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Abstract. The problem 2-Xor-Sat asks for the probability that a random expres-
sion, built as a conjunction of clauses x ⊕ y, is satisfiable. We consider here
a refinement of this question, namely the probability that a random expression
computes a specific Boolean function. The answer involves a description of 2-Xor
expressions as multigraphs, and uses classical methods of analytic combinatorics.
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1 Introduction

In constraint satisfaction problems we ask for the probability that a random expression,
built on a finite set of Boolean variables according to some rules (k-Sat, k-Xor-Sat,
NAE, . . . ), is (un)satisfiable. The behaviour of this probability, when the number n of
Boolean variables and the length m of the expression (usually defined as the number
of clauses) tend to infinity, most specially the existence and location of a threshold
from satisfiability to unsatisfiability as the ratio m/n grows, has given rise to numerous
studies. The literature in this direction is vast, for Xor-functions see e.g. [1–5].

Defining a probability distribution on Boolean functions through a distribution on
Boolean expressions is a priori a different question. Quantitative logic aims at answer-
ing such a question, and many results have been obtained when the Boolean expression,
or equivalently the random tree that models it, is a variation of well-known combina-
torial or probabilistic tree models (Galton-Watson and Pólya trees, binary search trees,
etc).

So we have two frameworks: on the one hand we try to determine the probability
that an expression is satisfiable; on the other hand we try to identify probability dis-
tributions on Boolean functions. It is only natural that we should wish to merge these
two approaches: what if we set satisfiability problems into the framework of quantita-
tive logic (this only requires to choose a suitable model of expressions), and ask for
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the probability of FALSE – this is the classical satisfiability problem – and of the other
Boolean functions? This amounts to refining the satisfiable case, which gathers together
all the functions differing from FALSE, into subcases according to the exact (class of)
Boolean function(s) that is computed.

Within this unified framework one could, e.g., ask for the probability that a random
expression computes a function that is satisfied by a specific number of assigments. Al-
though this may turn out to be out of our reach for most classical satisfiability problems,
there are some problems for which we may still have hope to obtain a (partial) descrip-
tion of the probability distribution on Boolean functions. The case of 2-Xor expressions
is such a problem, and this paper is devoted to presenting our results in this domain.

The 2-Xor-Sat satisfiability problem has been studied by Creignou and Daudé [1]
who established the existence of a threshold for m = n

2 , then proved in [4] that this
threshold is coarse. Further work by Daudé and Ravelomanana [6] and by Pittel and
Yeum [7] led to a precise understanding of the transition in a window of size n2/3.

The paper is organized as follows. We present in the next section the 2-Xor problem
and the set of Boolean functions that can be attained by such expressions, then give a
modelization in terms of multigraphs, before considering in Section 3 how enumeration
results on classes of multigraphs allow us to compute probabilities of Boolean func-
tions. We then give explicit results for several classes of functions in Section 4, and
conclude with a discussion on the relevance and of possible extensions of our work.

2 Boolean Expressions and Functions, and Multigraphs

2.1 2-Xor Expressions and Boolean Functions

Starting from an infinite set {x1, x2, . . .} of Boolean variables, we define a 2-Xor ex-
pression as a finite conjunction of clauses l ⊕ l′, where l and l′ are literals, i.e. either
some xi or x̄i. We shall denote by m the number of clauses of an expression. Now each
2-Xor expression defines a Boolean function on a finite number of variables, but not all
Boolean functions on a finite number of variables can be obtained from a 2-Xor expres-
sion. We define X as the set of functions from {0, 1}N to {0, 1}, such that there exists
at least one 2-Xor expression representing them. We also define, for each n ≥ 1, the
set Xn of functions in X such that there exists an expression representing the function,
that does not use any of the variables xn+1, xn+2, . . . This implies that Xn1

⊂ Xn2
for

n1 ≤ n2, and that X = ∪n≥1Xn.4

Consider now the expressions that can represent a function of Xn. The literals in
a clause are ordered (the clauses x ⊕ y and y ⊕ x are distinct), hence there are 4n2

distinct clauses. We assume that the m clauses are drawn with a uniform probability
and with replacement (i.e., a clause can appear several times), and are unordered, i.e.
we are dealing with a set of clauses. This framework allows us to define a probability
distribution on the set Xn : Pr[m,n](f) =

N[m,n](f)

N[m,n]
, with N[m,n] the total number of

expressions with m clauses on the variables x1, . . . , xn, and N[m,n](f) the number of
these expressions that compute f .

