boolean functions induced by
associative And/Or trees. Our aim is to compare the limiting distributions Pan and Pn.

The generating function enumerating associative trees is given by A(z) = Â(z) + Ǎ(z)− 2nz,
where Â (resp. Ǎ) is the generating function of associative trees rooted at an ∧-node (resp. an
∨-node) or is a single leaf. Note that Â(z) = Ǎ(z) and,

Â(z) = 2nz +
∑
k≥2

Ǎ(z)k = 2nz + Â2(z)
1− Â(z)

.

4

Therefore,
A(z) = 1

2

(
1− 2nz −

√
1− 12nz + 4n2z2

)
(2)

and its dominant singularity is

αn = 3− 2
√

2
2n .

Moreover, A(αn) =
√

2− 1.
Remark: Thanks to the Drmota-Lalley-Woods theorem (well presented in [9, Chapter 8]), we
can show that P am,n has indeed a limit when m tends to infinity. We denote by Âf (z) (resp. Ǎf (z))
the generating function enumerating associative trees computing f , whose roots are labelled by ∧
(resp. ∨) or a literal. These generating functions satisfy the following system:

Âf (z) = z l1{f lit.} +
∞∑
i=2

∑
g1,...,gi,

g1∧···∧gi=f

Ǎg1(z) · · · Ǎgi(z)

Ǎf (z) = z l1{f lit.} +
∞∑
i=2

∑
g1,...,gi,

g1∨···∨gi=f

Âg1(z) · · · Âgi
(z).

The Drmota-Lalley-Woods theorem says, roughly speaking, that generating functions satisfying a
system of functional equation have a dominant singularity of the same type. By transfer theorems
(see [8]) this implies similar behaviour of their coefficients and eventually the existence of the
limiting distribution (cf. Definition 2.3). For a similar system of functional equations it was
shown in [12, Section 3] that all assumptions of the Drmota-Lalley-Woods theorem indeed hold.

∨

x1 x2 x3 x4

⇒

∨

∨

x1 x2

∨

x3 x4

or

∨

x1 ∨

x2 ∨

x3 x4

Figure 1: Two of the five possible binary trees obtained from the associative tree.

2.3. The commutative binary model.
Definition 2.8. A labelled commutative tree on n variables is a non-plane binary tree where every
internal node is labelled with one of the connectors {∧,∨} and every leaf is labelled by a literal
from Ln = {xi, x̄i, i = 1, . . . , n}. We denote this family of trees by C .

We consider the distribution Pcm,n induced over the set of Boolean functions of n variables by
the uniform distribution over such trees of size m.

Binary commutative trees fulfill the same symbolic equation as in the plane case (c.f. (1))
but because of commutativity, the generating function of all commutative trees on n variables,
counting leaves, is given implicitly by

C(z) = 2nz + C(z)2 + C(z2), (3)

where the term 1
2 (C(z)2 + C(z2)) tracks a possible symmetry if both subtrees of the root are

identical. See Gardy [14] for details on this model of expressions and Pólya and Read [22] for

5

more general ideas. The system of equations for the generating functions Cf (z) computing a given
Boolean function f is given by

Cf (z) = z l1{f lit.} + 1
2
∑
g,h6=f
g∧h=f

Cg(z)Ch(z) + 1
2
∑
g,h6=f
g∨h=f

Cg(z)Ch(z) + Cf (z)2 + Cf (z2).

We can prove all assumptions of the Drmota-Lalley-Woods theorem, hence we conclude that all
the (Cf (z)) and C(z) have the same singularity γn, and therefore Pcm,n converges to a limiting
probability distribution P cn, when m tends to infinity.

2.4. The commutative associative model.
Definition 2.9. Finally we define general labelled trees as commutative and associative trees,
with internal nodes labelled by ∧ or ∨ (with the condition that father and sons cannot have the
same label), and external nodes labelled by literals chosen in Ln. We denote by P this family of
trees.

As in the other models, we consider the distribution Pa,cm,n induced over the set of Boolean functions
by the uniform distribution over such trees of size m.

Let P (z) =
∑
m Pmz

m be the generating function of general trees, and P̂ (z) (resp. P̌ (z)) the
generating function of general trees rooted by ∧ (or by ∨, resp.) or are a leaf. We have

P (z) = P̂ (z) + P̌ (z)− 2nz, (4)

with
P̂ (z) = exp

∑
i≥1

P̌ (zi)
i

− 1− P̌ (z) + 2nz

P̌ (z) = exp

∑
i≥1

P̂ (zi)
i

− 1− P̂ (z) + 2nz.

(5)

Moreover, the generating functions P̂f (z) and P̌f (z) of general trees computing f satisfy the
following system:

P̂f (z) = z l1{f lit.} +
∞∑
l=2

∑
g1,...gi,

g1∧...∧gl=f

l∏
j=1

exp

∑
i≥1

P̌gj (zi)
i

− 1

P̌f (z) = z l1{f lit.} +

∞∑
l=2

∑
g1,...gi,

g1∧...∧gl=f

l∏
j=1

exp

∑
i≥1

P̂gj (zi)
i

− 1

 .

Thus, we can check the hypothesis of the Drmota-Lalley-Woods theorem and conclude that the
limiting distribution Pa,cn of Pa,cm,n, when m tends to infinity, exists, and moreover, that all the
P̂f , P̌f , P̂ and P̌ have the same singularity, denoted by δn.

In the next sections of the paper, we will show that Theorem 2.5 still holds in the associative
or commutative cases.

First, we show in Section 3 that the limiting ratio of tautologies is of order 1
n , we compute

explicitly the limit of Pn(True) when n tends to infinity for the different models. If these limits
were the same, we could not conclude anything, but in fact they are all different, which permits us
to conclude that asymptotically, when n tends to infinity, the probability distributions induced by
the various models are all different. In Section 4, we extend our results to the limiting probabilities
of functions which are literals. In all models, the asymptotic ratio is of order 1

n2 when n tends to
infinity, but the limiting ratios are different from one model to the other. Finally, we generalise
Theorem 2.5 in Section 5.

6

3. Limiting probability of tautologies

In this section we compute the limiting probability of the constant function True. We recall
that trees computing the function True are called tautologies.

Definition 3.1. In a tree, if the path from the root to a leaf crosses only ∨- nodes, then this path
will be called an ∨-only-path. We extend the definition to the case such that the leaf is equal to
the root (i.e. the tree has size 1).

As suggested by Kozik’s results, the limiting probability of tautologies reduces to the limiting
probability of so-called simple tautologies, defined by the following:

Definition 3.2. A simple tautology realised by xi, i = 1 . . . n, is a Boolean expression which has
the shape xi ∨ x̄i ∨ f for some Boolean function f , i.e. there exists a leaf labelled by xi and a leaf
labelled by x̄i, both connected to the root by an ∨-only-path (c.f. Figure 2). A simple tautology
is a simple tautology realised by any literal x ∈ {x1, . . . , xn}. We denote by STm the number of
simple tautologies of size m (on n variables, n is omitted for simplicity), and ST = ∪mSTm.

∨

a ∨

∨

a ∨

∨

∨

x
a

a

∨

a ∨

∨

x̄
a

∧

a a

a

This figure, where
a

stands for any labelled binary tree (two different
a

may be different),
defines a binary simple tautology.

∨

a a
x

a a
x̄

a

This figure, where
a

stands for any labelled associative tree, defines an associative simple
tautology. Note that x and x̄ appears on the first generation.

Figure 2: Simple tautologies.

Definition 3.3. Let V be a set of variables and STm(V) be the set of simple tautologies realised
by every x ∈ V but not by any other variable y 6∈ V.

7

• K1,m is the set of simple tautologies that are realised by exactly one variable:

K1,m =
n⊎
i=1

STm({xi}),

• K2,m is the set of simple tautologies that are realised by exactly two different variables:

K2,m =
n⊎

i,j=1
i6=j

STm({xi, xj}),

...

• Kn,m is the set of simple tautologies that are realised by exactly n different variables:

Kn,m = ST ({x1, . . . , xn}).

Let ST x(z) denote the generating function of simple tautologies realised by x and G(z) =
ST x1(z)+ST x2(z)+· · ·+ST xn(z) = nST x(z). Obviously, ∀m ∈ N, #K1,m ≤ STm ≤ Gm, because
some tautologies are counted several times in G. We get Gm = #K1,m+2·#K2,m+· · ·+n·#Kn,m.

To calculate limiting probabilities, we use the singular expansions of the considered generating
functions around their dominant singularities.

Lemma 3.4. Consider the generating function T (z) of a given family T of And/Or trees together
with the generating function S(z) of a subset S ⊆ T of such trees. We assume that T (z) and S(z)
have the same dominant singularity ρ and a square root singular expansion

T (z) = aT − bT
√

1− z

ρ
+O

(
1− z

ρ

)
, S(z) = aS − bS

√
1− z

ρ
+O

(
1− z

ρ

)
,

around ρ. Then,

lim
m→∞

Sm
Tm

= lim
z→ρ

S′(z)
T ′(z) .

We call this number the limiting ratio of the set S counted by S(z).

Proof. If m tends to infinity, transfer lemmas (c.f. [9]) give

Sm ∼
bS√
π
n−

3
2 ρ−m

Tm ∼
bT√
π)n

− 3
2 ρ−m

⇒ Sm
Tm
∼ bS
bT
.

Derivation of the singular expansions gives

S′(z) ∼ bS
2

(
1− z

ρ

)− 1
2

, T ′(z) ∼ bT
2

(
1− z

ρ

)− 1
2

.

Hence the result follows.

Remark: If S is the set of trees computing a given function f , then the limiting probability of f
is equal to the limiting ratio of S because for all m ≥ 1,

Pm,n(f) = # trees of size m computing f
all trees of size m = Sm

Tm
.

8

3.1. Binary plane trees
In the binary plane model, Kozik has shown that asymptotically, when n tends to infinity, all

tautologies are simple tautologies. Therefore, to estimate the probability that a binary plane tree
computes the function True, it suffices to count simple tautologies, and furthermore, thanks to
the following proposition, simple tautologies that are realised by only one variable (i.e. the set
K1,m).

Proposition 3.5. If n tends to infinity, then

lim
m→∞

1
Tm

n∑
k=1

k ·#Kk,m = lim
m→∞

#K1,m
Tm

+O
(

1
n2

)
.

The proof of the proposition is deferred to the end of this section since further technical
concepts are required.

Theorem 3.6. The limiting ratio of simple tautologies, and thus the limiting ratio of tautologies
in the binary plane model is

lim
m→∞

Pm,n(True) = lim
m→∞

STm
Tm

(
1 +O

(
1
n

))
= 3

4n +O
(

1
n2

)
, when n tends to infinity,

where Tm is the total number of plane binary trees and STm is the number of simple tautologies
of size m labelled with n variables.

Proof. Let us compute the generating function of simple tautologies. First, let gx be the generating
function of trees containing a leaf labelled by x which is connected to the root by an ∨-only-path
(c.f. Figure 3) and ḡx(z) the generating function of trees which are not of such shape. Hence
gx = T − ḡx.

∨

∨

∨

a
∨

x
a

a

a

Figure 3: A tree counted by the generating function gx.

The function ḡx is given by:

ḡx(z) = T (z)2 + ḡx(z)2 + (2n− 1)z.

