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Abstract. It is proved that the moments of the width of Galton-Watson trees of size n and

with offspring variance σ2 are asymptotically given by (σ
√

n)pmp where mp are the moments

of the maximum of the local time of a standard scaled Brownian excursion. This is done by

combining a weak limit theorem and a tightness estimate. The method is quite general and we

state some further applications.

1. Introduction

In this paper we are considering rooted trees which are family trees of a Galton-Watson branch-
ing process conditioned to have total progeny n. These trees are also called simply generated trees
(see [35]). Without loss of generality we may assume that the offspring distribution ξ is given by

P {ξ = k} =
τkϕk

ϕ(τ)
, (1)

where (ϕk; k ≥ 0) is a sequence of non-negative numbers such that ϕ0 > 0 and ϕ(t) =
∑

k≥0 ϕktk

has a positive or infinite radius of convergence R and τ is an arbitrary positive number within the
circle of convergence of ϕ(t). These conditions in particular imply that all moments of ξ exist and
that τ < R. Due to conditioning on the total progeny and finiteness of moments it is no restriction
if we confine ourselves to studying only the critical case, that is, E ξ = 1 which equivalently means
that τ satisfies τϕ′(τ) = ϕ(τ). The variance of ξ can also be expressed in terms of ϕ(t) and is
given by

σ2 =
τ2ϕ′′(τ)

ϕ(τ)
. (2)

Note that the offspring distribution (1) can be interpreted as assigning weights to all trees
defined by

ω(T ) =
∏

k≥0

ϕ
nk(T )
k

for a tree T having n nodes, nk of which have out-degree k, k ≥ 0. Denote by |T | the number of
nodes of such a tree and let an be the (weighted) number of all trees with n nodes, i.e.

an =
∑

T :|T |=n

ω(T ).

Then the corresponding generating function a(z) =
∑

n≥0 anzn satisfies the functional equation

a(z) = zϕ(a(z)). (3)

Denote by (Ln(t), t ≥ 0) the sequence of the generation sizes of a Galton-Watson tree the total
progeny of which is n. For non-integer t we define Ln(t) by linear interpolation:

Ln(t) = (btc + 1 − t)Ln(btc) + (t − btc)Ln(btc + 1), t ≥ 0.

We are interested in the width of such a tree which is defined by

wn = max
t≥0

Ln(t).
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This quantity attracted the interest of many authors. First, Odlyzko and Wilf [37] became
interested in this tree parameter when studying the bandwidth

β(T ) = min
f

(

max
(u,v)∈E(T )

|f(u) − f(v)|
)

of a tree T , where f is an assignment of distinct integers to the vertices of the tree. They showed
for a tree with n vertices and height h(T ) and width w(T ) that

n − 1

2h(T )
≤ β(T ) ≤ 2w(T ) − 1

and furthermore they showed that there exist positive constants c1 and c2 such that the estimate

c1

√
n < Ewn < c2

√

n log n (4)

holds. The exact order of magnitude was left as an open problem. Aldous conjectured [1, Conj. 4]
that Ln (suitably normalized) converges to Brownian excursion local time. This was first proved
in [15], later by different methods by Kersting [29] and Pitman [38]. More precisely, set

ln(t) =
2

σ
√

n
Ln

(

2t

σ

√
n

)

and

l(t) = lim
ε→0

1

ε

1
∫

0

I[t,t+ε](W (s)) ds,

where (W (s), 0 ≤ s ≤ 1) is the standard scaled Brownian excursion. l(t) is the local time (at time
1 and level t) of the normalized Brownian excursion. Then the above described limit theorem reads
as follows:

Theorem 1 ([15]). Let ϕ(t) be the GF of a family of random trees. Assume that ϕ(t) has a
positive or infinite radius of convergence R. Furthermore suppose that the equation tϕ′(t) = ϕ(t)
has a minimal positive solution τ < R. Then we have

(ln(t), t ≥ 0)
w−→ (l(t), t ≥ 0)

in C[0,∞), as n → ∞.

Partial results go back to [9, 22, 27, 34, 41]. The density of the finite dimensional distributions
of l was computed in [25]. A consequence of Theorem 1 is the following result which was proved
directly by Takács [40].