4 For brevity’s sake, “(the set of) Boolean functions” in the sequel is to be understood as either
the set Xn or the set X , according to the context.



2.2 The Sets Xn

Rewriting a clause l1 ⊕ l2 as l1 ∼ l̄2 (i.e., l1 and l2 must take opposite values for the
clause to evaluate to TRUE), we see that the functions we obtain can be written as a
conjunction of equivalence relations on literals: (l1 ∼ · · · ∼ lp) ∧ (lp+1 ∼ · · · ∼
lq) ∧ · · · ∧ (lr+1 ∼ · · · ∼ ls). E.g., for n = 7 the expression (x1 ⊕ x3) ∧ (x̄6 ⊕
x5) ∧ (x7 ⊕ x̄7) ∧ (x2 ⊕ x̄3) computes a Boolean function f that we can write as
(x1 ∼ x̄2 ∼ x̄3) ∧ (x5 ∼ x6), and this function partitions the Boolean variables into
the subsets {x1, x2, x3}, {x4}, {x7} and {x5, x6}.

If a relation l ∼ l̄ appears in at least one of the equivalence relations, the expression
simply computes FALSE. In other words: For any n ≥ 1, the set Xn comprises exactly
the function FALSE and those functions that partition the set of the n Boolean variables
into subsets, as follows: the variables (or their negations) in a given part are equivalent;
a variable which appears in no clause of an expression computing the function, or only
as l ∼ l, is put in a singleton.

We now define the following equivalence relation on Xn. Two Boolean functions
f and g on n variables are equivalent, if g can be obtained from f by permuting the
variables and flipping some of them. We denote by C(f) the equivalence class of a
function f . All the Boolean functions in C(f) share the same probability Pr[m,n](f).

Let f ∈ X ; we say that a Boolean variable x is an essential variable w.r.t. f iff
f |x=1 6= f |x=0. Let f 6∈ {TRUE, FALSE} and e(f) ≤ n be the number of its essential
variables5; then f 6∈ Xe(f)−1 but f ∈ Xe(f). In our example, e(f) = 5.

It is not hard to see that, with the exception again of FALSE that is in a class by itself,
the classes we have thus defined on Xn are in bijection with partitions of the integer n;
in our example the function f partitions the integer 7 as 1 + 1 + 2 + 3.

Let i = (i`)`≥1 be an integer partition of n, written in its part-count representation.
Hence i` ≥ 0 for all ` and s(i) :=

∑
` ` i` = n; the total number of parts (or blocks) is

ξ(i) :=
∑
` i` and i` is the number of parts of size `. Partitions of the type i` = 0 except

in = 1 appear regularly in the sequel; we shall denote such a partition by imax(n). We
write i(f) for the integer partition associated to a Boolean function f , and we extend
the notation for the equivalence class into Ci = C(f) when i = i(f).

Our running example corresponds to the integer partition (n − 5, 1, 1, 0, 0, 0) on
n ≥ 5 variables, which has n − 3 parts; the set partition it induces on the set of
Boolean variables may be taken, for example, equal to {x1, x2}, {x3, x4, x5}. The func-
tion TRUE corresponds to the integer partition (n, 0, . . . , 0) and is computed by the
expressions that have only clauses of the type l ⊕ l̄.

Proposition 1. Set p(n) as the number of partitions of n; the number of classes of
computable Boolean functions is then p(n) + 1. The class associated to a partition
i = (i`) has cardinality 2n−ξ(i) n!∏

`≥1 i`!(`!)
i`

. The number of assigments satisfying a function

f ∈ Ci is 2ξ(i).

5 Although the constant functions can only be written as 2-Xor expressions invoving one or
more variables, they have no essential variable: e(TRUE) = e(FALSE) = 0.