This equation is obtained by decomposing the tree at its root: if the root is labelled by an ∧, the
tree is not of the shape depicted in Figure 3 and both subtrees are arbitrary trees. If the root
is labelled by an ∨, neither of the two subtrees may have the shape of Figure 3. If the root is a
single leaf, it must not be labelled by x. By the symbolic method [9] The three cases translate to
the three terms in the equation. Solving this equation, using the explicit expression of T (z) given
by Proposition 2.4, we get

ḡx(z) = 1
2 −

√
2 + 2

√
1− 16nz − 16nz + 16z

4 ,

and thus

gx(z) =
√

2 + 2
√

1− 16n− 16nz + 16z −
√

1− 16nz − 1
4 . (6)

9

Let hx be the generating function of trees given by t1∨ t2 (or t2∨ t1), where t1 is a tree counted
by gx and not by gx̄ (therefore it is not a simple tautology) and t2 is a tree counted by gx̄ but not
by gx, i.e. simple tautologies realised by x, where x and x̄ must lie in different subtrees of the root
(c.f. Figure 4).

∨

∨

∨

a
∨

x
a

a

∨

a
∨

x̄
a

Figure 4: A tree counted by hx.

Obviously, hx(z) = 2(gx(z)−ST x(z))2. Recall that ST x(z) is the generating function of simple
tautologies realised by the variable x, and ST x(z) be the generating function of trees that are not
simple tautologies realised by x. Again by decomposing and analysing the label of the root, we
get

ST
x = T (z)2 + (ST x(z)2 − hx(z)) + 2nz.

In particular, if the root is labelled by an ∨, neither of the two subtrees can be a simple tautology
realised by x and additionally the whole tree cannot be of the shape depicted in Figure 4. Solving
this equation, we obtain an explicit expression for ST x, and ST x(z) = T (z) − ST x(z) yields an
expression for ST x(z), where Z denotes Z :=

√
1− 16nz:

ST x(z) = 1
4

(
−1− Z + 2

√
2 + 2Z − 16nz + 16z −

√
2 + 2Z − 16nz + 32z

)
.

By Proposition 3.5, limm→∞
STm

Tm
= limm→∞

Gm

Tm
+O

(1
n2

)
, when n tends to infinity. Due to

Lemma 3.4 we can compute the ratio

lim
m→∞

Gm
Tm

= lim
z→ 1

16n

G′(z)
T ′(z) = 3

4n +O
(

1
n2

)
where G(z) = nST x(z) is given just after Definition 3.3. Thus,

lim
m→∞

STm
Tm

= 3
4n +O

(
1
n2

)
.

Since, when n tends to infinity, asymptotically almost every tautology is a simple tautology, this
implies

lim
m→∞

Pm,n(True) = lim
m→∞

STm
Tm

+O
(

1
n2

)
.

We now go back to Proposition 3.5. In the following, we define pattern languages and some
related vocabulary, which can be found in Kozik’s paper [18] for the binary case. Interpreting a
given And/Or tree as an element from a pattern language, which is possible if pattern and trees
have a similar structure, will lead us to the proof of Proposition 3.5.

Definition 3.7. A pattern language L̃ is a set of plane trees with internal nodes labelled by ∧
or ∨, and external nodes labelled by • or �. The leaves labelled by � are called placeholders and
those labelled by • are called pattern leaves. We define s(x, y) as the generating function of L̃,
with x marking the pattern leaves and y marking the placeholders.

10

Given a pattern language L̃, we will denote by L the set of plane labelled trees with internal
nodes labelled by ∧ or ∨, and external nodes labelled by literals or placeholders such that, if we
replace every literal by a •, we obtain a tree of L̃. Therefore, s(2nx, y) is the generating function
of L. We call L the labelled pattern language associated to L̃.

Given a set of trees T , we define L̃[T] (resp. L[T]) as the set of trees obtained by taking an
element of L̃ (resp. L) and plugging an element of T in each placeholder.

Given two pattern languages L and M , we define the composition L[M] of L and M by the
pattern language obtained by plugging M -patterns into the placeholders of the structures of L.
The pattern leaves of L[M] are then both the pattern leaves of L and those of M .

Remark: In order not to overload notation, we will sometimes use the same symbol L for L and
L̃ if no confusion arises. Then we will stress verbally whether the labelled or unlabelled version of
the pattern language is meant.

Definition 3.8. A (labelled or unlabelled) pattern language L is unambiguous if for every family
T every element of L[T] can be constructed in only one way.

A (labelled or unlabelled) pattern language L with generating function s(x, y) is subcritical for
T if the generating function t(z) of T has a square root singularity ρ and if s(x, y) is analytic in
some set {(x, y) : |x| ≤ ρ+ ε, |y| ≤ t(ρ) + ε}.

Definition 3.9. If t is an element of L[T], we say that t has q L-repetitions if q equals the
difference between the number of its L-pattern leaves and the number of distinct variables (not
literals!) that appear in its L-pattern leaves.

Further, if V is a fixed subset of the set of variables Xn, we say that t has q (L,V)-restrictions
if q equals the number of its L-repetitions plus the number of variables from V that appear at
least once in the L-pattern leaves of t

Remark: In the typical context needed, V will be the set of essential variables of the function
represented by the tree t. Thus we will call the variables in V essential variables of t.

∨

∨

∨

x1 ∨

x̄1 x2

x3

∧

x4 �

Figure 5: A binary tree with one repetition. Since the tree represents a tautology, none of the variables
x1, x2, x3, x4 is essential for the function. It is therefore natural to set V = ∅. The tree has one (L, ∅)-
restriction.

Theorem 3.10. [18] Let L be a binary unambiguous language which is subcritical for T and V be
a fixed subset of Xn. We denote by L[T][k]

m,n (resp by L[T][≥k]
m,n) the number of elements of L[T] of

size m which have k (resp. at least k) (L,V)-restrictions, and by L[T]m the number of elements
of L[T] of size m. Then,

lim
m→∞

L[T][≥k]
m,n

Tm
∼ lim
m→∞

L[T][k]
m,n

Tm
∼ d

nk
,

when n tends to infinity, and d is a constant.

11

Due to this theorem, we can now prove Proposition 3.5.

Proof of Proposition 3.5. Let us consider the pattern language S = •|S ∨S|�∧� (c.f. [18]). The
set of all trees computing True with exactly i S-restrictions includes Ki. Therefore, thanks to
Theorem 3.10, we get

lim
m→∞

#Ki,m

Tm
= O

(
1
ni

)
,

when n tends to infinity. Therefore,

lim
m→∞

2 ·#K2,m + . . .+ n ·#Kn,m

Tm
= O

(
1
n2

)
+ (n− 2)O

(
1
n3

)
= O

(
1
n2

)
.

3.2. Associative plane trees
To compute the limit of Pan(True) when n tends to infinity, we define simple tautologies, and

prove that asymptotically every tautology is a simple tautology. Therefore, we will generalise
Theorem 3.10 to associative trees.

Theorem 3.11. The limiting probability of the function True in the associative model is given by

Pan(True) = lim
m→∞

Pam,n(True) = 51− 36
√

2
n

+O
(

1
n2

)
.

Let us first show that Theorem 3.10 can be generalised to the associative case, and then use it
to show Theorem 3.11.

3.2.1. Generalisation of Kozik’s theorem to associative trees
Theorem 3.12. Let V ⊆ Xn be a fixed set and L be an unambiguous pattern language with out-
degree different from 1, which is subcritical for A. We denote by L[A][k]

m,n (resp by L[A][≥k]
m,n) the

number of elements of L[A] of size m which have k (resp. at least k) (L,V)-restrictions, and by
L[A]m the number of elements of L[A] of size m. Then,

lim
m→∞

L[A][≥k]
m,n

Am
∼ lim
m→∞

L[A][k]
m,n

Am
∼ d

nk
,

when n tends to infinity, and d is a constant.

The proof of the generalisation works analogously to the one of Theorem 3.10, still we will
state the main ideas as they will be useful in the following.

Proposition 3.13. Let Ã be the family of associative trees with unlabelled leaves. Given an
associative tree t ∈ L̃[Ã]m with l L-pattern leaves. Further, we fix a set V ⊆ Xn denote by v
the cardinality of this set, v = |V|. Then the number of leaf-labellings of t which make it have k
(L,V)-restrictions is:

(n− v)l−k nm−l 2mwv,k(l),

where wv,k(l) =
∑k
r=0

{
l

l − r

}(
v

k − r

)
(l − r)k−r.

Remark: Note that wv,k(l) is a polynomial in l.

Proof. For any r ≤ k, the number of different leaf-labellings of t which give r L-repetitions and k
(L,V)-restrictions is: {

l
l − r

}(
v

k − r

)
(l − r)k−r (n− v)l−r−(k−r) nm−l2m,

where xy = x(x − 1) . . . (x − y + 1) and
{
y
x

}
are the Stirling numbers of second kind In this

formula, the different factors represent, from left to right:

12

- the number of partitions of the L-pattern leaves into l − r classes (leaves in the same class
will be labelled by the same variable),

- the number of different choices for the k− r essential variables that appear in the L-pattern
leaves,

- the number of different assignments of these essential variables to the l − r classes of the
first term,

- the number of assignments of non-essential variables to the remaining classes of the L-pattern
leaves,

- the number of assignments of variables to the leaves that are not L-pattern leaves,

- the number of ways to distribute the negations.
In [18] the following proposition is proved for binary trees and patterns (cf. [18, Lemma 2.7]),

but in fact the proof does not rely on binarity and hence the proposition holds for patterns and
trees of arbitrary degree.
Proposition 3.14. Let T be a set of trees whose generating function t(z) =

∑
tmz

m has a unique
dominating singularity ρ in R+ of the square root type. Let L̃ be an unambiguous pattern language,
subcritical for T . Let L̃[T](m, l) denote the number of trees from L̃[T] of size m with exactly l
pattern leaves. Finally, let w(l) be a non zero polynomial of degree δ. Then,

lim
n→∞

∑
l≥0 L̃[T](m, l)w(l)

tm
= cw,

for some non-negative real cw.
Moreover, if w(l) has non-negative values and is positive at some point l0, and if L contains a

pattern with l0 non pattern leaves and at least one placeholder, then cw 6= 0.
Thanks to those propositions, we can now prove Theorem 3.12 to associative trees:

Proof of Theorem 3.12. Let L be an associative pattern and Ã the family of trees from A with
unlabelled leaves. We have, thanks to Proposition 3.13:

L[A][k]
m,n

Am
=

2m
∑
l≥0 L̃[Ã](m, l)wk,v(l)(n− v)l−knm−l

Am
;

and this implies:
L[A][k]

m,n

Am
≤

2m
∑
l≥0 L̃[Ã](m, l)wk,v(l)nl−knm−l

(2n)mÃm
.

Thanks to Proposition 3.14, we get

lim
m→∞

L[A][k]
m,n

Am
≤ lim
m→∞

2m
∑
l≥0 L[A](m, l)wk,v(l)nm−k

(2n)mÃm
∼ ck,v

nk
,

when n tends to infinity. Moreover, we can check that ck,v is positive. A lower bound can be
proven analogously, the proof for the binary case is given in [18]. It follows that

lim
m→∞

L[A][k]
m,n

Am
∼ d

nk
,

when n tends to infinity. Moreover, we can see that

L[A][≥k]
m,n

Am
≤

2m
∑
l≥0 L̃[Ã](m, l)wk,v(l)nm−k

Am
,

and since

lim
m→∞

L[A][k]
m,n

Am
≤ lim
m→∞

L[A][≥k]
m,n

Am
,

the theorem is proven.