Corollary 1 ([15]). Under the assumptions of Theorem 1 we have

sup
t≥0

ln(t)
w−→ sup

t≥0
l(t).

Thus this suggests (but does not imply)
√

n as correct order of magnitude in (4).

Note that the maximum of local time is well studied (cf. [28, 8, 18, 3, 34]). We have supt≥0 l(t)
d
=

2 sup0≤t≤1 W (t), moreover it is theta-distributed, i.e.,

P

{

sup
0≤t≤1

l(t) ≤ x

}

= 1 − 2
∑

k≥1

(x2k2 − 1)e−x2k2/2, x > 0,

and

E

[(

sup
t≥0

l(t)

)p ]

= 2p/2p(p − 1)Γ
(p

2

)

ζ(p).

The purpose of this paper is to show that, in addition to the weak limit theorem above, we
have a moment convergence theorem of supt≥0 ln(t) to supt≥0 l(t), too. We formulate it in terms

of the width wn = maxt≥0 Ln(t) = (σ/2)
√

n supt≥0 ln(t).
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Theorem 2. Suppose that there exists a minimal positive solution τ < R of tϕ′(t) = ϕ(t). Then
the width wn satisfies

E (wp
n) = σp2−p/2p(p − 1)Γ

(p

2

)

ζ(p) · np/2 · (1 + o(1))

as n → ∞.

It should be further mentioned that Chassaing and Marckert [6] used the relation of parking
functions and rooted trees as well as the strong convergence theorem of Komlos, Major and
Tusnady [33] to derive tight bounds for the moments of the width for Cayley trees. They showed
(here and throughout the whole paper, a � b denotes a ≤ C b for some positive constant C)

Theorem 3 ([6]). If ϕ(t) = et and p ≥ 1, then
∣

∣

∣

∣

E

(

wn

σ
√

n

)p

− E

(

1

2
sup
t≥0

l(t)

)p∣
∣

∣

∣

=

∣

∣

∣

∣

E

(

wn

σ
√

n

)p

− E (sup
t≥0

W (t))p

∣

∣

∣

∣

� n−p/4 log n.

Remark. In fact, Chassaing and Marckert [6] showed an even stronger result: In some probability
space there exist a sequence of copies of wn and a sequence of theta-distributed random variables
Dn such that for any p ≥ 1

∥

∥

∥

∥

2wn

σ
√

n
− Dn

∥

∥

∥

∥

p

= O
(

n−1/4
√

log n
)

where the O-constant depends on p.

Recently, Chassaing, Marckert, and Yor [7] have used Theorems 1 and 3 in conjunction with
results of Aldous [1] to obtain a weak limit theorem (without moments) for the joint law of height
and width of simply generated trees. (For binary trees they present an elementary proof, too.)

2. Plan of the Proof of Theorem 2

In view of Corollary 1 the result of Theorem 2 is not unexpected. Nevertheless, it does not
follow directly from Corollary 1 since convergence of moments is not automatically transfered via
weak convergence (from Theorem 1).

In order to prove Theorem 2 we actually use the result of Theorem 1, that is, the normalized
profile of Galton-Watson trees converges weakly to Brownian excursion local time: (ln(t), t ≥
0)

w−→ (l(t), t ≥ 0). However, we need some additional considerations: In [17] (see also [14])
Drmota and Marckert introduced the notion of so-called polynomial convergence (that is inspired
by the notion of uniform integrability). The key property for our purposes is the following one.
It generalizes the results of [17] (see also [14, Theorem 3.7]) that only apply for processes with
compact support.

Theorem 4. Let xn be a sequence of stochastic processes in C[0,∞) which converges weakly to
x. Assume that for any choice of fixed positive integers p and d there exist positive constants
c0, c1, c2, c3 such that

sup
n≥0

E |xn(t)|p ≤ c0e
−c1t for all t ≥ 0, (5)

and

sup
n≥0

E |xn(t + s) − xn(t)|2d ≤ c2e
−c3tsd for all s, t ≥ 0. (6)

Then xn is polynomially convergent to x, that is, for every continuous functional F : C[0,∞) → R

of polynomial growth (i.e. |F (y)| � (1 + ‖y‖∞)r for some r ≥ 0) we have

lim
n→∞

EF (xn) = EF (x).