2.3 2-Xor Expressions as Colored Multigraphs

Consider multigraphs, i.e. graphs where we allow loops and multiple edges. Set Mm,n

as the number of multigraphs on n vertices6 and m edges or loops, each multigraph be-
ing weighted as follows: every loop contributes a multiplicative factor 1/2 to the weight,
each k-fold edge a factor 1/k!. The generating function for weighted multigraphs is (see
Janson, Knuth, Luczak and Pittel [8])

M(z, v) =
∑
m,n

Mm,nz
m v

n

n!
=
∑
n≥0

e
n2

2 z.
vn

n!
.

A multigraph being a set of connected components, the g.f. for connected multigraphs is

C(z, v) = logM(z, v) =
∑
r≥−1

zrCr(zv), (1)

where we have set r = m−n, the excess of the multigraph, and whereCr(z) enumerates
the connected multigraphs of fixed excess r.

We are now ready to define a bijection between Boolean expressions of m clauses
on n variables, and colored multigraphs on n vertices and withm edges, i.e. multigraphs
with different types (colors) of edges between any two vertices, as follows.

– Each Boolean variable x` corresponds to a vertex, and each 2-Xor clause to an edge
between two distinct vertices, or to a loop on one vertex; each loop or edge can be
repeated.

– A loop on vertex x can appear in four colors : x⊕ x, x⊕ x̄, x̄⊕ x or x̄⊕ x̄.
– An edge between two distinct vertices xi and xj can appear in eight colors: li ⊕ lj

or lj ⊕ li, where li and lj are respectively equal to xi or its negation, and xj or its
negation.

Proposition 2. There is a bijection between 2-Xor expressions, and multigraphs where
loops are 4-colored and other edges are 8-colored. Hence the generating function for
2-Xor expressions is M(8z, v).

Let f ∈ Xn; then ξ(i(f)) is the number of connected components of the associated
multigraph.

X1 + X3 X7+X7

X6+X5

X2+X3

X3

X2X1

X4

X6 X5

X7

Fig. 1. The colored multigraph for our running example.

6 As is usual when enumerating such structures, we consider labels on the vertices, say 1, . . . , n.



2.4 The Different Ranges

We shall consider in the sequel the range where m and n are related, and set m ∼
αn (α is usually assumed to be a constant). It is well known ([6]) that the probability
that a random expression is satisfiable decreases from 1 to 0 when α increases, with a
(coarse) threshold at 1

2 . However, a Boolean function corresponding to a partition of
the n Boolean variables into p blocks cannot appear before at least n− p clauses have
been drawn, i.e. before m ≥ n− p. E.g., the function x1 ∼ · · · ∼ xn cannot appear for
m < n− 1, which means that it has a non-zero probability only for α ≥ 1, much later
than the threshold – and at this point the probability of FALSE is 1 − o(1). This leads
us to define regions according to the value of α when n,m→ +∞:

– α < 1/2. Here the probability of satisfiability is non-zero, but the attainable func-
tions cannot have more than n(1− α) blocks.

– 1/2 < α < 1. Some Boolean functions still have probability zero, but now the
probability of satisfiability is o(1) and the probability of FALSE is 1 − o(1). Thus
any other attainable Boolean function has a vanishing probability o(1).

– 1 ≤ α. At this point all the attainable Boolean functions have non-zero probability,
but again the probability of FALSE is tending to 1.

3 Probabilities on Boolean Functions

We consider here how we can obtain the probability of satisfiability (or equivalently of
FALSE), or of any function in Xn. The reader should recall that the probabilities given
in the sequel are actually distributions on Xn, i.e. they depend on n and m. Letting n
and m = m(n) grow to infinity amounts to specializing the probability distribution
Pr[m,n](f) (defined in Section 2.1 for f ∈ Xn) into Pr[m(n),n](f). We shall be inter-
ested in its limit when n → +∞ and f is a function of X . We begin with the case
f = FALSE (which is the usual satisfiability problem) and derive anew the probability
of satisfiability in the critical window, before turning to general Boolean functions.

3.1 Probability of Satisfiability

Theorem 1. The probability that a random expression is satisfiable is

Pr[m,n](Sat) =
[zmvn]

√
M(4z, 2v)

[zmvn]M(8z, v)
.

Its asymptotic value for n→ +∞ and m = n
2 (1 + µn−1/3) is

n−1/12
√

2π
∑
r≥0

e
(1/2)
r

2r
A(3r + 1/4, µ),



where

e(σ)r = [z2r]

∑
k≥0

(6k!)z2k

25k32k(2k)!(3k)!