13

3.2.2. Associative tautologies
Proposition 3.15. In the associative model, asymptotically when n tends to infinity, almost all
tautologies are simple tautologies.

The proof relies on the ideas of the binary case (see [18]). First we need to introduce suitable
pattern languages and show that they are subcritical for the tree family we are considering:

N̂ = •|Ň ∧�|Ň ∧� ∧�| . . .
Ň = •|N̂ ∨ N̂ |N̂ ∨ N̂ ∨ N̂ | . . .
R = N̂ |Ň

(7)

Then R is an unambiguous pattern language.

Lemma 3.16. The labelled pattern languages R and R[R] := N̂ [Ň] | Ň [N̂] are subcritical for
associative trees.2

Remark: Since the trees must be stratified, we cannot use the ordinary composition of pattern
languages as defined in Definition 3.7. Therefore it is not a priori obvious that the modified
composition of subcritical pattern languages is subcritical as well.

Proof. The generating function p(x, y) of the labelled pattern language R is given by

p(x, y) = p̂(x, y) + p̌(x, y)− 2nx,

where p̂(x, y) (resp. p̌(x, y)) is the generating function of the partial labelled patterns N̂ (resp.
Ň). These two generating functions satisfy the following system:{

p̌(x, y) = 2nx+ p̂(x,y)2

1−p̂(x,y)
p̂(x, y) = 2nx+ y

1−y p̌(x, y).
(8)

Solving this system, we get

p̂(x, y) = 1
2

(
2nx− y + 1−

√
(2nx− y + 1)2 − 8nx

)
.

Recall (cf. (2)) that the generating function for associative trees is defined by

A(z) = 1
2

(
1− 2nz −

√
1− 12nz + 4n2z2

)
,

A(αn) =
√

2− 1 and αn = 3− 2
√

2
2n

and for trees with root label And resp. Or by

Â(z) = Ǎ(z) = A(z) + 2nz
2 and Â(αn) = Ǎ(αn) = 2−

√
2

2 .

By stratification, subcriticality means here that p̂(x, y) and p̌(x, y) are analytic in some domain
D = {(x, y) ∈ C2 | |x| ≤ αn + ε, |y| ≤ (2 −

√
2)/2 + ε}. Obviously, p̂(x, y) is analytic in E =

C2 \{(x, y) | (2nx−1−y)2 = 8nx}. Thus setting x = αnz with |z| ≤ 1+ε and solving the equation
defining E we obtain

y = 1 + (3− 2
√

2)z ± 2(
√

2− 1)
√
z ≈ 1 + 0.171573z ± 0.828427

√
z.

2Strictly speaking, R, N̂, Ň are unlabelled pattern languages and should therefore be denoted by R̃,
˜̂

N,
˜̌

N . But
we avoid such notations and use R, N̂, Ň for both, the labelled as well as the unlabelled versions of the respective
pattern languages, cf. remark after Definition 3.7.

14

The minimal modulus is attained if we take the minus sign and set z = 1: This gives 6− 4
√

2 ≈
0.343146 which is larger than Ǎ(αn) ≈ 0.292893. Thus D ⊆ E and we are left with showing that
p̌(x, y) is analytic in D as well. By (8) the latter is true if |p̂(x, y)| < 1 in D. To see this, observe
that |p̂(x, y)| attains its maximum if x > 0, y > 0. Since p̂(αn, Ǎ(αn)) = Ǎ(αn) < 1 we obtain
subcriticality of R for associative trees.

The pattern language R[R] is subcritical if p̂(x, p̌(x, y)) and p̌(x, p̂(x, y)) are analytic in D. In
view of the considerations above this is an easy consequence of

p̂(αn, Ǎ(αn)) = Ǎ(αn) and p̌(αn, Â(αn)) = Â(αn)

and Ǎ(αn) = Â(αn) < 1.

Remark: The R-pattern has an interesting property: if we set all the R-pattern leaves of a tree
to False, then the whole tree itself computes False. This can be checked by induction on the
size of the tree. If the pattern is only a leaf, it returns False. If the root is an ∨-node, then all
subtrees of the root are patterns returning False by the induction hypothesis. If the root is an
∧-node, the leftmost subtree is a pattern returning False by the induction hypothesis. Thus the
whole tree computes False in all cases. This property is the key point of the following proof.
Remark: The pattern R is a generalisation of the pattern N = •|N ∨N |N ∧�, defined in [18]
to handle the proof in the binary plane case. Note that R[A] = A, and we can find the unique
element from L[A] which corresponds to a tree A ∈ A by starting at the root of A and finding the
pattern leaves by traversing the tree top-to-bottom.

Proof of Proposition 3.15. Let us consider a tautology t with exactly one (R[R], ∅)-restriction (cf.
Definition 3.7). This restriction has to be a repetition, since a tautology does not contain essential
variables. (Thus we have set V = ∅ here.)

If the repetition is of the kind x/x, then we can assign all the R-pattern leaves to False, and
with this assignment the whole tree computes False, which is impossible.

Thus the repetition has to be an x/x̄ repetition. Let us first assume that the repetition does
not appear among the R-pattern leaves. Thus we can assign all those leaves to False, and then
the whole term computes False, which is impossible. Hence, the repetition must occur in the
R-pattern leaves. Let us assume that there is a node ν labelled by ∧ on one of the paths from
the leaves labelled by x and x̄ to the root of the tree. Then the subtree rooted at ν has shape
t1 ∧ t2 ∧ . . . ∧ ts with s ≥ 2. Let us assume that x (or x̄) appears in tj . Then we can assign all
the R[R]-pattern leaves of the other subtrees (ti)i 6=j , and all the R[R]-pattern leaves of the whole
tree except those in the subtree rooted at ν to False. This makes the whole tree compute False,
which is impossible.

Thus, x and x̄ are linked to the root by an ∨-only-path. As the trees are stratified, the only
possibility for t is to be a simple tautology. Thus every tree with exactly one (R[R], ∅)-restriction
computing True is a simple tautology.

Moreover, there are no trees computing True without (R[R], ∅)-restrictions, and the number
of trees computing True with at least two (R[R], ∅)-restrictions is negligible in comparison to the
number of simple tautologies by Theorem 3.12 which can be applied thanks to Lemma 3.16.

We are now able to prove Theorem 3.11 by counting associative simple tautologies.

Proof of Theorem 3.11. Let S̃T
x
(z) be the generating function counting the number of simple

tautologies realised by x and such that x and x̄ appear only once in the first generation (i.e. at
depth 1). Then,

S̃T
x
(z) = z2

∑
l≥2

l(l − 1)(Â(z)− 2z)l−2.

If x or x̄ appear at least twice in the first generation, the tree has at least two (R[R], ∅)-restrictions,
and the set of such trees is negligibly small compared to the set counted by S̃T

x
. Thus, asymp-

totically, when n tends to infinity, S̃T
x
(z) counts the set of simple tautologies realised by x.

15

Finally, note that in view of Theorem 3.12, the assertion of Proposition 3.5 extends to the
associative case. So a Maple computation giving

lim
z→αn

G′(z)
A′(z) ∼

51− 36
√

2
n

completes the proof of Theorem 3.11.

3.3. The binary commutative model
The generating function of binary commutative And/Or trees, C(z) =

∑
m Cmz

m, is given in
(3). We denote by γn the dominant positive singularity of C(z). To compute γn and C(γn) we
need to solve the system (see [6, Chapter 2] for details):{

y = 2nz + y2 + C(z2)
1 = 2y. (9)

C(z2) is analytic for |z| ≤ γn. We obtain C(γn) = 1
2 and γn = 1

8n −
C(z2)

2n . As C(z) = 2nz +
O(n2z2), by inserting into the equation we can further derive γn = 1

8n
(
1− 1

8n
)

+O
(1
n3

)
. As we

need more terms in some of our calculations, we do a more refined analysis with Maple and further
obtain

γn = 1
8n

(
1− 1

8n + 7
256n2

)
+O

(
1
n4

)
. (10)

Theorem 3.17. The limiting probability of the function True in the binary commutative model
is given by

Pcn(True) = lim
m→∞

Pcm,n(True) = 385
512n +O

(
1
n2

)
.

To prove the theorem we will extend the method of pattern languages of Kozik to the com-
mutative case. We consider binary commutative trees, together with a half-embedding, that is
certain branches of the tree will be plane and some will stay non-plane. We use the plane pattern
language known from Section 3.1 given by

N = •|N ∨N |N ∧�.

As N is plane, it is unambiguous for any tree family. A tree of N [C] is a "mobile", that is, the
pattern-trees consisting of internal nodes and • and �-leaves are plane, while the trees substituted
into the �-nodes are still non-plane trees.

3.3.1. Generalisation of Kozik’s theorem to commutative trees
As mentioned before, in the plane case, the pattern N we considered fulfilled N [T] = T . For

commutative trees, this is not the case. The proof of Theorem 3.10 relies completely on plane
structures and subcriticality which is not given anymore. Still, Theorem 3.10 can be generalised
to mobile structures. We will adapt it and its proof, relying on the sketch in Section 3.2.1, but we
will need additional arguments. Note that most definitions concerning pattern languages, such as
restrictions, can still be used without change. However, the pattern languages we encounter here
are not subcritical any more. Therefore, we will need a different concept of subcriticality.

Definition 3.18. Let f(x) and g(x) be power series with nonnegative coefficients. Assume further
that g(x) has a unique singularity ρ > 0 on its circle of convergence and that g(ρ) = η <∞. We
say that f is subcritical for g if f is analytic for |x| ≤ η + ε for some ε > 0.

Theorem 3.19. Let L be a labelled plane binary unambiguous pattern language with `(x, y) its
generating function. Further assume that the coefficients Al(y), given by

`(x, y) =
∑
l≥0

∑
i≥0

si,ly
ixl =

∑
l≥0

Al(y)xl (11)

16

are subcritical for C(z).
Fix a set V ⊆ Xn. We denote by L[C][k]

m,n (resp. by L[C][≥k]
m,n) the number of elements of L[C] of

size m which have k (resp. at least k) (L,V)-restrictions, and by L[C]m the number of elements
of L[C] of size m. Then,

lim
m→∞

L[C][≥k]
m

Cm
= O

(
1
nk

)
and lim

m→∞
L[C][k]

m

Cm
= O

(
1
nk

)
when n tends to infinity.

Let L̃ be a plane pattern and C be the family of commutative trees. Let Λ be an element of
L̃[C] of size m with l pattern leaves. Note that the leaves of the non-plane parts are labelled while
the pattern leaves are unlabelled.

Proposition 3.20. Fix the set V ⊆ Xn of essential variables and denote by v = |V| the cardinality
of this set. Given a binary mobile Λ ∈ L[C] with unlabelled leaves, the number of leaf-labellings of
Λ which make it have k (L,V)-restrictions satisfies

](labellings)k = (n− v)l−k 2lwv,k(l),

where the last factor is the polynomial wv,k(l) =
∑k
r=0

{
l

l − r

}(
v

k − r

)
(l − r)k−r.

