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Abstract

We aim at the asymptotic enumeration of lambda-terms of

a given size where the order of nesting of abstractions is

bounded whereas the size is tending to infinity. This is done

by means of a generating function approach and singularity

analysis. The generating functions appear to be composed

of nested square roots which exhibit unexpected phenomena.

We derive the asymptotic number of such lambda-terms and

it turns out that the order depends on the bound of the

height. Furthermore, we present some observations when

generating such lambda randomly and explain why powerful

tools for random generation, such as Boltzmann samplers,

face serious difficulties in generating lambda-terms.

1 Introduction

Roughly speaking, a lambda-term is a formal expression
built of variables and a quantifyer λ which in general
occurs more than once and acts on one of the free
variables of the subsequent subterm. λ-calculus is a
set of rules for manipulating lambda-terms and was
invented by Church and Kleene in the 30ies (see [24, 25,
9]) in order to investigate decision problems. It plays an
important rôle in computability theory, for automatic
theorem proving or as a basis for some programming
languages, e.g. LISP. Due to its flexibility it can be used
for a formal description of programming in general and
is therefore an essential tool for analyzing programming
languages.

Recently, there has been rising interest in random
structures related to logic in general (see [30] [18], [19],
and [11]) and in the properties of random lambda-terms
in particular, see [10].

For analyzing the structure of random lambda-
terms it is important to know the number of lambda-
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terms of a given size. It turns out that this is a very
hard problem. For instance, translating the counting
problem to generating functions, the resulting generat-
ing function has a radius of convergence equal to zero.
Thus none of the classical methods of analytic combi-
natorics (see [16]) is applicable. Therefore we study
in this paper a simpler structure, obtained by bounding
the nested number of abstractions, i.e. the unary height
(to be formally defined in the next section) of lambda-
terms. Note that this simpler structure is indeed of
practical relevance: the nested number of abstractions
in lambda-terms which occur in computer programming
is in general bounded. E.g., for implementing lambda-
calculus we need to bound the height of the underly-
ing stack, which is determined by the maximal allowed
number of nested abstractions.

The plan of the paper is as follows: In Section 2,
we formally define the objects of our interest and derive
generating functions for the associated counting prob-
lems, which are expressed as a finite sequence of nested
radicals. Section 3 is devoted to the the study of these
nested radicals: we concentrate on the sequence of radii
of convergence and on the type of their singularities.
Then we are in position to determine in Section 4 the
detailed asymptotic behaviour of the number of lambda-
terms with fixed unary height. Finally, we investigate
how our theoretical results fit with simulations and dis-
cover some challenging facts on the average behaviour
of a random lambda-term in Section 5.

2 A combinatorial description for

lambda-terms

A lambda-term is a formal expression which is described
by the context-free grammar

T ::= a | (T ∗ T ) | λa.T

where a is a variable. Concatenating terms, (T ∗ T ), is
called application and assumed to be non-commutative.



Using the quantifyer is called abstraction. Iterated
abstraction is also non-commutative, i.e., the terms
λx.λy.T and λy.λx.T are considered to be different.
Furthermore, each abstraction binds a variable and each
variable can be bound by at most one abstraction. A
variable which is not bound by an abstraction is called
free. A lambda-term without free variables is called
closed, otherwise open.

A lambda-term can be represented as an enriched
tree, i.e., a graph built from a tree by adding certain
directed edges (pointers): First we construct a Motzkin
tree, i.e., a planar rooted tree where each node has out-
degree 0, 1, or 2, if the edges are directed away from the
root. We respectively denote by the terms leaves, unary
nodes, and binary nodes, the nodes with out-degree 0,
1, and 2. In this tree each application corresponds to
a binary node, each abstraction corresponds to a unary
node, and each variable to a leaf. The fact that an
abstraction λ binds a variable v is represented by adding
a directed edge, from the unary node corresponding to
the particular abstraction λ towards the leaf labelled
by v. Therefore each unary node x of the Motzkin
tree is carrying (zero, one or more) pointers to leaves
taken from the subtree rooted at x; all leaves receiving
a pointer from x (or, generally, from the same unary
node) correspond to the same variable; and each leaf
can receive at most one pointer.