σ

,

A(y, µ) =
e−µ

3/6

3(y+1)/3

∑
k≥0

(32/3µ/2)k

k!Γ
(
y+1−2k

3

) .
Proof. To obtain the g.f. for satisfiable expressions, we shall count the number of pairs
{satisfiable expression, satisfying assignment}, then get rid of the number of satisfying
assignments. We can assign TRUE or FALSE to each variable, and one of eight colors to
an edge, hence M(8z, 2v) counts all pairs {expression, assignment}.

Once we have chosen an assignment of variables, for an expression to be satisfiable
we have to restrict the edges we allow. Say that x and y are assigned the same value;
then the edges colored by x ⊕ y, y ⊕ x, x̄ ⊕ ȳ or ȳ ⊕ x̄ cannot appear in a satisfiable
expression. For a similar reason, the only loops allowed are x ⊕ x̄ or x̄ ⊕ x. We thus
count multigraphs with 2 colors of loops and 4 colors of edges, which gives a g.f. equal
to M(4z, 2v).

Now consider the generating function S(z, v) for satisfiable expressions: we claim
that it is equal to

√
M(4z, 2v). To see this, choose an expression computing a Boolean

function f , and consider how many assignments satisfy it: we have seen (cf. Proposi-
tion 1) that their number is equal to 2ξ(f), with ξ(f) the number of connected compo-
nents (once we have chosen the value of a single variable in a block, all other variables
in that block have received their values if the expression is to be satisfiable). This means
that, writing S(z, v) = exp logS(z, v) with logS(z, v) the function for connected com-
ponents, the g.f. enumerating the pairs {expression, satisfiable assignment} is equal to
exp(2 logS(z, v)) = S(z, v)2. As we have just shown that it is also equal toM(4z, 2v),
the value of Pr[m,n](Sat) follows.

To obtain the asymptotics in the critical window m = n/2 + O(n2/3), we use
Lemma 1 below, which is an easy variation of [8, Lemma 3]. The function A(y, µ) is a
variation of the classical Airy function; see for example [8, Lemma 3], [9, Theorem 11]
or [10, Theorem IX.16].

Lemma 1. Let us consider a positive real value σ, a bounded parameter µ and m =
n
2 (1 + µn−1/3). Then, with the notations of Theorem 1,

n![zmvn]M(z, v)σ ∼ n2m

2mm!
σn−mn(σ−1)/6

√
2π
∑
r

σre(σ)r A(3r + σ/2, µ).

Theorem 2. The probability for a random satisfiable expression with n variables andm
clauses to be satisfied by a random input, in the range m = n

2 (1 + µn−1/3), is

Pr[m,n](Sat) =
[zmvn]M(4z, 2v)

2n[zmvn]
√
M(4z, 2v)

∼ n1/12

2m

∑
r e

(1)
r A(3r + 1/2, µ)∑

r 2−re
(2)
r A(3r + 1/4, µ)

.



3.2 Probability of a Given 2-Xor Function

We now refine the probability of satisfiability, by computing the probability of a specific
Boolean function 6= FALSE. We first give in Proposition 3 the generating functions for
all Boolean functions (except again FALSE), then use it to provide in Theorem 3 a gen-
eral expression for the probability of a Boolean function, or rather of all the functions
of an equivalence class Ci. This theorem is at a level of generality that does not give
readily precise probabilities, and we delay until Section 4 such examples of asymptotic
probabilities.

Proposition 3. For i an integer partition, define φi(z) as the generating function for
Boolean expressions that compute a specific Boolean function f in the class Ci: φi(z) =∑
mN[m,n](f) zm. When i = imax(n), we set φn(z) := φimax(n)(z). Then

φn(z) =

[
vn

n!

]
C(4z, v); φi(z) =

∏
`≥1

(φ`(z))
i` .

Proof. A canonical representant of the class imax(n) is the function x1 ∼ · · · ∼ xn.
Any expression that computes it corresponds to a connected multigraph, where we only
allow the 2 types of loops that compute TRUE, and the 4 types of edges between xi and
xj (i 6= j) that compute xi ∼ xj ; this gives readily the expression of φn(z).