Proof. For any r ≤ k, the number of different labellings of the pattern leaves of Λ which give r
L-repetitions and k (L,V)-restrictions is given by{

l
l − r

}(
v

k − r

)
(l − r)k−r (n− v)l−r−(k−r) 2l,

where, as in the plane case, xy = x(x − 1) . . . (x − y + 1) and
{
y
x

}
are the Stirling numbers of

second kind. The different terms of the product again represent, from left to right:

- the number of partitions of the L-pattern leaves into l − r classes (leaves in the same class
will be labelled by the same variable),

- the number of different choices for the k− r essential variables that appear in the L-pattern
leaves,

- the number of different assignments of these essential variables to the l − r classes of the
first term,

- the number of assignments of non-essential variables to the remaining classes of the L-pattern
leaves,

- and the number of distribution of the negations.

We adapt Proposition 3.14 to our needs.

Proposition 3.21. Let L be an unambiguous labelled pattern language, with `(x, y) its generating
function, and let T be a family of leaf-labelled trees with generating function T (z). Further assume
that the coefficients Al(y) := [xl]`(, given in (11), are subcritical for T (z).

Let L[T](m, l) be the number of trees of L[T] of size m with exactly l pattern leaves and w(l)
be a non-zero polynomial of degree λ. Then,

lim
m→∞

∑N
l=0 L[T](m, l)w(l)

Tm
= cw, (12)

for some non-negative real cw, where N is some fixed integer.

17

Proof. If we set `w(x, y) =
∑N
l=0 w(l)Al(y)xl, then the numerator of (12) can be expressed

as [zn]`w(z, C(z)). Moreover, w(l) =
∑λ
j=0 wj l

j is a representation of the polynomial w, and
`N (x, y) =

∑N
l=0Al(y)xl is the truncation of `(x, y) =

∑
l≥0Al(y)xl. Note that,

xj
∂j`N (x, y)

∂xj
=

N∑
l=0

ljAl(y)xl.

Thus
λ∑
j=0

wjx
j ∂

j`N (x, y)
∂xj

=
N∑
l=0

w(l)Al(y)xl.

Hence, the generating function `w(x, y) is a linear combination of `N (x, y) and its derivatives, all
of which are finite sums of terms which are subcritical for T (z). Hence, `w(z, C(z)) and T (z) have
the same radius of convergence. By [18, Observation 2.3] every subcritical summand has a square
root expansion around the singularity, if T (z) has a square root singularity, hence the type of
singularity of `w(z, C(z)) is also of order 1/2 or of higher order if there is a cancellation.

Thanks to a transfer lemma [8], we easily get

[zm]`w(z, C(z))
[zm]T (z) ∼ const,

when m tends to infinity. Therefore,

lim
m→∞

∑
l≥0 L[T](m, l)w(l)

Tm
= cw

for some non-negative constant cw. Further cw is positive if there is no cancellation, and zero
otherwise.

Proof of Theorem 3.19. We have, thanks to Proposition 3.20:

L[C][k]
m

Cm
=
∑N
l=0 L̃[C](m, l)wk,v(l)(n− v)l−k 2l

Cm
,

where N = n− v + k, because for larger l the factor (n− v)l−k gives 0. This implies:

L[C][k]
m

Cm
≤
∑N
l=0 L̃[C](m, l)wk,v(l)nl−k 2l

Cm
=
∑N
l=0 L[C](m, l)wk,v(l)

Cm
· 1
nk
.

because L[C](m, l) = (2n)lL̃[C](m, l). And therefore, by applying Proposition 3.21, we get that

lim
m→∞

L[C][k]
m

Cm
≤ cw
nk
.

The proof for limm→∞
L[C][≥k]

m

Cm
is analogous to the latter one.

3.3.2. Commutative tautologies
Proposition 3.22. In the commutative model, asymptotically almost all tautologies are simple
tautologies when n tends to infinity.

Before proving Proposition 3.22, we introduce some half-embedding of a tree t into the plane:
Start at the root and choose a left-right order of the children of the root. If the root is an ∧-node,
proceed recursively with the root of the left subtree, the right subtree remains non-plane. If the
root is an ∨-node, proceed recursively with both subtrees. If doing so we meet a leaf, it is a pattern
leaf. Doing this for the whole tree t, we obtain an element of N [C], where the non-plane subtrees

18

are the structures substituted into the placeholders. Now do the same half-embedding starting at
every root of a non-plane subtree. Thus we obtain an element of N [N][C]. Note that different trees
t1 6= t2 ∈ C will create different patterns N [t1] and N [t2], thus the function C → N [C] described
above is an injection. Of course, there are several ways to embed a tree t with the above method,
so for every tree t we choose an embedding such that the resulting N [N]-pattern has a minimal
number of (N [N],V)-restrictions. We call such an embedding a minimal N [N]-embedding of t (of
course there could be various minimal embeddings for one tree).

Lemma 3.23. Let t be a tree computing the function True. Then its minimal [N]-embeddings
have at least one (N, ∅)-restriction.

Proof. Suppose N [t] has no restriction and set all pattern leaves to False. We proceed inductively.
If N [t] is just a leaf, it returns False. If the root of N [t] is an ∧-node, the left subtree is a pattern
and will, by the induction hypothesis, return False, thus the whole tree returns False. If the
root of N [t] is an ∨ node, both subtrees are patterns returning False by the induction hypothesis.
Thus the whole tree returns False.

Lemma 3.24. Let t be a tree whose minimal N [N]-embeddings have exactly one (N [N], ∅)-
restriction. Then t is a simple tautology.

Proof. There are two cases to distinguish.

First case:. The restriction is of type x/x. Set all N -pattern leaves to False. The same arguments
as in the proof of Lemma 3.23 show that t returns False.

Second case:. The restriction is of type x/x̄. Then the restriction appears on the first level, that
is, in N [t], as otherwise setting all N -pattern leaves to False would lead to a tree computing
False by the same arguments as before. If t is not a simple tautology, then there exists at least
one node labelled with ∧ on the path from the root to either x or its negation. Let t1 be the non-
plane subtree rooted at such a node. After the second N -embedding, the N [t1] pattern contains
no repetition as the whole tree N [N][t] had only one N [N]-repetition, thus it is easy to have
t1 contribute False by setting all N [t1]-pattern leaves to False. Then the ∧-node at ν gives
False, thus t does not compute the function True. Hence, every tautology t which has a minimal
N [N]-embedding with a single repetition is a simple tautology.

Lemma 3.25. Let L be a pattern language with generating function `(x, y) =
∑
l≥0Al(y)xl and

with A0(y) = 0, and let Lr be its r-th power for any r ∈ N, with

`∗(x, y) = `(x, (`(x, · · · `(x︸ ︷︷ ︸
r times

, y) · · ·))) =
∑
l≥0

A∗l (y)xl

its generating function. Further let T be a family of trees with generating function T (z). Assume
that, for all l ≥ 0, Al(y) is subcritical for T (z). Then A∗l (y) is subcritical for T (z).

Proof. First note that A0(y) = 0 means that every pattern in L has at least one pattern leaf.
Obviously, this property still holds for A∗0(y).

We prove the statement by induction: the case r = 1 is true by assumption. Let us as-
sume that the result holds for r, and let s̄(x, y) =

∑
l≥0 Āl(y)xl be the generating function of

Lr with Āl(y) being subcritical for T (z). We want to show that [xl]s(x, s̄(x, y)) is subcritical
for T (z). It is sufficient to show that [xλ]Al(s̄(x, y)) is subcritical for T (z) for all λ, because
s(x, s̄(x, y)) =

∑
l≥0Al(s̄(x, y))xl and Al(s̄(x, y)) is a power series in x, i.e. [xl]s(x, s̄(x, y)) =

19

∑l
j=0[xl−j]Aj(s̄(x, y)), which is a finite sum of such coefficients.

[xλ]Al(s̄(x, y)) = [xλ]
∑
j≥0

sl,j s̄(x, y)j

= [xλ]
∑
j≥0

sl,j

∑
µ≥0

xµĀµ(y)

j

= [xλ]
∑
j≥0

sl,j
∑

µ1,...,µj

x
∑

µiĀµ1(y) · · · Āµj
(y)

=
∑
j≥0

sl,j
∑

µ1+...+µj=λ
Āµ1(y) · · · Āµj

(y).

As Ā0(y) = 0, µi > 0 for i = 1, . . . j, and hence we have a maximum of λ factors in every summand,
that is,

[xλ]Al(s̄(x, y)) =
λ∑
j=0

sl,j
∑

µ1,...,µi,
µ1+...+µj=λ

Āµ1(y) · · · Āµj
(y).

This is a finite sum of finite products of subcritical factors and hence it is subcritical for T (z).

Lemma 3.26. Let s(x, y) =
∑
l≥0Al(y)xl be the generating function of the pattern N . The

functions Al(y) are subcritical for C(z).

Proof. Thanks to symbolic arguments and the recursive definition of N = •|N ∨N |N ∧� we get

s(x, y) = 2nx+ s(x, y)2 + ys(x, y).

Solving this equation gives s(x, y) = 1
2

(
1− y −

√
(y − 1)2 − 8nx

)
. Thus we can deduce an explicit

formula for the Al(y) from this expression.

s(x, y) = 1− y
2 − 1

2
√

(y − 1)2

√
1− 8nx

(y − 1)2

= 1− y
2 − 1

2(1− y)
∑
l≥0

(
1/2
l

)
(−8n)l(y − 1)−2lxl,

since s(0, 0) = 0. Therefore, Al(y) = − 1
2 (1− y)

(
1/2
l

)
(−8n)l(y − 1)−2l is a rational function in y

and its radius of convergence is 1. Hence, these functions are subcritical for C(z).

Proof of Proposition 3.22. Let t be a tree in C which computes True. Then there is at least one
variable x appearing twice in the leaves of t, because otherwise the tree cannot be a tautology
(induction on the size of the tree). We half-embed t into the plane as described before. As
this N -embedding represents an injection it follows that C [k]

m ≤ (N [C])[k]
m , where C [k]

m denotes the
number of trees from C of size m whose minimal half-embeddings have k restrictions. Hence, by
Theorem 3.19, which can be applied thanks to Lemmas 3.25 and 3.26:

C
[k])
m

Cm
≤ N [C][k])

m

Cm
= O

(
1
nk

)
,

and thus asymptotically almost all tautologies in a binary commutative And/Or tree are simple
(and have a minimal N [N]-embedding with one restriction). Proposition 3.22 is thus proved.

20

Proof of Theorem 3.17. Let gx(z) be the generating function counting the trees in C with a ∨-
only-path from the root to a leaf labelled with x. It is given by gx(z) = C(z)− ḡx(z) with

ḡx(z) = (2n− 1)z + 1
2
(
C2(z) + C(z2)

)
+ 1

2
(
ḡ2
x(z) + ḡx(z2)

)
, (13)

because a tree rooted at an ∧-node cannot contain an ∨-only-path from the root, while if the root
is labelled with ∨ both subtrees of the root must not contain an ∨-only-path to an x-leaf.

The generating function ST x(z) of the family of trees which are a simple tautology realized by
x is given by ST x(z) = C(z)−ST x(z), where ST x(z) corresponds to the family of trees which are
not simple tautologies realised by x. Similarly to gx(z), such a tree is either rooted at an ∧-node,
or it is rooted at an ∨-node, and both subtrees of the root are not simple tautologies. Still, it could
return True if one of the subtrees contains an ∨-only-path to x and the other subtree contains
an ∨-only-path to x. The case where the subtrees are of this shape and one of them is even a
tautology is already excluded by construction and therefore must not be subtracted. This gives
the following implicit equation for ST x(z).