We will show that ln satisfies the assumptions (5) and (6) of Theorem 4 and thus taking
F (x) = ‖x‖r

∞ yields immediately Theorem 2.
The next section is devoted to the proof of Theorem 4. In sections 4 and 5 we prove (5) and

(6). Finally in section 6 we provide some further applications of Theorem 4.
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3. Proof of Theorem 4

Let us start with the following two observations.

Lemma 1. Suppose that xn satisfies (5). Then for every p ≥ 0 we have

E sup
j∈N

|xn(j)|p � 1

uniformly for all n.

Proof. Since E |xn(t)|p+1 � e−c1t, uniformly in n, we have

P

{

sup
j∈N

|xn(j)| ≥ A

}

≤
∑

j≥0

P {|xn(j)| ≥ A}

≤ 1

Ap+1

∑

j≥0

E |xn(j)|p+1 by Markov’s inequality

� 1

Ap+1

∑

j≥0

e−c1j � 1

Ap+1

Thus it follows that

E

(

sup
j∈N

|xn(j)|p
)

� 1 + p

∫ ∞

1

Ap−1 1

Ap+1
dA � 1.

�

Lemma 2. Suppose that xn satisfies (6). Then, for fixed p we have

E

(

sup
|s−t|≤δ

|xn(s) − xn(t)|p
)

� δp/2.

uniformly for δ with 0 < δ < 1 and for all n.

Proof. First we prove that for every integer d > 1 there exists a constant K > 0 such that for
ε > 0 and 0 < δ < 1

P

{

sup
|s−t|≤δ

|xn(s) − xn(t)| ≥ ε

}

≤ K
δd−1

ε2d
. (7)

Arguing as in [5, pp. 95] guarantees that there exists a constant K1 > 0 such that for all m ≥ 0

P

{

sup
|s−t|≤δ,m≤s,t≤m+2

|xn(s) − xn(t)| ≥ ε

}

≤ K1e
−c5m δd−1

ε2d
.

Thus

P

{

sup
|s−t|≤δ

|xn(s) − xn(t)| ≥ ε

}

≤
∞
∑

m=0

K1e
−c5m δd−1

ε2d
≤ K

δd−1

ε2d

for some constant K > 0.
Set

Z = sup
|s−t|≤δ

|xn(s) − xn(t)|.

Then by applying (7) it follows that (if 2d ≥ p + 1)

EZp =p

∫ ∞

0

zp−1P[Z > z] dz

=p

∫ (Kδ)(d−1)/d

0

zp−1P[Z > z] dz + p

∫ ∞

(Kδ)(d−1)/d

zp−1P[Z > z] dz

≤(Kδ)p(d−1)/d + pKδd−1

∫ ∞

(Kδ)(d−1)/d

zp−1−2d dz

�δp(d−1)/d ≤ δp/2,
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which proves the Lemma. �

The proof of Theorem 4 is now an easy task. Note that the results of Lemma 1 and 2 in
conjunction with the triangular inequality imply

sup
n≥0

E

(

sup
t≥0

|xn(t)|r
)

< ∞ for all r ≥ 0.

Thus, if F is a continuous functional of polynomial growth we have for any ε > 0

sup
n≥0

E |F (xn)|1+ε < ∞.

By continuity of F we also obtain F (xn)
w−→ F (x) and finally, by Billingsley [4, p. 338] it directly

follows that

lim
n→∞

EF (xn) = EF (x)

as desired. �

4. Moments for the Profile of Galton-Watson Trees

We start with a lemma on the growth of coefficients of powers of certain generating functions.

Lemma 3. Let z0 6= 0 and ∆ = {z : |z| < z0+η, | arg(z−z0)| > ϑ}, where η > 0 and 0 < ϑ < π/2.
Suppose that f(z) and g(z) are analytic functions in ∆ which satisfy

|f(z)| ≤ exp

(

−C

√

∣

∣

∣

∣

1 − z

z0

∣

∣

∣

∣

)

, z ∈ ∆,

g(z) =1 − D

√

1 − z

z0
+ O

(
∣

∣

∣

∣

1 − z

z0

∣

∣

∣

∣

)

, z ∈ ∆,

for some positive constants C,D. Then for any fixed ` there exists a constant C ′ > 0 such that

[zn]
f(z)r

(1 − g(z))`
= O

(

e−C′r/
√

nn(`−2)/2
)

uniformly for all r, n ≥ 0 (where [zn]F (z) denotes the coefficient of zn of the function F (z)).