For instance, the terms (λx.(x ∗ x) ∗ λy.y) and
λy.(λx.x∗λx.y) correspond to the enriched trees T0 and
T1 in Fig. 1, respectively. In particular, these terms are
closed lambda-terms, since every variable is bound by an
abstraction, i.e., every leaf receives exactly one pointer.
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x

Figure 1: Two examples of lambda-terms: Each unary
node corresponds to an abstraction λx binding all
leaves below it which are labelled by x. Binary nodes
correspond to applications merging their two subtrees
t1 and t2 to the more complex structure t1 ∗ t2.

The size of a lambda-term is the number of nodes in
the corresponding enriched tree. It is defined recursively
by

|x| = 1,

|λx.T | = 1 + |T |,

|(S ∗ T )| = 1 + |S| + |T |.

As mentioned in the introduction, we are interested in
lambda-terms with bounded unary height. Other sim-
plifications are possible, such as bounding the number of
pointers for each unary nodes. Such terms are studied in
[2] and are related to BCI and BCK logics as introduced
in [22, 21, 23]. For their relations to lambda-calculus see
for instance [20].

Definition 2.1. Consider a lambda-term and its asso-
ciated enriched tree T . The unary height of a vertex
v of T , denoted by lu(v), is defined as number of unary
nodes on the path connecting v with the root. The unary
height of T , lu(T ), is given by max

v vertex of T
lu(v).

Thus, an upper bound on the unary height means that
we are dealing with lambda-terms where the number of
nested abstractions is bounded.

In order to count lambda-terms of a given size we
set up a formal equation which is then translated into
generating functions. Since the class of enriched trees
is isomorphic to the class of lambda-terms we do not
distinguish between those classes in the sequel.

Let L denote the class of open lambda-terms and
introduce the following atomic classes: the class of
application nodes N , the class of abstraction nodes U ,
the class of free leaves F , and the class of bound leaves
B. Then the class L can be described as follows:

L = F +
(

N ×L2
)

+ (U × subs(F → F + B,L))

where the substitution operator subs(F → F + B,L)
corresponds to replacing some free leaves in L by bound
leaves.

This specification gives rise to a functional equation
for the bivariate generating function

L(z, f) =
∑

t lambda-term

z|t|f#free leaves in t

which reads as follows:

L(z, f) = fz + zL(z, f)2 + zL(z, f + 1).

In particular, the formal generating function for
lambda-terms without free variables is:

L(z, 0) = [f0]L(z, f)

= z2 + 2z3 + 4z4 + 13z5 + 42z6

+139z7 + 506z8 + 1915z9 + 7558z10 + · · ·

Note that these functional equations have to be consid-
ered in the framework of formal power series since the
fast growth of the coefficients of the generating function



implies that the radius of convergence of L(z, 0) is zero
(see Corollary 3.2 below).

Furthermore note, that the problem of counting
closed or open lambda-terms is essentially the same. In-
deed, the formal generating function for open lambda-
terms can be derived from the formula L(z, 1) =
[f0]L(z,f)−z[f0]L(z,f)2

z . Consequently, the problems of
enumerating lambda-terms with or without free vari-
ables are of the same difficulty and the solution for one
of them yields the solution for the other one.

Now let us turn to terms of restricted unary height.
Let S(k) denote the class of closed lambda-terms with
unary height less than or equal k; we want to set up
an equation for the S(k). Moreover, we set r(T ) to be
the root of an enriched tree T and let [r(T )..e] be the
unique elementary path (i.e., pointers must not be used)
connecting e and the root r(T ) of the tree.

Let us consider the combinatorial class T of rooted
unary-binary trees (trees such that each internal node
has one or two children) such that each leaf e of a
tree t can be labelled with a label in {1, .., κ} where
κ = κ(t, e) is the number of unary nodes in the unique
path connecting e to the root of t. The size of t is the
number of its nodes. Define the subclass P(i,k) of T to
be the class of unary-binary trees T such that for each
leaf e we have i + lu([r(T )...e]) ≤ k and every leaf e
carries a label in {1, .., i + lu([r(T )...e])} (the definition
of the unary height lu given in Definition 2.1 for a tree
extends readily to a path).