ST
x(z) = 2nz + C2(z) + C(z2)

2 + (ST x)2(z) + ST
x(z2)

2 − (gx(z)− ST x(z))(gx(z)− ST x(z)),

= 2nz + C2(z) + C(z2)
2 + (ST x)2(z) + ST

x(z2)
2 − (ST x(z)− ḡx(z))2. (14)

To calculate the limiting ratio of simple tautologies, we need to determine n(1−limz→γn

(STx)′(z)
C′(z)),

where the factor n is the choice of x in the set of variables, and we use an analogue of Proposition 3.5
as well as Lemma 3.4. We denote by un := ḡx(γn), vn := ḡ(γ2

n), Un := ST
x(γn) and Vn :=

ST
x(γ2

n), and compute Un up to terms of order 1
n2 . From (13) we get

un = (2n− 1) 1
8n

(
1− 1

8n

)
+ 1

2

(
1
4 + C(γ2

n)
)

+ 1
2(u2

n + vn) +O
(

1
n2

)
(15)

vn = (2n− 1) 1
64n2

(
1− 1

8n

)2
+ 1

2(C2(γ2
n) + C(γ4

n)) + 1
2(v2

n + gx(γ4
n)) +O

(
1
n2

)
(16)

We know that C(z2) = 2nz2 +O(n2z4), hence C(γ2
n) = 1

32n − 1
128n2 +O(1

n3). Inserting this into
(16) we can compute vn = 1

32n + O
(1
n2

)
, and with (15), we compute un = 1

2 − 1
4n + O

(1
n2

)
.

Solving the equations for Un and Vn, up to terms of order 1
n2 , we get

Vn = 1
32n −

7
1024n2 +O

(
1
n3

)
and Un = 1

2 −
129

1024n2 +O
(

1
n3

)
.

Differentiating ST x(z) and ḡx(z), we obtain

ḡ′x(z) = 2n− 1 + C(z)C ′(z) + zC ′(z2) + ḡx(z)ḡ′x(z) + zḡ′x(z2),
(ST x)′(z) = 2n+ C(z)C ′(z) + zC ′(z2) + ST

x(z)ḡ′x(z)
+ z(ST x)′(z2)− 2(ST x(z)− ḡx(z))((ST x)′(z)− ḡ′x(z))

Hence, recalling (9) and C(γn) = 1/2, we obtain

lim
z→γn

ḡ′x(z)
C ′(z) = lim

z→γn

1
1− ḡx(z)

(
2n− 1
C ′(z) + C(z) + zC ′(z2)

C ′(z) + zḡ′x(z2)
C ′(z)

)
∼ 1

2(1− un) = 1− 1
2n + 1

4n2 +O(1
n3),

21

and

Xn := lim
z→γn

(ST x)′(z)
C ′(z)

= lim
z→γn

1
1− ST x(z)

×
(

2n
C ′(z) + C(z) + zC ′(z2)

C ′(z) + z(ST x)′(z2)
C ′(z) − 2(ST x(z)− ḡx(z))((ST x)′(z)− ḡ′x(z))

C ′(z)

)

∼ 1
1− Un

(
1
2 − 2(Un − un) lim

z→γn

(ST x)′(z)− g′x(z)
C ′(z)

)

∼
(

2− 129
256n2

)(
1
2 + 1−Xn

2n

)
.

Solving the last asymptotic equivalence gives Xn = 1 − 385
512n2 + O

(1
n3

)
and the result of Theo-

rem 3.17 follows immediately.

3.4. The associative and commutative model
The generating function of associative commutative And/Or trees P (z) is given in (4) and (5).

Note that P̂ (z) = P̌ (z). Let δn be the dominant positive singularity of P̂ (z), and hence also of
P (z). To get δn, P̂ (δn) and P (δn) we need to solve the system{

y = ey ·Π(z)− 1− y + 2nz
1 = ey ·Π(z)− 1,

with Π(z) = exp(
∑
i≥2 P̂ (zi)/i) = 1 + nz2 + O(nz3), (since P̂ (z) = 2nz + O(n2z2)). Therefore

Π(z) ∼ 1 for z = O
(1
n

)
and n tending to infinity, hence the second equation gives ey(z) ∼ 2 or

y(z) ∼ ln(2). Inserting this value into the first equation gives y = 1+2nz
2 and thus the first order

asymptotic of δn is δn ∼ 2 ln 2−1
2n .

Theorem 3.27. The limiting probability of the function True in the associative and commutative
model is given by

Pa,cn (True) = lim
m→∞

Pa,cn,m(True) = (2 ln 2− 1)2

4n +O
(

1
n2

)
.

To prove the theorem we will again use mobiles, using the unambiguous pattern R = N̂ |Ň
from Section 3.2, given in (7). We can prove that its coefficients Al(y) are subcritical for P.
Lemma 3.28. Let p(x, y) =

∑
l≥0Al(y)xl being the generating function of the pattern language

R. The functions Al(y) are subcritical for P (z).

Proof. The generating function of the R pattern is p(x, y) = p̂(x, y) + p̌(x, y)− 2nx where

p̂(x, y) = 1
2

(
2nx− y + 1−

√
(2nx− y + 1)2 − 8nx

)
, and p̌(x, y) = 2nx+ p̂(x, y)2

1− p̂(x, y) .

Thus,

p̂(x, y) = 2nx− y + 1
2 − 1− y

2
∑
l≥0

(
1/2

l

)
(4nx)l(nx− 1− y)l

(1− y)2l

= 2nx− y + 1
2 +

∑
l≥0

A`(y)xl

where the Al(y) are rational functions which are analytic at y = 0 and have radius of convergence
equal to 1. Since 1 > P̂ (δn) ∼ ln(2), Al(y) is subcritical for P (z).

22

3.4.1. Generalisation of Kozik’s theorem to associative and commutative trees
Theorem 3.29. Fix a set V ⊆ Xn and let L be a labelled unambiguous pattern language where all
nodes have out-degree different from 1. Further assume that the coefficients Al(y), given in (11),
are subcritical for P (z).

We denote by L[P][k]
m,n (resp. by L[P][≥k]

m,n) the number of elements of L[P] of size m which
have k (resp. at least k) (L,V)-restrictions. Then,

lim
m→∞

L[P][≥k]
m,n

Pm
= O

(
1
nk

)
and lim

m→∞
L[P][k]

m,n

Pm
= O

(
1
nk

)
,

when n tends to infinity.

The proof of Theorem 3.29 now is an easy generalisation of Sections 3.2.1 and 3.3.1. We use
mobiles on a associative plane pattern L, that is pattern leaves are on plane paths from the root,
while commutative trees have been substituted in the �-nodes of the plane pattern. We can easily
extend Proposition 3.20.

Proof of Theorem 3.29. As in previous sections, Proposition 3.20 gives:

L[P][k]
m,n

Pm
=
∑
l∈N L̃[P](m, l)wk,v(l)(n− v)l−k2l

Pm
;

which implies:

L[P][k]
m,n

Pm
≤
∑
l∈N L̃[P](m, l)wk,v(l)nl−k2l

Pm
=
∑
l∈N L[P](m, l)wk,v(l)

Pm
.

Hence the result follows from Proposition 3.21.

3.4.2. Non-plane associative tautologies
Proposition 3.30. In the associative and commutative model, asymptotically almost all tautolo-
gies are simple tautologies, when n tends to infinity.

Again we introduce a half-embedding of a tree t into the plane: Start at the root and choose a
left to right order of the children of the root. If the root is an ∧-node, proceed with the leftmost
child of the root. If the root was an ∨-node, then do the same for every child of the root. If we
end up at a leaf, this is a pattern leaf. By this procedure we obtain an element of R[P]. Applying
the same procedure to every root of a commutative subtree, we obtain an element of R[R][P], we
call it an R[R]-embedding of t. There are several ways to embed t, choose one embedding with
a minimal number of (R[R], ∅)-restrictions. Again, the function t 7→ R[R]min(t) represents an
injection.

Now looking at all trees with a minimal R[R]-embedding having exactly one restriction, we can
proceed in the same way as in the proof of Theorem 3.11 to prove that they are simple tautologies.

Proof of Proposition 3.30. Let t ∈ P be a tree that computes True. We half-embed t and argue
as in Section 3.3.2 to prove Proposition 3.30 with the help of Theorem 3.29.

Proof of Theorem 3.27. We define ST x(z) as previously and obtain

ST x(z) = z2
∑
`≥0

Z`((P̂ (z)− 2z, P̂ (z2)− 2z2, . . .)

= z2 exp

∑
`≥1

P̂ (z`)− 2z`
`

 , (17)

23

where Z`(s1, s2, . . .) denotes the cycle index of the symmetric group on ` elements (c.f. [22]). Hence

ST x(z) = 2z exp

∑
`≥1

P̂ (z`)− 2z`
`

+ z2 exp

∑
`≥1

P̂ (z`)− 2z`
`

∑
`≥1

z`−1(P̂ ′(zi)− 2)

= 2
z
ST x(z) + ST x(z)

P̂ ′(z)− 2 +
∑
`≥2

z`−1(P̂ ′(zi)− 2)

At z = δn ∼ 2 ln 2−1

2n , ST x(z) equals

ST x(δn) = δ2
n exp

∑
i≥1

P̂ (δin)
i

︸ ︷︷ ︸

=2

exp

∑
i≥1

−2δin
i

︸ ︷︷ ︸

=(1−δn)2∼1

∼ 2δ2
n,

Hence, due to P (z) = 2P̂ (z)− 2nz,

lim
z→δn

G′(z)
P ′(z) = n lim

z→δn

ST x(z)P̂ ′(z)
P ′(z)

= n lim
z→δn

ST x(z)P̂ ′(z)
2P̂ ′(z)− 2n

∼ (2 ln 2− 1)2

4n .

4. Limiting probability of literals

In this section, we will compute the limiting probabilities of functions of complexity L(f) = 1,
that are literals x or x̄. Therefore, in analogy to Section 3, we will define so called simple x-trees.

Definition 4.1. A simple x is a tree of the shape x ∧ ST , x ∨ SC, x ∧ (x ∨ · · ·) or x ∨ (x ∧ · · ·),
where ST denotes a simple tautology and SC a simple contradiction. The shape of such trees is
depicted in Figures 6 and 7.

Simple x of type tautology.
∨

x SC

∧

x ST

Simple x of type x.
∨

x ∧

a ∧

x
a

∧

x ∨

a ∨

x
a

Figure 6: The different kinds of simple x. Here, ST is a simple tautology and SC is a simple contradiction.

For all models, we will prove the following proposition:

Proposition 4.2. Asymptotically, almost all trees computing the function x are simple x.

24

We state the proposition without a complete proof. The proof is easily done by similar argu-
ments as in the previous section, using the patterns N [N] or R[R], respectively. We can prove
that every tree t ∈ T or t ∈ C with exactly two (N [N], {x})-restrictions computing x, and every
tree t ∈ A or t ∈ P with exactly two (R[R], {x})-restrictions, respectively, computing x is a simple
x tree. Theorem 3.10 and its generalizations imply that those trees give asymptotically almost
all trees computing x, as it is an easy task to prove that a large tree computing x will have at
least two restrictions. Still we suggest a much simpler argument which proves the proposition in
Section 6.

4.1. Binary plane trees.
Theorem 4.3. The limiting probability of functions of complexity 1 in the binary plane model is

lim
m→∞

Pm,n(x) = 5
16n2 +O

(
1
n3

)
.

