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Abstract

We revisit the problem of counting the number of copies of a fixed graph in a random
graph or multigraph, including the case of constrained degrees. Our approach relies
heavily on analytic combinatorics and on the notion of patchwork to describe the
possible overlapping of copies.
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1 Introduction

Since the introduction of the random graph models G(n, m) and G(n, p)
by Erdős and Rényi [8] in 1960, one of the most studied parameters is the
number XF of subgraphs isomorphic to a given graph F . By the asymp-
totic equivalence between G(n, p) and G(n, m), results from one model can
be rigorously translated into the other one. Erdős and Rényi derived the
threshold for {XF > 0} when F is a strictly balanced graph (see defini-
tion next page), and Bollobás [3] generalized their result to any graph F .
Ruciński [15] proved that XF is asymptotically normal beyond the threshold,
and follows a Poisson law at the threshold iff F is strictly balanced. Then
Janson, Oleszkiewicz and Ruciński [12] developed a moment-based method
for estimating P(XF ≥ (1+ε)E(XF )). The notion of strongly balanced graphs,
introduced by Ruciński and Vince in [16], plays a key role in obtaining the
results mentioned above.

Recently, there has been an increasing interest in the study of constrained
random graphs, such as given degree sequences or regular graphs; the number
of given subgraphs in such structures has been also studied. E.g., Wormald [18]
proved that the number of short cycles in these structures asymptotically fol-
lows a Poisson distribution; using a multi-dimensional saddle-point approach,
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McKay [13] studied the structure of a random graph with given degree se-
quence, including the probability of a given subgraph or induced subgraph.

Our goal is to revisit (part of) these results through analytic combinatorics
and extensive use of generating functions (g.f.). Ours is not the first paper that
approaches graph problems with these tools. Early such work was by McKay
and Wormald (see, e.g., [14] for the enumeration of graphs with a specified
degree sequence); an important development was the study of planar graphs
by Giménez and Noy [9], followed by several papers in the same direction;
see also a recent paper by Drmota, Ramos and Rué [7] about the limiting
distribution of the number of copies of a subgraph in subcritical graphs.

In the rest of this section, we give formal definitions of our model and the
objects we are interested in. Then we address the problem of evaluating the
number of subgraphs in Section 2; finally some of those results are extended
to graphs and multigraphs with degree constraints in Section 3. Due to space
constraints, the proofs are in the ArXiV paper of the same name [5].

Model and definitions. Most of the following definitions come from [8]
and [3]. A graph G is a pair (V (G), E(G)), where V (G) denotes the set of
labeled vertices, and E(G) the set of edges. Each edge is a unoriented pair
of distinct vertices. An (n,m)-graph is a graph with n vertices, labeled from
1 to n, and m edges. A graph F is a subgraph of G if V (F ) ⊂ V (G) and
E(F ) ⊂ E(G); we write F ⊂ G. Two graphs F , G are isomorphic if there
exists a bijection from V (F ) to V (G) that induces a bijection between E(F )
and E(G). An F -graph is a graph isomorphic to F , an F -subgraph of G is a
subgraph of G that is an F -graph, and G[F ] denotes the number of subgraphs
of G that are F -graphs. Given a graph family F , an F-graph is an F -graph for
some F ∈ F . The density d(G) of a graph G is the ratio between its numbers
of edges and of vertices. A graph is strictly balanced if its density is larger than
the density of its strict subgraphs. The essential density d⋆(G) of G is the
highest density of its subgraphs d⋆(G) = maxH⊂G d(H). To any graph family
F , we associate the generating function F (z, w) =

∑

n,m≥0Fn,mw
mzn

n!
, where

Fn,m denotes the number of (n,m)-graphs isomorphic to a graph from F .

2 Number of subgraphs in a random graph

Theorem 2.1 The number of (n,m)-graphs with one distinguished F-subgraph

is
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Fig. 1. A graph T and two T -patchworks P1 and P2 that reduce to the same graph
G(P1) = G(P2) = G.

where the asymptotics holds when F (z, w) is an entire function, n, m → +∞
s.t. m = o(n2), and F (nz,mw/

(

n
2

)

)/F (n,m/
(

n
2

)

) converges uniformly on any

compact set to an analytic function.

Let H denote a densest subgraph of F and F the family of the H-graphs.
Dividing both sides of the expression in Theorem (2.1) by the total number
of (n,m)-graphs gives a new proof for the following classical result of [8,3].

Corollary 2.2 Denote by ℓ⋆ and d⋆ the number of edges and density of a

densest subgraph of F , and consider a random (n,m)-graph G with m = O(nα)
for some fixed 0 < α < 2. Then

E(G[F ]) = O(nℓ⋆(α−2+1/d⋆)).

Thus, for any α < 2− 1/d⋆, G[F ] = 0 almost surely.

Given a graph F , an F -patchwork P is a set of distinct F -graphs {F1, . . . , Ft}
that might share vertices and edges, and s.t. the pair (∪t

i=1V (Fi),∪
t
i=1E(Fi))

is a graph, denoted by G(P ). This notion is illustrated in Figure 1. Let
PatchF,n,m,t denote the number of F -patchworks composed of t F -graphs, and
s.t. G(P ) is an (n,m)-graph: the g.f. of F -patchworks is PatchF (z, w, u) =
∑

n,m,t≥0 PatchF,n,m,t u
twmzn

n!
.