For every positive integer k, the class P(0,k) is
isomorphic to the class S(k) and the class P(1,k) is
isomorphic to the class obtained from S(k) by allowing
free leaves. For general i, consider a path of i unary
nodes to which we append a lambda-term T from P(i,k);
then the number of possible labellings for each leaf is
equal to the number of possible labellings in T , to which
we add i new labels for the i nodes of the path. Hence
the classes P(i,k) can be recursively specified by

P(k,k) = kZ + ZP(k,k)2

and, for i < k, by

P(i,k) = iZ + ZP(i+1,k) + ZP(i,k)2.(2.1)

Using the traditional correspondance between spec-
ifications and generating functions we obtain for i < k

P (i,k)(z) =
1 −

√

1 − 4 iz2 − 4 z2P (i+1,k)(z)

2z

and

P (k,k)(z) =
1 −

√
1 − 4 z2k

2z
.
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Figure 2: The trees P0 and P1 are elements of P(0,2) ∼=
S(2) and correspond to T0 and T1 in Fig. 1. The tree
P2 is an element of P(i,2) for i ≥ 2: Both leaves have
the same unary height as the tree itself, namely 2, and
the label of the right (resp. left) leaf exceeds its unary
height by 2 (resp. 1). Thus P2 /∈ P(i,2) for i < 2.

Thus, this recursive specification gives directly the
generating function S(k)(z) associated to S(k). We get

S(k)(z) = (1/2z)(1 −√
....)

where the part under the radical is

1− 2z + 2z

√

· · ·
√

1 − 4 (k − 1) z2 − 2z + 2z
√

1 − 4kz2.

Note that for n ≤ k we have [zn]S(k)(z) = [zn]L(z, 1)
and thus S(k)(z) converges to L(z, 1) in the sense of
formal convergence of power series (cf. [16, p. 731]).

In the next two sections we consider the singularities
of this generating function and determine its dominant
one together with its type. Then we use this information
to obtain the asymptotic behaviour of its coefficients.

3 Toward an asymptotic analysis: jump over

the radicands

Nested structures appear frequently in combinatorial
objects; many are the structures that lead to generating
functions in the form of continued fractions (see for
example [13, 8]). Nested radicals are less frequent;
they can appear when enumerating binary non plane
trees [27, 16, 7], where there appears a “continued
square-root” expansion. When bounding the number of
nestings in such trees (which amounts to writing down
a generating function whose coefficients are exact up to
some size n0, but differ from n0 upwards), the innermost
radicand is the one that determines the dominant
singularity, hence the asymptotic behaviour. We know
of no previous example where the determination of the
significant radicand fluctuates according to the number
of nestings allowed.

We now consider how to determine the dominant
singularity of the function S(k)(z): it is built of nested



radicands, thus its dominant singularity must be at a
point where one of the radicands vanishes. Theorem 3.1
below gives the “dominant” radicand in S(k)(z), i.e., the
radicand having a zero which is the dominant singularity
of S(k)(z).

Definition 3.1. We say that a function f(z) has a

singularity of type
(

1 − z
ρ

)α

at z = ρ if

f(z) ∼ c

(

1 − z

ρ

)α

,

as z → ρ inside the domain of analyticity and for some
constant c.

The following sequence will turn out to be crucial
for our counting problem:

Definition 3.2. Define a sequence (uk)k≥0 for integer
k as

u0 = 0;

uk = u2
k−1 + k for k > 0;

uk−1 =
√

uk − k for k < 0.

Remark 3.1. In [1] it has been shown that for any
doubly exponential sequence v = (vk)k≥0 the limit

χv := limk→∞ v
1/2k

k exists and the sequence can be

represented by vk = ⌊χ2k

v
⌋. Since (uk)k≥0 is doubly

exponential, we can apply this result and limk→∞ u
1/2k

k

can be numerically approximated by χ ≃ 1.36660956...