Proof. The only difference to [23, Lemma 3.5] is the factor 1/(1−g(z))`, but since its behavior in ∆
is known and [21, Theorem 3] is applicable, the proof is analogous to that of [23, Lemma 3.5]. �

By means of this lemma we can show

Lemma 4. For every fixed integer p > 0 there exist positive constants c0 and c1 such that

sup
n≥0

E ln(t)p ≤ c0e
−c1t (8)

for all t ≥ 0.

Proof. For technical simplicity we assume that g = gcd{i ≥ 1 : ϕi > 0} = 1. This assumption
ensures that the tree function a(z) defined by (3) has only one singularity z0 = 1/ϕ′(τ) on the
circle of convergence. If g = gcd{i ≥ 0 : ϕi > 0} > 1 then we can use the substitution x = z1/g

to get a(z) = xb(x) where b(x) is analytic with only one singularity on the circle of convergence.
Thus this case reduces to the case g = 1. The other possibility is to deal with the g singularities
z0e

2πij/g, j = 0, 1, . . . , g − 1, on the circle of convergence and add all contributions.
In particular, it is also well known that (if g = 1) a(z) admits a representation of the following

kind

a(z) = τ − τ
√

2

σ

√

1 − z

z0
+ O

(
∣

∣

∣

∣

1 − z

z0

∣

∣

∣

∣

)

, (9)

that is valid for |z| < z0 + η and arg(z − z0) 6= 0, where η > 0 is suitably small, compare with [35]
and [13].
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In what follows we will need the local expansion of α(z) = zϕ′(a(z)). From (9) we immediately
get

α(z) = 1 − σ
√

2

√

1 − z

z0
+ O

(∣

∣

∣

∣

1 − z

z0

∣

∣

∣

∣

)

(10)

for |z| < z0 + η and arg(z − z0) 6= 0.

Due to (10) there exists a constant C > 0 such that |α(z)| ≤ exp
(

−C
√

|1 − z/z0|
)

for z ∈ ∆

(with ∆ from Lemma 3). Furthermore, it follows that

sup
z∈∆

|α(z)| = 1, (11)

where we have to choose η > 0 and 0 < ϑ < π/2 in a proper way. First, since the power
series of α(z) has only positive coefficients, we have max|z|≤z0

|α(z)| = 1. If we assume that
d = gcd{i ≥ 1 : ϕi > 0} = 1 it also follows that

max
|z|≤z0,|z−z0|≥ε

|α(z)| < 1

for every ε > 0. Now, in the vicinity of the singularity z0, that is, for |z− z0| < ε we can again use
(10) and get for z = z0(1 + teiθ )

∣

∣α
(

1 + teiθ
)∣

∣ =
∣

∣

∣
1 − σ

√
2te±i(π−θ)/2 + O (t)

∣

∣

∣
, (12)

where θ > π/2. Hence we have |α(z)| ≤ 1 for |z − z0| ≤ ε and | arg(z − z0)| > θ. Finally, for
|z| ≤ z0 + η and |z − z0| ≥ ε we obtain the same inequality from (12) by a continuity argument
(for some sufficiently small η > 0). This proves (11).

Now observe that by substituting r = bt√nc in (8) we get

ELn(r)p ≤ c0e
−c1r/

√
nnp/2. (13)

Furthermore note that it suffices to show (13) for the pth factorial moment

E [Ln(r)]p = ELn(r)(Ln(r) − 1) · · · (Ln(r) − p + 1)

instead of the pth moment, which we can easily express in terms of the proper coefficient of a
generating function. Indeed we have

E [Ln(r)]p =
1

an
[zn]

(

∂

∂u

)p

yr(z, ua(z))

∣

∣

∣

∣

u=a(z)

,

where

y0(z, u) = u

yi+1(z, u) = zϕ(yi(z, u)), i ≥ 0. (14)

In order to evaluate this coefficient we use Lemma 3 which translates the local behavior of the
function near its singularity into an asymptotic estimate for the coefficients.