As for functions whose associated multigraphs have several components, such multi-
graphs are a product of connected components; hence the global generating function is
itself the product of the generating functions for each component.

Theorem 3. 1. The probability that a random expression ofm clauses on n variables
computes the function x1 ∼ · · · ∼ xn is

Pr[m,n](x1 ∼ · · · ∼ xn) =

[
zm vn

n!

]
C(4z, v)[

zm vn

n!

]
M(8z, v)

=
m!

n2m

[
vn

n!

]
Cm−n(v).

2. Let f be a function of X , with q = ξ(i(f)), and B1, . . . , Bq be the blocks of i(f),
with rj (1 ≤ j ≤ q) the excess of the block Bj . The probability that a random
expression of m clauses on n variables computes f is

Pr[m,n](f) =
m!

n2m

∑
r1,...,rq≥−1

r1+···+rq=m−n

q∏
j=1

[
v|Bj |

|Bj |!

]
Crj (v).

Proof. By the correspondance between 2-Xor expressions and weighted multigraphs
the probability that an expression of m clauses on n variables computes a function f
can be expressed as follows:

Pr[m,n](f) =
[zm]φi(z)

[zm vn

n! ]M(8z, v)
.

Expressing φi in terms of coefficients of powers of C(4z, v), then substituting the ex-
pression (1) for C, gives the result after careful management of the coefficients.



4 Explicit Probability Computations

We now show on examples how Theorem 3 allows us to compute the asymptotic prob-
ability of a specific function.

We consider first a Boolean function f with a fixed number e(f) of essential vari-
ables, and consider how its probability varies when n → +∞ (i.e. when we add non-
essential variables), then turn to functions that vary with n, either with a fixed number
of blocks (this includes functions that are “close to” FALSE in the sense that they have
few blocks, hence few satisfying assigments), or with a number of blocks that grows
with n (e.g., nj blocks of size j for some j ≥ 2).

4.1 Probability of a Fixed Function

We compute here the probability of any specific function, when m is large enough so
that it can be obtained, and see how it varies when n,m→ +∞ with fixed ratio α.

Proposition 4. Let f ∈ Xn, with e(f) the number of its essential variables, and i(f) =
(i1, i2, . . . ) its associated integer partition. Assume m = αn ≥ n− ξ(i(f)); then

P[αn,n](f) ∼ eα e(f)

(2n)αn

∏
`≥2

(
`!φ`

(α
2

))i`
(n→ +∞).

4.2 Asymptotics for a Single-Block Function

We consider here the class of x1 ∼ · · · ∼ xn, and the range m ≥ n − 1. This corre-
sponds to (a subset of) the third range of Section 2.4. From Theorem 3 , we have

Pr[m,n](x1 ∼ · · · ∼ xn) =
m!

n2m
.

[
vn

n!

]
Cm−n(v).

We now specialize this expression according to the possible values for the excess r =
m− n. For the first three cases, we use the fact that for each fixed excess r, there is an
explicit constant Kr such that[

vn

n!

]
Cr(z) ∼ Kr. n

n+ 3r−1
2 .

We use the result of [11] and the alternative proof of [12] to derive the remaining cases.

1. For r = −1, we have Pr[m,n](x1 ∼ · · · ∼ xn) = (n−1)!
nn ∼

√
2π
n e−n .

2. For r = 0, we get Pr[m,n](x1 ∼ · · · ∼ xn) ∼ π
2 e
−n.

3. For r ≥ 1 but still fixed, Pr[m,n](x1 ∼ · · · ∼ xn) ∼ Kr e
−nnr/2 where the

constant Kr can be made explicit.

4. For r →∞ and r = o(
√
n), Pr[m,n](x1 ∼ · · · ∼ xn) ∼

√
3
2

er/2

(2
√
3)r
e−n

(
n
r

)r/2
.

5. For r = cn for a constant c > 0, Pr[m,n](x1 ∼ · · · ∼ xn) ∼ K
(

(1+c)c cosh ζ
(2ζ)ce1+c

)n
where ζ coth ζ = 1 + c and K =

√
1 + c e2ζ−1−2ζ√

ζ(e4ζ−1−4ζe2ζ)
.