Theorem 2.3 The number SGF
n,m,t of (n,m)-graphs that contain exactly t F -

subgraphs is

SGF
n,m,t = n![znwmut] PatchF
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For a general graph F , although we have no explicit expression for the
g.f. of F -patchworks, partial information is enough to address some interesting
problems. The following theorem was first derived by [3].

Theorem 2.4 Let F denote a strictly balanced graph of density d, with ℓ edges
and a automorphisms, and assume m ∼ cn2−1/d for some positive constant c.
The number of F -subgraphs in a random (n,m)-graph G follows a Poisson

limit law of parameter λ = (2c)ℓ/a.



3 Small subgraphs in graphs with degree constraints

We consider now (n,m,D)-graphs, i.e., (n,m)-graphs where all vertices have
their degree in the set D, which contains at least two integers. We restrict
our study to the case where m goes to infinity with n in such a way that
2m
n

has a limit in ]min(D),max(D)[. Since the sum of the degrees is twice
the number of edges, if 2m

n
reaches one of those bounds, the corresponding

(n,m,D)-graphs are regular (a case already treated in the literature) while if
2m
n

is outside the interval, there exist no (n,m,D)-graphs. Finally, to shorten
the theorems, we assume gcd(d − min(D) | d ∈ D) = 1. The g.f. of the set

D is ∆(x) =
∑

d∈D
xd

d!
, and we define χ = χm

n
as the unique positive solution

(see Note IV.46 of [10]) of χ∆′(χ)
∆(χ)

= 2m
n
. As observed by, e.g., [1,6], multigraphs

are easier to analyze than graphs when considering degree constraints. A
multigraph G is a pair (V (G), E(G)) where V (G) denotes the set of labeled
vertices, and E(G) the set of labeled oriented edges, each edge is an oriented
pair of vertices, and loops and multiple edges are allowed. The definitions
on graphs extend naturally to multigraphs. Given a multigraph family F ,
let Fn,m,(d0,d1,...) denote the number of (n,m)-multigraphs with dj vertices of
degree j, for all j ≥ 0, that are isomorphic to some multigraph from F . We
associate to the family F the g.f.

F (z, w, (δ0, δ1, . . .)) =
∑

n,m,d0,d1,...

Fn,m,(d0,d1,...)

(

∏
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) wm
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.

Theorem 3.1 The number of (n,m,D)-multigraphs where one F-subgraph is

distinguished is
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converges uniformly on any compact set to an analytic function, and MGn,m,D

denotes the total number of (n,m,D)-multigraphs, then the asymptotics of the

number of multigraphs with one distinguished subgraph is
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Corollary 3.2 Denote by ℓ⋆ and d⋆ the number of edges and density of a dens-

est subgraph of the multigraph F , and consider a random (n,m,D)-multigraph

G; then E(G[F ]) = O(nℓ⋆(1/d⋆−1)).

As stated earlier, we consider random (n,m,D)-multigraphs with a number
m of edges growing linearly with the number n of vertices: χ has a finite
positive limit, and the condition of the following theorem is satisfied only for
a cycle. In a future extension of this work, we plan to consider the case where
2m
n

goes to infinity (when D is infinite). In this more general setting, other
subgraphs will appear, but the condition should remain as stated here.

Theorem 3.3 Let F denote a strictly balanced (k, ℓ)-multigraph with a au-

tomorphisms. Assuming that m goes to infinity with n in such a way that

1
a

nk

(2m)ℓ
χ2ℓ

∆(χ)k

∏

v∈V (F )

(

d
dχ

)deg(v)

∆(χ) has a positive limit, denoted by λ, then

the number of F -subgraphs in a random (n,m,D)-multigraph follows a Pois-

son limit law of parameter λ.

There are 2mm! ways to orient and label the edges of a graph with m
edges: each graph matches 2mm! multigraphs. Conversely, consider a multi-
graph family F , stable by multigraph automorphisms, where each multigraph
has m edges, and that contains neither loops nor multiple edges. Then F can
be partitioned into sets of sizes 2mm!, each corresponding to a graph. Thus, as
proven by [6], counting graphs with degree constraints can be achieved by re-
moving loops and double edges from multigraphs with degree constraints. The
following theorem describes the small subgraphs of (n,m,D)-graphs, when
m = O(n). It has been derived in the particular case of regular graphs by [2]
and [17], and of graphs with degrees 1 or 2 by [4].

Theorem 3.4 Consider a random (n,m,D)-graph G that satisfies the con-

ditions stated at the beginning of the section. Then any connected graph that

is neither a tree nor a unicycle is asymptotically almost surely not a subgraph

of G. Denoting by Cj a cycle of length j: G[C3], . . . , G[Ck] are asymptot-

ically independent Poisson random variables of mean 1
2j

(

1
2m/n

χ2∆′′(χ)
∆(χ)

)j

for

each 3 ≤ j ≤ k.
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