Theorem 3.1. Let Nk = u2
k − uk + k, with uk as in

Definition 3.2. Define i such that k ∈ [Ni, Ni+1). If
k 6= Ni, then the dominant radicand of S(k)(z) is the
i-th radicand, and the dominant singularity is algebraic

of type
(

1 − z
ρ

)1/2

. Otherwise the i-th and the (i+1)-st

radicand simultaneously vanish at the dominant singu-

larity of S(k)(z), which is algebraic of type
(

1 − z
ρ

)1/4

.

Here the first radicand is the innermost one, then we
count outwards.

The rest of this section is devoted to the proof of
Theorem 3.1: we show that the ith radicand, when
restricted to the real part of its definition domain, is
decreasing, and use this to prove that it has a single
real positive root, which turns out to be the dominant
singularity.

Let us begin with the case k = 1: The generating
function of S(1) is

S(1)(z) =
1 −

√

1 − 2z + 2z
√

1 − 4z2

2z
.

Thus, S(1)(z) has a dominant singularity at z = 1
2

of type (1 − 2z)
1

4 , and a singularity at z = − 1
2 of

type (1 + 2z)
1

2 which turns out to give a negligible
contribution to the asymptotics. Moreover, S(1)(z) is
clearly analytic in a disk of radius 1/2 + ε with two
notches in z = ±1/2. Hence we can directly apply a
classical transfer theorem [15] to obtain the asymptotic
number of closed lambda-terms with unary height at
most 1, as

[zn]S(1)(z) ∼ 1

4

2
1

4 2nn− 5

4

Γ(3
4 )

, as n → ∞.

Now let k grow: the dominant singularity no longer
comes from the innermost radical. For instance, when
k = 2, the singularity from the second innermost radi-
cal becomes dominant; when k = 9, it is the singularity
from the third innermost radical which becomes domi-
nant. This phenomenon requires some explaination.

Let us denote by Ri,k(z) the ith radicand (1 ≤
i ≤ k + 1) of S(k)(z), according to the numbering from
the innermost outwards as adopted in the assertion of
Theorem 3.1, i.e., we have

P (i,k)(z) =
1 −

√

Rk−i,k(z)

2z
.

We can write the radicands recursively as follows :

R1,k(z) := 1 − 4kz2

and, for i ≥ 2:

Ri,k(z) = 1 − 4 (k − i + 1)z2 − 2z + 2z
√

Ri−1,k(z),

which gives

Ri,k(z) = 1 − 4(k − i + 1)z2 − 2z

+2z

√

· · ·
√

1 − 4 (k − 1) z2 − 2z + 2z
(
√

1 − 4kz2
)

What are the roots of such a radicand Ri,k? Recall
that we obtained Ri,k when solving the equation for the
generating function of P(i,k) obtained from (2.1):

Rk−i,k(z) = 1 − 4z2
(

i + P (i+1,k)(z)
)

.

Since P (i+1,k)(z) is the generating function of certain
trees (of which there exist some of any size), there exists
a sequence an,i,k of strictly positive numbers such that
Ri,k(z) = 1−∑

n≥2 an,i,kzn. Assume that Ri,k(z) has a
unique real positive root x0 (which we shall prove later
on); can there be other (imaginary) roots z = x0e

Iθ of
same modulus? If so, then we would have

1 =
∑

n≥2

an,i,kxn
0 = |

∑

n≥2

an,i,kxn
0 eInθ|



which can only hold if eInθ = 1 whenever an,i,k 6= 0. As
the an,i,k are basically the coefficients of some P (j,k),
i.e., the numbers of lambda-terms in some suitable
class, we can easily check that this is not so. Hence
proving that R(i,k)(z) has a single real positive root will
ensure that this root is the zero of smallest modulus
of R(i,k)(z).

We thus turn to the behaviour of the generating
functions on the positive real axis and determine the
interval where the radicands are positive.

Lemma 3.1. For every k and 1 ≤ i ≤ k, the real
function Ri,k(x) is decreasing on the positive part of its
real domain of definition.

Proof. By induction on i: R1,k(x) is clearly decreasing.
Now,

d

dx
Ri,k(x) = −8 (k − i + 1)x − 2

+2
√

Ri−1,k(x) +
x d

dxRi−1,k(x)
√

Ri−1,k(x)
.