Proof. We distinguish between simple x of type tautology, which we denote by xT , and simple x
of type x, denoted by xX (c.f. Figure 6). By Proposition 4.2, we have Pn(x) = Pn(xT) + Pn(xX).

First we compute Pn(xT) = limm→∞ Pm,n(xT). Let ST (z) be the generating function com-
puting simple tautologies, given in Section 3.1. Of course, ST (z) also counts contradictions. The
generating function S̃T (z) of simple x of the first kind is given by 4z · ST (z), where the factor z
counts the leaf labelled with x, and the factor 4 is explained by the constant being a tautology or
a contradiction, the label of the internal node then being fixed, and the constant being positioned
left or right. Hence

[zm]S̃T (z)
[zm]T (z) ∼ 4ρn

[zm]ST (z)
[zm]T (z) = 4ρnPn(True) ∼ 3

16n2 .

For the computation of Pn(xX) we use the function gx(z) given in (6). Let g̃x(z) be the function
counting simple x of type x. Then g̃x(z) = 4zgx(z) by the same arguments as above, hence

[zm]g̃x(z)
[zm]T (z) ∼ 4ρn

[zm]gx(z)
[zm]T (z) ∼

4
16n lim

z→ 1
16n

g′(z)
T ′(z) .

Using Maple, we get limz→ 1
16n

g′(z)
T ′(z) = 1

2n +O
(1
n2

)
, hence

Pn(x) = Pn(xT) + Pn(xX) = 3
16n2 + 1

8n2 +O
(

1
n3

)
= 5

16n2 +O
(

1
n3

)
.

4.2. Associative plane trees.
Theorem 4.4. The limiting probability of functions of complexity 1 in the associative model is

lim
m→∞

Pam,n(x) = 546− 386
√

2
n2 +O

(
1
n3

)
.

Proof. Again we distinguish between simple x of type tautology (xT), and simple x of type x (xX ,
cf Figure 7). Note that a simple x in the associative case is represented by a tree with a binary
root.

Calculating Pn(xT) = limm→∞ Pm,n(xT), we obtain S̃T (z) = 4z ·ST (z) by the same arguments
as above and

[zm]S̃T (z)
[zm]A(z) ∼ 4αn

[zm]ST (z)
[zm]A(z) = 4αnPan(True) ∼ 4 3− 2

√
2

2n
51− 36

√
2

n
= 594− 420

√
2

n2 .

25

Simple x of type tautology.
∨

x SC

∧

x ST

Simple x of type x.
∨

x ∧

a a
x

a

∧

x ∨

a a
x

a

Figure 7: The different kinds of simple x in the associative case, up to commutativity. ST is a simple
tautology and SC a simple contradiction.

The contribution of xX is counted by g̃(z) = 4zg(z), where g(z) counts trees with an ∨-root
and exactly one leaf labelled by x. Note that the other leaves may not be labelled with x neither
with x̄, because this would give a simple tautology. Then g(z) is given by

g(z) = z
∑
`≥2

`(A(z)− 2z)`−1.

Maple computations give lim
z→ 3−2

√
2

2n

g′(z)
A′(z) ∼ 3

√
2−4
n +O

(1
n2

)
, and thus

[zm]g̃x(z)
[zm]A(z) ∼ 4αn

[zm]gx(z)
[zm]A(z) ∼ 4 3− 2

√
2

2n
3
√

2− 2
n

= 34
√

2− 48
n2 +O

(
1
n3

)
.

Adding the two limiting ratios gives the constant in Theorem 4.4.

4.3. Binary commutative trees.
Theorem 4.5. The limiting ratio of functions of complexity 1 in the binary commutative model
is

lim
m→∞

Pcm,n(x) = 641
2048n2 +O

(
1
n3

)
.

Proof. Simple x-trees are the same as in the plane binary case, but there is no left-to-right order
anymore. Hence, S̃T (z) = 2γnST (z), and ST (z) = C(z)−ST (z) with ST (z) given in (14). Hence

[zm]S̃T (z)
[zm]C(z) ∼ 2γn

[zm]ST (z)
[zm]C(z) = 2γnPcn(True) ∼ 2 1

8n

(
1− 1

8n

)
385

512n = 385
2048n2 +O

(
1
n3

)
,

g̃x(z) = 2γngx(z), and g(z) = C(z)− ḡx(z) with ḡ(z) given in (14) and lim ḡ′x(z)
C′(z) computed in the

proof of Theorem 3.17. Hence

[zm]g̃x(z)
[zm]C(z) ∼ 2γn

[zm]gx(z)
[zm]C(z) ∼ 2 1

8n

(
1− 1

8n

)
1

2n = 1
8n2 +O

(
1
n3

)
= 256

2048n2 +O
(

1
n3

)
.

4.4. Associative and commutative trees.
Theorem 4.6. The limiting ratio of functions of complexity 1 in the associative and commutative
model is

lim
m→∞

Pa,cm,n(x) = (2 ln 2− 1)2(2 ln 2 + 1)
4n2 +O

(
1
n3

)
.

26

Proof. Again, S̃T (z) = 2δnST (z), with ST (z) = nST x(z) and ST x(z) given in (17), and

[zm]S̃T (z)
[zm]P (z) ∼ 2δn

[zm]ST (z)
[zm]P (z) = 2δnPa,cm (True)

∼ 2(2 ln 2− 1)
2n

(2 ln 2− 1)2

8n = (2 ln 2− 1)3

8n2 +O
(

1
n3

)
.

Moreover gx(z) is given by

gx(z) = z + z

exp

∑
`≥1

P̂ (z`)− 2z`
`

− 1

 ,

and

g′x(z) = 1 + 1
z

(gx(z)− z) + gx(z)

∑
`≥1

z`−1(P̂ (z`)− 2)

 .

Since gx(ρ) ∼ 2ρ, we get

lim
z→δn

g′x(z)
P ′(z) ∼ lim

z→δn

gx(z)P̂ ′(z)
2P̂ ′(z)− 2n

∼ 2ρ
2 = 2 ln 2− 1

2n ,

and finally, with g̃x(z) = 2δngx(z),

[zm]g̃x(z)
[zm]P (z) ∼ 2δn

[zm]gx(z)
[zm]P (z) ∼ 2 (2 ln 2− 1)

2n
(2 ln 2− 1)

4n = (2 ln 2− 1)2

4n2 +O
(

1
n3

)
.

5. Limiting probability of a general function

In the previous sections, we have studied functions of complexity zero and one. In this sec-
tion we are interested in the limiting probability of functions of higher complexity. To prove
Theorem 2.5, Kozik showed that asymptotically almost all trees computing a function f have a
“simple f” shape. To be more precise, they are obtained from a minimal tree by a single well-
defined expansion, that is a special tree attached to a node of a minimal one. In this section we
generalise this result to all models and give bounds for the number of such expansions.

5.1. The binary plane case.
The goal of this section is to prove existence and bound the constant λf appearing in Theo-

rem 2.5. We show the following result.

Proposition 5.1. For all Boolean functions f ,

8L(f)− 3 + `

16L(f) Mf ≤ λf ≤
4L(f)2 + 4L(f)− 3

16L(f) Mf

where Mf is the number of minimal trees representing f and

` =
{
dL(f)

2 e for L(f) > 1
0 for L(f) = 1.

The proof of this proposition is based on a result by Kozik [18]. He proved that the set of non
negligible trees computing f is exactly the set of trees obtained by expanding a minimal tree of f
once.
Remark: It is interesting to see that these bounds are equal when the complexity of the function
is 1 and give the actual bound for literals we computed in Section 4.

27

Definition 5.2. Let t be an And/Or tree computing f , ν one of its nodes and tν the subtree
rooted at ν. An expansion of t in ν is a tree obtained by replacing the subtree tν rooted at ν by a
tree tν � te where � ∈ {∧,∨} and where te is an And/Or tree. We will say that such an expansion
is valid when the expanded tree still computes f .

It follows from Kozik’s results that the only non-negligible valid expansions that are to be
considered are:

• The T-expansions: a valid expansion is a T-expansion if the inserted subtree te is a simple
tautology (resp. a simple contradiction) and if the new label of ν is ∧ (resp. ∨).

• The X-expansions: a valid expansion is an X-expansion if the inserted subtree te is (up to
commutativity and associativity) of the shape x ∨ ... (resp. x ∧ ...) where x is an essential
variable of f and if the new label of ν is ∧ (resp. ∨).

We will elaborate this when discussing the analogous expansions for the associative case in Sec-
tion 5.2.1.

In the following, we will call a T-expansion an ∧-T-expansion (resp. an ∨-T-expansion) if the
new label of ν is ∧ (resp. ∨), and the same for X-expansions.

Proof of Proposition 5.1. In a Catalan And/Or tree, a T-expansion is possible in every node (with-
out changing the computed function). At each node, we can expand by an ∨-T-expansion and by
an ∧-T-expansion, both on the right side and on the left side. As a minimal tree of f is of size
L(f), it has 2L(f)− 1 nodes and there are λT (f) = 4(2L(f)− 1)Mf different T-expansions that
can be done in all minimal trees computing f .

We can now consider λX(f), that is, the number of X-expansions (which do not change the
computed function f). This number depends heavily on the shape of the minimal trees of f ,
therefore, we only give bounds for this number. An ∧-X-expansion (resp. ∨-X-expansion) realized
by xi is valid at each leaf labelled by xi, as well as at each node connected to one of them by an
∨-only (resp. ∧-only) path, and at all of its sons. Let us note that

- At each leaf, we can do at least one ∨-X-expansion and one ∧-X-expansion, both to the
right and to the left, which gives a contribution of 4L(f). Further, we could do either one
∧-X-expansion or one ∨-expansion to both sides at its father, depending on its level. But
two different leaves having the same father could be labelled by the same variable. Hence
this contributes 2dL(f)/2e if L(f) > 1, as if L(f) = 1 a minimal tree consists of a single leaf
with no father, but else all leaves share its father with one leaf of the same label in the worst
case.

- at each node (internal or external), we can do at most 4 X-expansions (we choose between
∧ and ∨ and between right and left side) for each different literal that appear on the leaves.
There are at most L(f) different literals appearing on the leaves of a minimal tree and a
minimal tree has exactly 2L(f)− 1 (internal or external) nodes. Therefore, 4L(f)(2L(f)−
1)Mf is an upper bound of λX(f).

Therefore, we have the following bounds:

5L(f)Mf ≤ λX(f) ≤ 4L(f)(2L(f)− 1)Mf . (18)

To end the proof of Proposition 5.1, we only need to note that

λf
nL(f)+1 = Mfρ

L(f)
n (λT (f)w1 + λX(f)w2) ,

where w1 is the limiting ratio of simple tautologies (resp. simple contradiction), and w2 is the
limiting ratio of trees of shape x∨ ... for x a variable. Thanks to computations made in Section 3
(c.f. Theorem 3.6), we know that w1 = 3

4n . Moreover, the generating function gx defined in

28

Section 3.1 counts exactly the number of trees that can be used for an X-expansion (according to
a variable x). Therefore,

lim
z→ρn

g′x(z)
T ′(z) ∼

1
2n = w2,

and with (18) we prove Proposition 5.1.