By [24, p. 287, equ. (22)] we have

(

∂

∂u

)p

yr(z, ua(z))

∣

∣

∣

∣

u=a(z)

= O

(

a(z)p|α(z)r|
∣

∣

∣

∣

1 − α(z)r

1 − α(z)

∣

∣

∣

∣

p−1
)

. (15)

From (11) we get

max
z∈∆

∣

∣

∣

∣

1 − α(z)r

1 − α(z)

∣

∣

∣

∣

≤ r. (16)

Moreover a(z)p behaves like a constant near the singularity and α(z)r meets the condition in
Lemma 3. Hence the last factor in (15) is bounded by rp−1 and hence contributes a factor n(p−1)/2

to the order of magnitude of the pth factorial moment E [Ln(r)]p. Applying Lemma 3, which yields

exp(−c1r/
√

n ), and normalizing by an ∼ τ/σzn
0

√
2πn3 we get the desired result. �
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5. Quantitative Tightness Estimates

With help of Lemma 3 we can prove the following quantitative tightness estimate.

Lemma 5. For every fixed positive integer d there exist constants c2, c3 such that for every s, t > 0

E |ln(t + s) − ln(t)|2d ≤ c2e
−c3tsd. (17)

Proof(Sketch). Observe that we can rewrite (17) as

E |Ln(r) − Ln(r + h)|2d ≤ c2e
−c3r/

√
nhdnd/2 (18)

which is quite similar to [15, Theorem 6.1]. From [15] it follows that

E |Ln(r) − Ln(r + h)|2d
=

1

an
[zn]Hr,h(z),

in which

Hr,h(z) =

(

u
∂

∂u

)2d

yr(z, uyh(z, u−1a(z)))

∣

∣

∣

∣

∣

u=1

and y(z, u) is given by (14).
Evaluation of this coefficient is again done by Lemma 3. By [15, Proposition 6.1] it is easy to

show that

Hr,h(z) = α(z)r
d
∑

j=0

Gj,rh(z)
(1 − α(z)h)j

(1 − α(z))d−1+j
, (19)

where Gj,rh(z) satisfy

max
z∈∆

|Gj,rh(z)| = O (1) .

Eventually, an application of (16), with h instead of r, and Lemma 3 to (19) yields

[zn]Hr,h(z) = O

(

hdn(d−3)/2

zn
0

)

and, thus, by an ∼ τ/σzn
0

√
2πn3 the proof is complete. �

6. Extensions

6.1. Nodes of given degree. In [12] the number of nodes with fixed degree d in layers of random
trees was investigated. In this case also limit theorems like Theorem 1 and Corollary 1 hold. In
fact, we have

Theorem 5. Let L
(d)
n (k) denote the number of nodes with degree d in layer k in a random tree

of total progeny n. Furthermore, set for any t ≥ 0

l(d)
n (t) =

2

σcd
√

n
L(d)

n

(

2t

σ

√
n

)

,

where cd = ϕd−1τ
d−1/ϕ(τ). Then we have

(1)

l(d)
n

w−→ l and sup
t≥0

l(d)
n (t)

w−→ sup
t≥0

l(t)

(2)

E
((

w(d)
n

)p)

= E

(

sup
t≥0

l(t)

)p

(1 + o(1)),

where w
(d)
n = maxk≥0 l

(d)
n (k).
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Proof(Sketch).
Part 1 was proved in [12]. The proof of part 2 runs similarly to the proof of Theorem 2. The

only crucial point is to get estimates as in Lemma 4 and Lemma 5, namely

EL(d)
n (r)p ≤ c1e

−c2r/
√

nnp/2

and

E

∣

∣

∣
L(d)

n (r) − L(d)
n (r + h)

∣

∣

∣

2d

≤ c1e
−c2r/

√
nhdnd/2. (20)

Both inequalities can be proved in a similar manner, so let us look at the second one (the first is
the easier one). The results in [12] imply

E

∣

∣

∣
L(d)

n (r) − L(d)
n (r + h)

∣

∣

∣

2d

=
2

σan
[zn]H

(d)
2r/σ,2h/σ(z)

with

H
(d)
r,h (z) =

(

u
∂

∂u

)2d

yr(z, z(u − 1)ϕd−1yh−1(z, z(u−1 − 1)ϕd−1a(z)d−1 + a(z))

yh(z, z(u−1 − 1)ϕd−1a(z)d−1 + a(z)))
∣

∣

∣

u=1

and since the right-hand side of this equation can be expressed in a form similar to (19), we can
easily prove (20). �

6.2. Strata of random mappings. A random mapping of size n is an element of the set Fn of all
mappings of a set with n elements into itself, where Fn is equipped with the uniform distribution.
These mappings can be represented by functional digraphs consisting of components which are
cycles of trees, i.e., each component of this graph contains exactly one cycle and each vertex in
this cycle is the root of a tree in which each edge is directed towards the root.