But Ri−1,k(0) = 1, hence −2 + 2
√

Ri−1,k(x) ≤ −2 +

2
√

Ri−1,k(0) = 0; as by induction d
dxRi−1,k(x) ≤ 0, we

obtain that d
dxRi,k(x) ≤ 0.

Corollary 3.1. For every k and 1 ≤ i ≤ k, the real
function Ri,k(x) has at most one real positive root.

In order to proceed, consider the restriction of
P (i,k)(z) to the real line and denote the domain where
P (i,k)(z) is defined as a real function by D(i, k). Now
remember that we have a nested construction: the
domains D(i, k) are themselves nested.

Lemma 3.2. For every k ≥ 1 we have ∀i < i′ :
D(i, k) ⊆ D(i′, k). Moreover, if D(i, k) = D(i + 1, k)
then we have ∀j < i : D(j, k) = D(j + 1, k).

Proof. The first assertion is obvious, since when one of
the inner radicands becomes negative the whole function
is not defined any more.

In order to show the second assertion, consider the
finite sequence D(k, k), D(k − 1, k), . . . , D(0, k). We
know that this sequence is a decreasing chain of in-
tervals. Assume D(i, k) ⊆ D(i + 1, k) but D(i, k) 6=
D(i+1, k): the upper ends of the intervals are different.
Let zi denote the unique positive singularity of

√

Ri,k,
i.e. Di,k = [0, zi[. Then our assumption implies that the
outer radicand Rk−i+1,k becomes null for a value of x
strictly smaller than the value where the inner radicand
Rk−i,k is singular, i.e., zk−i+1 < zk−i. In this case, the
dominant singularity cannot be the singularity of the in-
ner radicand Rk−i,k. Conversely, if D(i+1, k) = D(i, k),

then the least positive singularity of P (i,k)(z) cannot co-
incide with a zero of its outermost radicand and must
therefore be the singularity of P (i+1,k)(z).

Consequently, the sequence of zeroes (zi)i=1,...,k+1

of the radicands Ri,k is decreasing and eventually be-
comes stationary. The same holds for the sequence
of intervals. Thus the dominant singularity of S(k) is
the smallest value of this (finite) sequence: the position
ı̂(k) of the dominant radicand Rı̂(k),k (i.e. the radicand

such that Rı̂(k),k = 0 at the singularity of S(k) is the

dominant singularity of S(k)) is the greatest i such that
D(i, k) = D(i + 1, k).

For instance, for k = 8, the sequence of upper bounds
for D(8, 8), ...D(0, 8) is [x8 ≃ 0.1768, x7 ≃ 0.168, x6 =
x7, ...]. So the second radicand ı̂(8) = 2 is domi-
nant. For k = 9, the sequence of upper bounds for
D(9, 9), ...D(0, 9) is [x9 ≃ 0.1667, x8 ≃ 0.15716, x7 ≃
0.15714, x6 = x7, ...]. Here the third radicand ı̂(9) = 3
is dominant.

As is usual in classical analytic combinatorics, we
need to know the dominant singularity ρ of the global
generating function S(k), in order to evaluate its asymp-
totic behaviour. But this is not enough: we need to
know which radicand leads to the singularity ρ. Recall
that we call this radicand “dominant”. Determining it
corresponds precisely to finding the least integer value
i such that Ri,k(x) = 0 and Ri+1,k(x) ≥ 0. This is
equivalent to solving the system

1 − 4(k − i′)x2 − 2x = 0

Ri′+1,k(x) = 0

in the variables (x, i′) ∈ R+, then taking i = ⌈i′⌉.
Indeed, it suffices to remark that the function i 7→
1 − 4(k − i)z(i)2 − 2z(i), with z(i) the unique root of
Ri,k(x) = 0, is an increasing function. This function
is defined for integer i; however we can extend it to
a function Φ(x) defined over the real positive numbers,
with Φ a decreasing function with continuous derivative.