5.2. The associative plane case.
The associative case appears to be similar to the binary plane case. We prove the following

theorem:

Theorem 5.3. In the associative plane model, let f be a non-constant Boolean function, whose
complexity is denoted by L(f). Then,

Pan(f) ∼
λaf

nL(f)+1 ,

when n tends to infinity, where λaf is depending on the number of possible expansions of minimal
trees of f . For L(f) > 1 we have(

3− 2
√

2
2

)L(f) [
133L(f) + 153− (93L(f) + 108)

√
2
]
Mf ≤ λf

λf ≤
(

3− 2
√

2
2

)L(f) [
−(12L(f)2 − 247L(f) + 51) + (9L(f)2 − 174L(f) + 36)

√
2
]
Mf ,

where Mf is the number of minimal trees computing f .

To prove Theorem 5.3, we first have to prove that, as in the binary plane case, the set of
non-negligible associative trees computing a Boolean function is the set of trees obtained from a
minimal tree by expanding it once. Moreover, we have to find the non-negligible expansions that
have to be considered. Then, we can prove Theorem 5.3 with the same methods as in the binary
plane case.

5.2.1. Expansions of associative trees.
Because of the stratified structure of associative trees, we have to be careful with the definition

of expansions, which is different to the one in the binary case:

Definition 5.4 (c.f. Figure 8). Let t be an And/Or associative tree computing f . We define
two types of expansions of t.

• Let ν be an internal node of t (possibly the root) with subtrees t1, . . . , tj , j ≥ 2. An expansion
of the first kind of t in ν is a tree obtained by adding a subtree te to ν.

• Let ν be the root or a leaf of the tree. The tree obtained by replacing the subtree tν rooted
at ν by te � tν , where � ∈ {∧,∨} is chosen such that the obtained tree is stratified, is an
expansion of t in ν of the second kind. In this case, � will be called the new label of ν.

We will say that such an expansion is valid when the expanded tree still computes f .

Proposition 5.5. The set of non-negligible trees computing a Boolean function f is the set of
trees obtained by expanding a minimal tree of f once. Moreover, the only non-negligible valid
expansions are:

• The T-expansions: a valid expansion is a T-expansion if the inserted subtree te is a simple
tautology (resp. a simple contradiction) and if the new label of ν is ∧ (resp. ∨).

29

Expansions at an internal node.

∨
a a a a a →

∨
a a

t∧
e

a a a

∧
a a a a a →

∧
a a

t∨
e

a a a

Expansions at the root.

∨
a a a a a →

∧

∨
a a a a a

t∨
e

∧
a a a a a →

∨

∧
a a a a a

t∧
e

Expansions at a leaf.

∨
a • a a a →

∨
a ∧

t∨
e •

a a a

∧
a • a a a →

∧
a

∨

t∧
e •

a a a

Figure 8: The different possible expansions in the associative case. Here, t∨e (resp. t∧e) stands for an
associative tree rooted by ∨ (resp. ∧). The tree pictured is only the subtree rooted at ν, before the
expansion and after the expansion.

• The X-expansions: a valid expansion is an X-expansion if the inserted subtree te is (up to
commutativity) of the shape x∨ . . . (resp. x∧ . . .) where x is an essential variable of f and
if the label of the father of te is ∧ (resp. ∨).

Before proving the result, let us introduce the pattern languages we will need:

P̂ = •|P̌ ∧ P̌ |P̌ ∧ P̌ ∧ P̌ | . . .
P̌ = •|P̂ ∨�|P̂ ∨� ∨�| . . .
S = P̂ |P̌ ;
N̂ = •|Ň ∧�|Ň ∧� ∧�| . . .
Ň = •|N̂ ∨ N̂ |N̂ ∨ N̂ ∨ N̂ | . . .
R = N̂ |Ň .

(19)

Remark:

- The pattern language S has the following property: if all S-pattern leaves of a tree are set
to True, then the whole tree itself computes True.

30

- The pattern language R has the following property: if all R-pattern leaves of a tree are set
to False, then the whole tree itself computes False.

Definition 5.6. Let us consider the pattern languages Lr and L̄ = Lr+1. For i ≤ r, a leaf is on
level i if it is an L(i)-pattern leaf but not an L(i−1)-pattern leaf. An L̄-pattern leaf which is not
an L-pattern leaf is on level r + 2.

Proof of Proposition 5.5. The proof of the corresponding result for binary trees, [18, Lemma 3.4]),
can be taken almost verbatim. We only have to keep in mind that composition of pattern languages
is restricted such that the resulting composed patterns are still stratified. But all the arguments
still hold. For the sake of self-containedness we provide a sketch of the proof.

The idea is to take a tree computing f , and to replace every subtree which can be evaluated
to True or False independently from the rest of the tree by a ?. Then the tree is simplified
according to some rules (the rules stated in [18, Proof of Lemma 3.4] have an obvious analogue for
associative trees) such that the tree contains no stars after all. Then, we state that the simplified
tree t′ is a minimal tree representing f .

Let f be a Boolean function whose complexity is L(f) and let V denote the set of essential
variables of f , We consider the pattern languages L = R(L(f)+1)[R⊕S] and L̄ = R(L(f)+1)[(R⊕S)2],
where the pattern leaves of R⊕ S are all pattern leaves of the pattern R and the pattern S.

Let t be a tree of size L(f) representing f . If the root of t is labelled with ∨ (resp. ∧), then
using a simple contradiction (resp. tautology) Φ, the new tree Φ ∧ t (resp. Φ ∨ t) still represents
the function f . Since the limiting ratio of simple tautologies or contradictions is equal to Θ(1/n)
and the L(f) nodes of t are counted by zL(f), for sufficiently large n we obtain the lower bound
Pan(f) ≥ α

nL(f)+1 and thus trees with at least L(f) + 2 (L̄,V)-restrictions can be neglected.
Further, it is possible to prove that trees with strictly less than L(f) + 1 (L,V)-restrictions

cannot represent f , because they would yield a tree of smaller size that L(f) after the simplification
process. Therefore all relevant trees have precisely L(f)+1 (L,V)- and as many (L̄,V)-restrictions.
But this implies that every variable appearing in a pattern leaf on level L(f)+3 is non essential and
not repeated among the L̄ pattern leaves and we may replace each subtree rooted on level L(f)+3
and having a parent node on level L(f) + 2 by a star. Every leaf which is neither essential nor
repeated in t will be replaced as well and one obtains a tree t∗ which will be simplified according
to some rules.

It turns out that the replacement of certain subtrees by wildcards and the subsequent simpli-
fication can be viewed as the reverse process of a single expansion of t′.

The second part of the proof is to understand which are the non-negligible valid expansions.
Thanks to Theorem 3.10 and its generalizations, the trees obtained by expanding with a tree te
with at least two ((R ⊕ S)2,V)-restrictions are negligible. On the other hand there has to be
at least one ((R ⊕ S)2,V)-restriction in te, because if there was none, we could assign this tree
to False or True independently from the rest of the tree. Since the expanded tree must still
compute the function f , by simplification we would obtain a tree computing f being smaller than
the minimal tree, which is impossible.

First case:. The tree te contains one repetition and no essential variable of f . Then, it has to
compute a constant function (i.e. True or False). If it does not, by previous arguments on
tautologies, the subtree can be valuated to True or False independently from the rest of the tree.
Thus, by simplification, we can obtain a tree, smaller than the minimal tree, computing f , which
is a contradiction. Therefore, the expanding tree te is a simple tautology or a simple contradiction
(thanks to Proposition 3.15). Moreover, as the expanded tree still has to compute f , if the father
of te is an ∧ (resp. ∨), te is a simple tautology (resp. contradiction), which gives a T -expansion.

Second case:. The subtree te contains no repetition and one essential variable, let us say x. Then,
the essential variable has to appear on the first level. If it does not, the Boolean expression has
shape s1 ∧ (s2 ∨ x) or s1 ∨ (s2 ∧ x) (up to commutativity). Moreover, the trees s1 and s2 have
no (R⊕S,V)-restrictions and therefore we can make them False or True independently from the

31

rest of the tree. Then, we can valuate the whole tree either to False or True independently from
x, which is impossible since x is an essential variable of f .

If an ∧-X-expansion te according to the variable xi is valid in a node ν, then every ∧-X-
expansion t′e according to this variable x is valid at ν (and as well for ∨-X-expansions).

5.2.2. Computing bounds for λf .
Proof of Theorem 5.3. As in the binary case, we have to compute the limiting ratio of T-expansions
and X-expansions, and the number of nodes where the different kinds of expansions are allowed.
Let us denote by Mf the number of minimal trees representing a given Boolean function f of
complexity L(f).

The limiting ratio of T -expansions is the limiting ratio of simple tautologies, which has already
been computed in Section 3.2. We have that wa1 = 51−36

√
2

n .
Let gx be the generating function of associative trees rooted at ∧ (resp. ∨) and containing

exactly one x in the first generation. Then,

gx(z) = z
∑
j≥2

j(A(z)− 2z)j−1.

Since the set of trees with more than one x in the first generation is negligible in front of the set
of trees with exactly one x in the first generation, we can assume that

wa2 = lim
z→αn

g′x(z)
A′(z) = 3

√
2− 4
n

is the limiting ratio of ∧-X-expansions (resp. ∨-X-expansions).
As in the binary case, the number λX(f) of X-expansions and the number λT (f) of T -

expansions allowed in a minimal tree depend on the shape of the considered minimal tree. Given
a minimal tree t of f , let us number its internal nodes from 1 to N . Let us denote by s(i) the
number of sons of the internal node i. Moreover, let us denote by d(i) the number of sons of the
node i which are leaves. Then, if λT (t) is the number of different T -expansions in the minimal
tree t of f , we have that

λT (t) = 2L(f) +
N∑
i=1

(s(i) + 1) + 2,

where 2L(f) is the number of different T -expansions allowed at the leaves of the tree (if the parent
node is labelled by ∧ (resp. ∨), only simple tautology (or contradiction respectively) T-expansions
are allowed), s(i) + 1 is the number of different T -expansions allowed at the node i (the number
of different positions at node i is s(i) + 1); and 2 is the number of expansions allowed at the root
by pushing the root to the first generation and adding a new root with two sons. Therefore,

λT (t) = 2L(f) +
N∑
i=1

s(i) +N + 2 = 2L(f) + (L(f) +N − 1) +N + 2,

and since 1 ≤ N ≤ L(f)− 1, we obtain that

3(L(f) + 1)Mf ≤ λT (f) ≤ (5L(f)− 1)Mf .

Further, given a leaf xi, an ∧-X-expansion realized by xi is allowed at itself, at its father and
at all its sisters (brothers that are reduced to a leaf), because two sisters cannot have the same
label. Indeed, if two sisters have the same label (or even opposite labels), then, the considered tree
can be simplified, and since we consider a minimal tree, this is impossible. Therefore, if L(f) > 1,

λX(t) =
N∑
i=1

d(i)(s(i) + 1) + 2d(root) + 2
N∑
i=1

d(i)2.

32

Lemma 5.7. For all i, d(i) ≤ L(f)−N + 1.

Proof. Let us assume that there exist an internal node i0 such that d(i0) > L(f) − N + 1. It is
easy to see that, as each node except the root has a unique father,

∑N
i=1 d(i) = L(f) + N − 1.

Moreover,
N∑
i=1

d(i) >
∑
i6=i0

d(i) + (L(f)−N + 1) > 2(N − 1) + (L(f)−N + 1)

since every internal node has at least two sons. Therefore,
∑N
i=1 d(i) > L(f) +N − 1, which is a

contradiction.