6. When r → +∞ and 2m/n − log(n) is bounded - which covers the two previous

cases - then Pr[m,n](x1 ∼ · · · ∼ xn) ∼ K
(2ζ)r

(
sinh ζ
ζ

)n
(1+r/n)n+r+1/2

en+r where ζ is

the positive solution of ζ coth ζ = 1 + r/n and K = e2ζ−1−2ζ√
ζ(e4ζ−1−4ζe2ζ)

. This for-

mula is an adaptation for multigraphs of Theorem 3 of [12] and appeared originally
(for graphs) in [13].

7. Finally, when 2m/n−log(n)→ +∞ as n→ +∞, Pr[m,n](x1 ∼ · · · ∼ xn) ∼ 1
2m

because almost all multigraphs are connected.

4.3 Asymptotics for a Two-Blocks Function

We now consider a function in the class of x1 ∼ · · · ∼ xp, xp+1 ∼ · · · ∼ xn (the block
sizes are p and n − p), which has cardinality 2n−2 n!

p!(n−p)! . We are again in the third
range: m ≥ n− 2, i.e. r ≥ −2. Theorem 3 gives the generating function as

φj(z) =

[
vp

p!

]
C(4z, v) ·

[
wn−p

(n− p)!

]
C(4z, w),

from which we readily obtain that

Pr[m,n](f) =
m!

n2m

r+1∑
d=−1

[
vp

p!

]
Cd(v) ·

[
wn−p

(n− p)!

]
Cr−d(w).

We now consider several cases. For simplicity we assume that, when r is large, it is
equal to cn for a fixed positive value c.

1. Fixed excess r, and a single large part. In the range we are working in, p and d
belong to a fixed, finite set. For some explicitly computable constant kf ,

Pr[m,n](f) ∼ kf . n
r+3
2 −p e−n.

2. Fixed excess r, and two proportional large parts. By symmetry, we can assume that
p ≤ n− p. We have that

Pr[m,n](f) ∼ 2π

enn2n+2r
(n− p)2n+ 3r

2

(
p

n− p

)2p r+1∑
d=−1

KdKr−d

(
p

n− p

) 3d
2

.

(2)
Now assume for simplicity that p = γn, then

Pr[m,n](f) ∼ kf n−
r+1
2 β2n e−n with β = (1− γ)1−γ γγ .

3. Fixed excess r, and two non-proportional large parts. In this case, the expression (2)
is still valid, but now p/(n− p) = o(1) i.e. p = ε n with ε = o(1). Then

Pr[m,n](f) ∼ kf e−n n
r−1
2 εnε−1 (1− ε)(1−ε)n.

A more precise evaluation of probabilities requires to know the order of growth of
p w.r.t. n. E.g.,



(a) p =
√
n: then ε = n−1/2 and the probability of the function is of order

n−
r
2+

3
4 e−n−2

√
n n−

√
n.

(b) p = log n: now ε = logn
n , the probability is of order

(
logn
n

)logn−1
n
r+1
2 e−n.

4. Large excess r and a single large part. If r = cn and p is fixed, we obtain for some
explicitly computable constant kf

Pr[m,n](f) ∼ kf
np−1

(
(1 + c)c cosh(ζ)

e1+c(2ζ)c

)n
where ζ coth ζ = 1 + cn+1

n−p .
5. Large excess r and two proportional large parts. If r = cn and p = γn,

Pr[m,n](f) ∼ kf
n

(
γγ(1− γ)1−γ(1 + c)1+c

2ce1+c
g(a0)

)n
where kf is a computable constant, and g(a0) is the unique maximum in [0; 1] of
the function

g(a) =

(
cosh(ζ1(a))

1 + ac
γ

)γ (
cosh(ζ2(a))

1 + (1−a)c
1−γ

)1−γ (
γ

ζ1(a)

)ac(
1− γ
ζ2(a)

)(1−a)c

where the functions ζ1 and ζ2 are implicitly defined by ζ1(a) coth ζ1(a) = 1 + ac
γ

and ζ2(a) coth ζ2(a) = 1 + (1−a)c
1−γ .