We obtain Φ′(x) = 4z(x)2 − (2(4k − 4x))z(x)(dz(x)
dx ) −

2dz(x)
dx ). As dz(x)

dx < 0, we have that Φ′(x) > 0.
Let us give the first values of the localization of

the dominant radicand in the following table, where the
first column gives the generating function, the second
and third ones the rank of the dominant radicand and
value of the dominant singularity.



Function Radicand Singularity

S(1) {1,2} 0.5

S(2) 2 0.3438
S(3) 2 0.2760
... ... ...

S(8) {2,3} 0.1667
S(9) 3 0.1571
... ... ...

S(134) 3 0.0418

S(135) {3,4} 0.0417

S(136) 4 0.0415
... ... ...

This table shows an unexpected phenomenon. For some
critical values: 1, 8, 135, . . ., we have a “jump” from a
radicand to its successor; this jump occurs precisely
when two successive radicands cancel for the same value.
Our next goal is to describe explicitly this sequence of
critical values.

Proposition 3.1. We have

Rs,u2

k
−uk+k

(

1

2uk

)

=

(

uk−s−1

uk

)2

.

Proof. By induction on k.

Lemma 3.3. Let ρk denote the dominant singularity
of S(Nk)(z) where Nk = u2

k − uk + k with uk as in
Definition 3.2. Then we have ρk = 1/2uk.

Proof. For s = k and s = k + 1, Rs,Nk
( 1
2uk

) = 0.

The sequence (uk) is doubly exponential: the lo-
calization of the dominant radicand is given by
1, 8, 135, 21760, 479982377, 230404115058374088,
53086056457022411574281640206019007, ...;
the sequence of the dominant singularities is
1/2, 1/6, 1/24, 1/296, 1/43818, 1/960008574,
1/460808231076756752,...

Corollary 3.2. The radius of convergence of the gen-
erating function L(z, 0) enumerating all lambda-terms is
zero.

Proof. The number of lambda-terms of size k being
greater than the number of lambda-terms of the same
size and unary height p for any p, the radius of conver-
gence of the global generating function L(0, z) is smaller
than (or equal to) the radius of convergence ρk of the
function S(Nk), for any k. But the sequence of these
radii converges to 0.

4 Asymptotic analysis, and transition between

different behaviours.

We are now in the position to give the asymptotic
behaviour of the number of lambda-terms with bounded
unary height.

Theorem 4.1. Let (Nk)k≥0 be as in Theorem 3.1 and
(uk)k≥0 as in Definition 3.2. The following asymptotic
relations hold:

[zn]S(Nk) ∼ 1

Γ(3/4)
hkn−5/4(2uk)n, as n → ∞,

where ρk is the root of the dominant radicand of S(Nk)

and

hk = (−uk

2

d

dz
Rk,Nk

(ρk))1/4
Nk−1
∏

i=k

1

2u−i
.(4.2)

If m is in ]Nk, Nk+1[, then there exists a suitable
constant hm such that

[zn]S(m) ∼ 1

Γ(1/2)
hmn−3/2(ρk)−n, as n → ∞.

Proof. 1. We first consider the case when the unary
height is one of the Nk: then the dominant singularity
is algebraic of order 1/4.

The generating function S(Nk)(z) has a dominant
singularity in ρk = 1

2uk
. We prove in the sequel

that a singular expansion around 0 gives S(Nk)(z) ∼
τk − hk(1 − z

ρk
)

1

4 . The expressions of τk and hk need
some attention.

Let us begin by defining the bivariate function

Š(k)(z, Y ) = (1/2z)

(

1 −
√

1 − 2z + 2z
√· · ·

)

with the second radical being

√

1 − 4z2 − 2z + 2z

√

· · ·
√

1 − 4kz2 − 2z + 2zY .

We have Š(k−i)(z,
√

Ri,k(z)) = S(k)(z). Now a first-

order singular expansion of S(k)(z) around ρ (denoted
by DL(S(k)(z), ρ, 1)) is

Š(k)(ρ, 0) + (
∂

∂Y
Š(k))(ρ, 0) · DL(

√

Ri,k(z), ρ, 1).