Therefore, thanks to the lemma,

λX(t) ≤
N∑
i=1

d(i) + (L(f)−N + 1)
N∑
i=1

s(i) + 2(L(f)−N + 1) + 2(L(f)−N + 1)
N∑
i=1

d(i)

≤ L(f) + (L(f)−N + 1)[(N + L(f)− 1) + 2 + 2L(f)]
≤ L(f) · (3L(f) + 2).

On the other hand,

λX(t) ≥ 3
N∑
i=1

d(i) + 2
N∑
i=1

d(i) = 5L(f),

and
λX(f) ≥ 5L(f)Mf .

Finally, since
λf

nL(f)+1 = Mfα
L(f)
n (λT (f)wa1 + λX(f)wa2),

we get that (
3− 2

√
2

2

)L(f) [
133L(f) + 153− (93L(f) + 108)

√
2
]
Mf ≤ λf

λf ≤
(

3− 2
√

2
2

)L(f) [
−(12L(f)2 − 247L(f) + 51) + (9L(f)2 − 174L(f) + 36)

√
2
]
Mf .

5.3. The binary commutative case.
Theorem 5.8. In the binary commutative case, let f be a non-constant Boolean function, whose
complexity is denoted by L(f). Then,

Pcn(f) ∼
λcf

nL(f)+1 ,

when n tends to infinity, where λcf is depending on the number of possible expansions of minimal
trees of f , and

1794L(f)− 770
512 · 8L(f) Mf ≤ λcf ≤

(2L(f)− 1)(512L(f) + 770)
512 · 8L(f) Mf ,

where Mf is the number of minimal trees computing f .

Remark: It is interesting to see that these bounds are equal when the complexity of the function
is 1 and give the limiting probability of literals computed in Section 4.

33

Proof. The proof relies completely on the binary plane case, doing minimal [N]-embeddings and
[N⊕P]-embeddings (the plane parts of an [N⊕P]-embeddings are both the plane parts of an [N]-
embedding or a [P]-embedding). It has been proven in Lemmas 3.25 and 3.26 that Theorem 3.19
can be applied to the pattern [N⊕P][C], as the generating function of P is the same as the one ofN .
As in the proof of Theorem 3.17, embedding a tree t ∈ C into N (L(f))[N ⊕P] or N (L(f))[N ⊕P](2)

represents an injection. Hence asymptotically, all trees computing a function f are obtained by
a single expansion of a minimal tree of f . The calculation of the bounds can be done in the
same way as in the plane binary case. If we denote by wc1 the limiting ratio of simple tautologies
and by wc2 the limiting ratio of X-expansions. From Section 3.3 we know that wc1 = 641

1024n , and
from Section 4 we know that wc2 = 1

2n . Moreover, since asymptotically all trees computing f are
obtained by a single expansion of a minimal tree, we have λc

f

nL(f)+1 = γ
L(f)
n (λTwc1 + λXw

c
2) and

λT = 2(2L(f)− 1)Mf

2L(f)Mf ≤ λX ≤ 2L(f)(2L(f)− 1)Mf ,

since γn ∼ 1
8n when n→∞, the result follows.

5.4. The associative commutative case.
Theorem 5.9. In the associative and commutative model, let f be a non-constant Boolean func-
tion, whose complexity is denoted by L(f):

Pa,cn (f) ∼
λa,cf

nL(f)+1 ,

when n tends to infinity, where λa,cf is depending on the number of possible expansions of minimal
trees of f . For L(f) > 1(

2 ln 2− 1
2

)L(f)((
ln2 2− 1

4

)
L(f) + ln2 2− 2 ln 2 + 1

2

)
Mf ≤ λa,cf

λa,cf ≤
(

2 ln 2− 1
2

)L(f) (2 ln 2− 1)(L(f) + 1 + 4 ln 2)L(f)
4 Mf ,

where Mf is the number of minimal trees computing f .

Proof. The result is easily proven by using the pattern R(L(f))[R⊕ S] and applying arguments of
Sections 5.2 and 5.3. Therefore, we have λa,c

f

nL(f)+1 = δ
L(f)
n (λTwa,c1 + λXw

a,c
2). The calculation of

the bounds is similar to the computations done in the plane associative case. From Section 3.4 we
know that wa,c1 = (2 ln 2−1)2

4n and in Section 4 we obtained wa,c2 = 2 ln 2−1
4n . Moreover, δn ∼ 2 ln 2−1

2n .
We can show

(L(f) + 2)Mf ≤ λT ≤ 2L(f)Mf

2L(f)Mf ≤ λX ≤ (L(f)2 + 3L(f))Mf ,

where the lower bound holds only for L(f) > 1, and the theorem is proven.

6. Summary of results and conclusion

Finally, we have gained a better understanding of the influence of associativity and commu-
tativity on the behaviour of the limiting distribution on Boolean functions induced by their tree
representation. Indeed, we have shown that associativity and commutativity do not change the
order of Pn(f) when n tends to infinity, it is still of order Θ

(
n−(L(f)+1)). Section 5 gives bounds

for the constants for a general function and shows that in all the models the already observed

34

paradigm holds: Almost every tree representing a given Boolean function is a minimal tree ex-
panded once. So the results exhibit a qualitatively similar behaviour of all four models. However,
from a quantitative point of view associativity clearly yields a strong bias of the distribution
against functions of small complexity whereas the effect of commutativity is much weaker (see
Table 1 for an overview of the different constants). An intuitive explanation might be that binary
or non-binary is a strong structural difference whereas plane or non-plane is not, since a random
binary plane tree does not have many symmetry nodes (see [1] for a study of the number of sym-
metry nodes in binary trees). Interestingly, commutativity has almost no effect for binary trees,
but a considerable effect in presence of associativity.

Catalan Associative Commutative General
trees (non-binary) (non plane) trees

trees trees

True
3
4 = 0.75 51− 36

√
2 ≈ 0.0883 385

512 ≈ 0.75195 (2 ln 2− 1)2

4 ≈ 0.0373

x
5
16 = 0.3125 546− 386

√
2 ≈ 0.114 641

2048 ≈ 0.312988 (2 ln 2− 1)2(2 ln 2 + 1)
4 ≈ 0.0890

Table 1: The different constants λ such that P(True) ∼ λ
n

and P(x) ∼ λ
n2 when n tends to infinity,

depending on the studied model of trees.

Note that the simple x trees we defined in Section 4 are exactly those trees obtained by
expanding once a tree consisting of a single leaf x. Hence the proof of Proposition 4.2 is immediate.

We should also note that the relation between probability and complexity of a Boolean function
holds for a fixed function f . It is not valid uniformly on all Boolean functions. For instance, we
do not know the limiting probability of a function like x1 ∧ · · · ∧ xn where the set of essential
variables depends on n. Such knowledge is important if we examine our models with respect
to the Shannon effect: If we choose a Boolean function on n variables uniformly at random,
asymptotically almost surely the function has a complexity which is exponential in n. In our
models, we are still unable to compute the average complexity of a Boolean function. Further
work (similar to [15] on implicational logic) is required before proving or disproving the presence
of the Shannon effect for these non-uniform probability distributions.

References

[1] M. Bóna and P. Flajolet. Isomorphism and symmetries in random phylogenetic trees. Journal
of Applied Probability, 46(4):1005–1019, 2009.

[2] R. B. Boppana. Amplification of probabilistic Boolean formulas. In Proceedings of the 26th
IEEE Symposium on Foundations of Computer Science, pages 20–29, 1985.

[3] A. Brodsky and N. Pippenger. The Boolean functions computed by random Boolean formulas
or how to grow the right function. Random Structures and Algorithms, 27:490–519, 2005.

[4] B. Chauvin, P. Flajolet, D. Gardy, and B. Gittenberger. And/Or trees revisited. Combina-
torics, Probability and Computing, 13(4-5):475–497, July-September 2004.

[5] B. Chauvin, D. Gardy, and C. Mailler. The growing tree distribution for Boolean functions.
In 8th SIAM Workshop on Analytic and Combinatorics (ANALCO), pages 45–56, 2011.

[6] M. Drmota. Random trees. Springer, Vienna-New York, 2009.

[7] M. Dubiner and U. Zwick. Amplification by read-once formulas. SIAM Journal on Computing,
26(1):15–38, 1997.

35

[8] P. Flajolet and A. M. Odlyzko. Singularity analysis of generating functions. In SIAM J.
Discrete Math., 3:216–240, 1990.

[9] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge U.P., Cambridge, 2009.

[10] H. Fournier, D. Gardy, and A. Genitrini. Balanced And/Or trees and linear threshold func-
tions. In 6th SIAM Workshop on Analytic and Combinatorics (ANALCO), pages 51–57,
2009.

[11] H. Fournier, D. Gardy, A. Genitrini, and B. Gittenberger. Complexity and limiting ratio
of Boolean functions over implication. In 33rd International Symposium on Mathematical
Foundations of Computer Science (MFCS’08), pages 347–362, Torun, Pologne, August 2008.

[12] H. Fournier, D. Gardy, A. Genitrini, and B. Gittenberger. The fraction of large random
trees representing a given Boolean function in implicational logic. Random Structures and
Algorithms, 40(3):317–349, 2012.

[13] H. Fournier, D. Gardy, A. Genitrini, and M. Zaionc. Classical and intuitionnistic logic are
asymptotically identical. In Springer-Verlag, editor, Annual Conference on Computer Science
Logic (CSL’07), pages 177–193, Lausanne, Suisse, 2007.

[14] D. Gardy. Random Boolean expressions. In Colloquium on Computational Logic and Appli-
cations, volume AF, pages 1–36. DMTCS Proceedings, 2006.

[15] A. Genitrini and B. Gittenberger. No Shannon effect on probability distributions on Boolean
functions induced by random expressions. In 21st International Meeting on Probabilistic,
Combinatorial and Asymptotic Methods for the Analysis of Algorithms, Vienna, Austria, july
2010. DMTCS Proceedings.

[16] A. Genitrini, B. Gittenberger, V. Kraus, and C. Mailler. Probabilities of Boolean functions
given by random implicational formulas. Electronic Journal of Combinatorics, 19(2):P37, 20
pages, (electronic), 2012.

[17] A. Gupta and S. Mahajan. Using amplification to compute majority with small majority
gates. Computational Complexity, 6(1):46–63, 1997.

[18] J. Kozik. Subcritical pattern languages for And/Or trees. In Fifth Colloquium on Mathematics
and Computer Science, Blaubeuren, Germany, september 2008. DMTCS Proceedings.

[19] H. Lefmann and P. Savický. Some typical properties of large And/Or Boolean formulas.
Random Structures and Algorithms, 10:337–351, 1997.

[20] M. Moczurad, J. Tyszkiewicz, and M. Zaionc. Statistical properties of simple types. Mathe-
matical Structures in Computer Science, 10(5):575–594, 2000.

[21] J. B. Paris, A. Vencovská, and G. M. Wilmers. A natural prior probability distribution
derived from the propositional calculus. Annals of Pure and Applied Logic, 70:243–285, 1994.

[22] G. Pólya and R. C. Read. Combinatorial enumeration of Groups, Graphs and Chemical
Compounds. Springer Verlag, New York, 1987.

[23] R. A. Servedio. Monotone Boolean formulas can approximate monotone linear threshold
functions. Discrete Applied Mathematics, 142(1-3):181–187, 2004.

[24] L. Valiant. Short monotone formulae for the majority function. Journal of Algorithms, 5:363–
366, 1984.

[25] A. Woods. On the probability of absolute truth for And/Or formulas. Bulletin of Symbolic
Logic, 12(3), 2005.

36