The set of points in distance r from a cycle is called the rth stratum of a random mapping. This
parameter was previously studied in [2, 11, 16, 36, 39]. For general results on random mappings
and literature see [32, 20]. Let Mn(r) denote the number of nodes in the rth stratum of a random
mapping of size n. Then in [16] we proved

Theorem 6. Let B(t) denote reflecting Brownian bridge, i.e., a process on the interval [0, 1] which
is identical in law to |W (s)−sW (1)| (W (t) is the standard Brownian motion), and l(B)(t) its local
time, i.e.,

l(B)(t) = lim
ε→0

1

ε

1
∫

0

I[t,t+ε](B(s)) ds.

Then we have

(mn(t), t ≥ 0) =

(

2√
n

Mn

(

2t
√

n
)

, t ≥ 0

)

w−→ (l(B)(t), t ≥ 0)

in C[0,∞), as n → ∞. Thus we also have

sup
t≥0

mn(t)
w−→ sup

t≥0
l(B)(t). (21)

Here again the corresponding moment convergence theorem is not a consequence of (21). How-
ever, as before we can show

Theorem 7. We have

E

((

sup
t≥0

mn(t)

)p)

= E

(

sup
t≥0

l(B)(t)

)p

(1 + o(1)). (22)

Proof(Sketch). Again the crucial point is to get proper estimates. From [16] it is an easy exercise
to get

E |Mn(r) − Mn(r + h)|2d
=

2n!

nn
[zn]H2r,2h(z),
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in which

Hr,h(z) =

(

u
∂

∂u

)2d
1

1 − yr(z, uyh(z, u−1a(z)))

∣

∣

∣

∣

∣

u=1

.

This function can be written in a form similar to (19) and thus we can easily prove

E |Mn(r) − Mn(r + h)|2d ≤ c1e
−c2r/

√
nhdnd/2

and then (22). The corresponding bound for the moments, obtained in the same way, carries out
even easier. �

6.3. Height of random trees. The same method can be used to re-derive the analogue for the
height hn of simply generated trees (see Flajolet and Odlyzko [19]).

Theorem 8. Suppose that there exists a minimal positive solution τ < R of tϕ′(t) = ϕ(t). Then

E (hp
n) =

(√
2n

σ

)p

p(p − 1)Γ
(p

2

)

ζ(p)(1 + o(1))

as n → ∞.

hn is equal to the maximum of the traversal process Tn(r), defined to be the distance between
the root and the rth node during preorder traversal of the tree. Obviously, the same holds when
we only traverse leaves (call the corresponding process T̂n(r)). It is well known (see [1]) that

(Xn(t), t ≥ 0) =

(

1√
n

Tn(2tn)t ≥ 0

)

w−→
(

2

σ
W (t)t ≥ 0

)

The height of leaves was investigated by several authors (see [30, 31, 26, 10, 23]. Here a similar

limit theorem holds: With X̂n(t) = T̂n(tn)/
√

n we have (see [23])
(

X̂n

(

ϕ0

ϕ(τ)
t

)

t ≥ 0

)

w−→
(

2

σ
W (t)t ≥ 0

)

.

In addition, in [23] the tightness estimate

P{|X̂n(s) − X̂n(t)| ≥ ε} ≤ C
1

ε4|s − t| exp

(

−D
ε

√

|s − t|

)

for some positive constants C and D was shown. This can be used to derive moment estimates like
in Lemma 5 and then one proceeds as in the previous section to re-derive Flajolet and Odlyzko’s
[19] result on the moments of the height.

Finally, we want to mention that it is also possible to obtain the moments of the height of a
random mapping (this was done by Flajolet and Odlyzko [20]) by our method. One has to use the
weak limit theorem by Aldous and Pitman [2] and derive a tightness estimate in a similar fashion
as has been done in [16].
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