A short calculation gives τk = Š(Nk)(ρk, 0) = uk −
uk−Nk−1. Now, by inductive derivation we obtain

∂

∂Y
Š(Nk)(ρk, 0) = −uk

Nk−1
∏

i=k

1

2u−i
.



The final point is to determine the asymptotic expansion
DL(

√

Ri,k(z), ρ, 1). This can be done without difficulty
and we obtain

DL(
√

Rk,Nk
(z), ρk, 1) ∼

1

u
3/4
k

(−1

2

d

dz
Rk,Nk

(ρk))1/4(1 − z

ρk
)1/4.

The theorem follows from the next lemma, which gives
the value of the derivative of Rk,Nk

at ρk.

Lemma 4.1.
d
dz

Rk,Nk
(ρk) = wk−1,k where wk−1,k is

defined recursively by w0,k = − 4Nk

uk
, wi,k = − 4(Nk−i)

uk
−

2 + 2uk−i

uk
+

wi−1,k

2uk−i
.

2. If the unary height is not one of the Nk, the
dominant singularity is again algebraic, but with order
1/2.

Numerical computations for the coefficients of asymp-
totic expansions when k = 1, 8, 135 give:

[zn]S(1)(z) ∼ 21/4

4 Γ(3
4 )

·
(

1

n

)5/4

· 2n

∼ 0.2426128012 ·
(

1

n

)5/4

· 2n;

[zn]S(8)(z)| ∼ 61/4

1152 Γ(3
4 )

· α

β
·
(

1

n

)5/4

· 6n

∼ 9.318885373 · 10−5

(

1

n

)5/4

6n

where we have exact expressions for α and β:

α =

√

6 +

√

5 +

√

4 +
√

3 +
√

3;

β =

√

5 +

√

4 +
√

3 +
√

3 ·

√

4 +
√

3 +
√

3 ·

√

3 +
√

3

·



2/3 + 1/9

√

5 +

√

4 +
√

3 +
√

3





and

[zn]S(135)(z) ∼ 7.116999389 · 10−158

(

1

n

)5/4

24n.

The constant factor in the asymptotic expression turns
out to decrease very quickly, which leads us to the
following observation: when the maximal unary height
k grows, the asymptotic regime is not the one we

may observe on a “reasonable” (up to some tens of
thousands) number of values. We have plotted in
Figure 3 the ratio between the number of lambda-terms
with unary height exactly k and size n, and the number
of lambda-terms of size n (without restriction on the
height). The figure suggests that, for any given size n,
the unary height is close to a Gaussian distribution. In
particular, this gives some experimental justification to
the change of behaviour: the wave indicates the “good”
estimate for the number of abstractions in a lambda-
term; for instance, if we consider lambda-terms of size
198, then the vast majority of these terms has a unary
height between 25 and 50.

Figure 3: Distribution of lambda-terms of size n ∈
[1, ..., 198] and unary height k ∈ [1, ..., 98]

5 Random generation and observations

5.1 Random generation of lambda-terms To get
a feeling of the “average” behaviour of a combinatorial
object, a method of choice is the random generation
of terms of large size. We considered two methods
to try to generate a random lambda-term of bounded
unary height: the recursive method [17] and Boltzmann
sampling. Boltzmann samplers are powerful tools to
generate objects in specified combinatorial classes at
random. They were introduced in [12] and extended
furthermore by numerous authors [3, 4, 5, 6, 14, 28,
29]. Note that theoretically, a Boltzmann sampler can
generate a tree of size close to n on average in linear



time. We considered Boltzmann sampling of a closed

Figure 4: A random lambda-term of size 30, with the
edges from unary nodes to leaves

term, with different success depending on the unary
height: the efficiency decreases very quickly as the
maximal unary height grows. When k = 8, we can
generate terms of size 10000 in a few seconds on a
standard personal computer. Figure 5.1 presents a term
of size 6853 with unary height bounded by 8.1 However,
if we consider trees with a maximal unary height of 135,
a Boltzmann sampler is not able to produce objects of
size larger than 200 in a “reasonable” time (less than one
day). The explanation of the phenomenon is as follows:
an “average” random lambda-term begins with a large
number of unary nodes; cf. Figure 5.1 (see also [10]
for a result on the same vein on a related model);
drawing the sufficient number of unary nodes has very
low probability in the Boltzmann process. Figure 6 gives
the various probabilities of drawing a leaf, a unary node,
or a binary node, plotted against the recursive depth
(number of recursive calls to the generator). After a
(long!) starting phase where the probability of stopping
is more than 90%, the Boltzmann sampler becomes
efficient. In other words, Boltzmann sampling is linear,
but with a constant depending on the maximum unary
height which grows very quickly: the recursive form
of the specification of lambda-terms and its varying
behaviour are not conductive to random generation with
a Boltzmann sampler.