4.4 Number of Blocks Proportional to n

A general approach via Theorem 3 seems difficult, so we assume a certain regularity:
Let f denote a boolean function whose associated integer partition representation has
the form i(f) = (0, . . . , 0, n/g, 0, . . . ), with g ≥ 2. Note that the corresponding multi-
graph has to have at least m = (g − 1) · ng edges. Thus, in contrary to the previously
discussed cases, the excess is no more bounded from below, as n→∞. Such functions
may now appear even close to the threshold 1/2. In Proposition 5, we derive an exact
result for those functions, and an asymptotic result in Proposition 6.

Using directly the definition C(z, v) = logM(z, v) we can show:

Proposition 5. The number of expressions N[m,n](f) with n variables and m clauses
computing a function f with associated integer partition representation of the form
i(f) = (0, . . . , 0, n/g, 0, . . . ), i.e. n/g blocks of size g, is given by

N[m,n](f) = 4m(g!)
n
g [zm]

( g∑
j=1

(−1)j−1

j
ej,g−j(z)

)n
g

(3)

with

ej,n(z) =
∑

∑j
`=1 k`=n
k`≥0

(
n

k1, . . . , kj

)exp
(∑j

`=1
(k`+1)2z

2

)
∏j
r=1(k` + 1)!

.



For example, in the case g = 2 we get

Pr[m,n](f) =
1

n2m

n
2∑
`=0

(n
2

`

)
(n+ `)m(−1)

n
2−`,

and for g = 3

Pr[m,n](f) =
1

n2m

n
3∑
`=0

∑̀
j=0

(n
3

`

)(
`

j

)
(
n

2
+ `+ 2j)m(−3)`−j2

n
3−`.

It turns out that there is no qualitative difference between constant and large excess.
The relevant quantity here is the distance from the minimal possible excess. Thus we
start with small g = 2, 3, . . . and assume thatm = g−1

g ·n+κn, with κn ≥ 0. According
to [4] the interesting range is n

2 +Θ(n2/3). Hence we also assume κn = O(n2/3).
The above expression forN[m,n](f), Equation (3), is a fixed functionG(z) raised to

a large power. Moreover, it is not hard to show that G(z) =
∑
`≥g−1 a`z

`. Thus in case
of constant κn of Equation (3) becomes a finite sum which can be computed explicitly
(at least in principle).

For κn → ∞ the saddle point method applies and we can compute N[m,n](f)
asymptotically, though the expressions quickly become messy as g grows. For g = 2
we obtain

Proposition 6. The number of expressions N[m,n](f) with n variables and m clauses
computing a function f with associated integer partition representation of the form
i(f) = (0, n/2, 0, 0, . . . ), i.e. n/2 blocks of size 2, is given by

N[m,n](f) =
2√
6π

4m+n
4 r
−m+n

2
n exp

(
3nrn

4
+

1

48
nr2n +O(nr4n)

)
.

where rn is the unique positive solution of z(2e
z−1)

ez−1 = 1 + 2κn
n , and satisfies

rn =
4

3
· κn
n

+O
(κ2n
n2

)
.

5 Discussion

We have analysed the probability of Boolean functions generated by random 2-Xor
expressions. This is strongly related to the 2-Xor-SAT problem. For people working
in SAT-solver design the structure of solutions of satisfiable expressions, which corre-
sponds to the component structure of the associated multigraphs, is also important.

We derived expressions in terms of coefficients of generating functions for the prob-
ability of satisfiability in the critical region (m ∼ n

2 + Θ(n2/3)) as well as a general
expression for the probability of any function (Theorem 3). Unfortunately, this expres-
sion is too complicated to be used for an asymptotic analysis of general functions. So,
we discussed several particular classes of functions: Single block functions are com-
pletely analyzed. The asymptotic probability very much depends on the range of the



excess. For two block functions, the only missing case is that of two large components
which are not proportional in size. All those functions are rather close to FALSE. Finally,
functions on the other edge (close to TRUE) were studied and, under some regularity
conditions on the block sizes, we were able to get the asymptotic probability.

What is missing is an asymptotic analysis of functions on the boundaries TRUE and
FALSE having a more irregular component structure as well as the study of functions in
the intermediate range.

Acknowledgments. We thank Hervé Daudé and Vlady Ravelomanana for fruitful
discussions.
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