We have thus turned to the recursive method; using
the Maple package Combstruct, we have been able to
generate quickly enough lambda-terms of size 200 and
unary height bounded by 200–which means that there
is de facto no restriction on the unary height of the
lambda-term. Figure 7 shows what can be considered
as a generic lambda-term for this size.

1For large sizes and for the sake of readability, we have not
indicated the edges between a unary node and the leaf labels.

Figure 5: A random lambda-term of unary height ≤ 8
and its profile

Figure 6: Left, the probability that the singular Boltz-
mann sampler ΓP(k,135) of objects in P(k,135) stops im-
mediately,. Middle, the probability that the sampler
ΓP(k,135) calls ΓP(k−1,135). Right, the probability that
the sampler ΓP(k,135) independently calls 2 generators
ΓP(k,135).



5.2 Profile and average behaviour of a lambda-

term Being able to draw repeatedly random lambda-
terms allows us to make tentative conjectures on their
various parameters: profile, depth, etc. Figure 7 shows,
together with a “generic” lambda-term, its profile (num-
ber of nodes at each level) and (far right) the profile
averaged on 500 random lambda-terms, together with
the average profile of a planar binary tree. From this
we can make several empirical observations.
- The distribution of the profiles is poorly concentrated
(this is also the case for planar binary trees).
- The levels containing the larger number of nodes are
much farther from the root than in binary trees.
- A simulation of the distribution for the total – binary
and unary – height (not presented here) also shows a
clear difference with planar binary trees: the average
depth seems to grow linearly, not in

√
n as for binary

trees. In the same vein, the width of a lambda-terms
appears to grow as log n.
- A random lambda-term usually begins with a large
number of successive unary nodes interspersed with a
few binary nodes; most binary nodes appear further
down.

Figure 7: Left, a lambda-term of size 200. Middle, its
profile. Right, the average profile (red) computed over
500 random lambda-terms, compared with the average
profile for planar binary tree (blue, Airy function)

6 Conclusion and perspectives

We have shown in this paper that even a restricted class
of lambda-terms exhibits an outstanding combinatorial
complexity. Among others, we have discovered the
unexpected behaviour of the position for the dominant
radicand, which jumps according to some function
behaving as ln(ln(k)), with k the maximum unary
height of a lambda-term. Theorem 4.1 characterizes
precisely these jumps and the asymptotic number of
lambda-terms with bounded height.

A byproduct of our work concerns Boltzmann sam-
plers: by trying to use them for the random generation
of lambda-terms, we have pushed them to their limit.
We feel that it might be possible to improve Boltzmann
random generation, when we wish to apply it to com-

binatorial structures whose Boltzmann distribution is
concentrated around the smallest sizes.

Finally, in terms of average properties and growth,
lambda-terms widely differ from the usual models for
trees such as simple families or increasing trees, for
which we know the behaviour of classical parameters:
number of trees of given size, profile, etc. Indeed they
seem to behave, in some sense, like “ornamented” paths,
i.e. long strings on which are grafted relatively small
subterms.

Of course, such results need to be explained and
quantified more rigorously. Let us also mention that
the enumeration of (unrestricted) lambda-terms is still
an open problem, which we shall probably need to solve
if we are to study such parameters as the average unary
height, or profile.
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pling of ordered structures, Electronic Notes in Dis-
crete Mathematics 35 (2009), 305–310.

[30] Marek Zaionc. On the asymptotic density of tautolo-
gies in logic of implication and negation. Reports on
Mathematical Logic Vol. 39, 67-87, 2005.


