
CONFORMAL HEXAGONAL MESHES

CHRISTIAN MÜLLER

Abstract. We explore discrete conformal and discrete minimal surfaces all
of whose faces are planar hexagons. Discrete conformal meshes are built of
conformal hexagons for which we establish a dual construction. We apply this
dual construction to conformal hexagonal meshes covering the sphere and get
discrete hexagonal minimal surfaces via a discrete analogue of the Christoffel
dual construction.

We compare the smooth and the discrete settings by means of limit consid-
erations and also by a discussion of Möbius invariants.

1. Introduction

The present paper considers hexagonal meshes from the viewpoint of discrete
differential geometry. Discrete differential geometry is a wide field which consid-
ers objects like polygons, meshes, and polytopes with the aim of finding discrete
analogues of classical (i.e., smooth) differential geometry. In this sense not only
objects but also properties and notions of the smooth setting are carried over to
the discrete theory. Also the other way round is of great interest, which means that
one explores attributes assigned to discrete objects which survive a refinement pro-
cess to a continuous limit. A first treatise of discrete differential geometry can be
found in the monograph Differenzengeometrie by R. Sauer [14] whereas a modern
approach is contained in Discrete Differential Geometry: Integrable Structure by
A. I. Bobenko and Yu. B. Suris [5]. Discrete differential geometry is not only inter-
esting within pure mathematics (see e.g. [1] or [5]) but also in computer graphics
and geometry processing (see e.g. [15]) and architectural design (see e.g. [12]).
The general idea here is to get notions like curvature, offset surface, and conformal
equivalence for discrete objects which are of great importance in applications.

A well studied class of surfaces in differential geometry are minimal surfaces.
Different but equivalent definitions of minimal surfaces in the smooth setting can
be discretized to different definitions of discrete minimal surfaces. For example
Plateau’s problem has been considered in the discrete setting e.g. by U. Pinkall
and K. Polthier [11] using a discrete Dirichlet energy of triangle meshes. Another
definition which however does not work for triangle meshes is the discrete curvature
theory of A. I. Bobenko, H. Pottmann, and J. Wallner [4] which is based on the
concept of edgewise parallelity between mesh and Gauss image. Here, a discrete
minimal surface is characterized by vanishing mean curvature, analogous to the

1



2 CHRISTIAN MÜLLER

smooth case. An incidence geometric characterization of such discrete minimal
surfaces can be found in [10]. A further way to find minimal surfaces is via the so-
called Christoffel dual construction [7]. The dual of an isothermic parametrisation
of a sphere is an isothermic parametrisation of a minimal surface and vice versa.
For quadrilateral meshes, A. I. Bobenko et al. discuss this in [1, 3].

The present paper establishes a discrete Christoffel dual construction for special
hexagonal meshes, namely conformal ones. A mesh with vertices in a sphere where
each face is a conformal hexagon will be called discrete isothermic like in the
smooth setting. As mentioned before, the Christoffel dual of a discrete isothermic
surface covering a sphere can be seen as a discrete minimal surface consisting of
planar hexagons.

2. Multi-ratio and vertex offset meshes

Following [12], two meshes M and M′ with the same combinatorics are called
parallel if all corresponding edges are parallel. Trivial pairs of parallel meshes can
be found by translation or dilation of a fixed mesh. With a vertex-wise addition
and scalar multiplication the space of all meshes which are parallel to a given one
is a vector space.

To define offset meshes we need an appropriate notion of distance. Possibilities
are the following: A meshMd is a vertex (edge, face, resp.) offset ofM at constant
distace d if M and Md are parallel and all corresponding vertices (edges, faces,
resp.) are at constant distance d.

For quad meshes H. Pottmann et al. [12, 13] showed a connection between the
existence of vertex and face offsets on the one hand, and circular and conical
meshes on the other hand. In the present paper the circular meshes are the more
important ones. A circular polygon is a polygon with a circumcircle and a quasi-
circular polygon is edge-wise parallel to a polygon with a circumcircle (see e.g. [9]).

Figure 1. A discrete Enneper’s surface (right) and its discrete Gauss image (see Ex-
ample 1).
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A circular mesh is a mesh where each face is a circular polygon and a quasi-circular
mesh is a mesh where each face is a quasi-circular polygon.

For four complex numbers z0, . . . , z3, we have the cross-ratio

cr(z0, z1, z2, z3) =
(z0 − z1)(z2 − z3)

(z1 − z2)(z3 − z0)
,

which is Möbius invariant and characterizes Möbius equivalence classes of quadri-
laterals. A quadrilateral is circular if and only if its cross-ratio is real. A general-
ization of the cross-ratio to polygons with an even number of vertices z0, . . . , zn−1

is the so-called multi-ratio (see e.g. [2])

q(z0, . . . , zn−1) :=
(z0 − z1)(z2 − z3) · . . . · (zn−2 − zn−1)

(z1 − z2)(z3 − z4) · . . . · (zn−1 − z0)
.

Obviously, the multi-ratio q(z0, . . . , zn−1) is Möbius invariant since it is invariant
under translations, dilations, rotations and transformations of the form z 7→ 1/z.

Lemma 1. Let (zi) = (z0, . . . , zn−1) with n even be a polygon in the complex plane.
Further let αi denote the angles between zi−2 − zi−3 and zi+1 − zi and let θi be the
internal angles between zi−1 − zi and zi+1 − zi, where indices are taken modulo n.
Then the following statements are equivalent.

(i) There exists a polygon parallel to (zi) with all vertices on a circle.

(ii) The angles αi fulfill
∑

i even αi ∈ πZ, or, which is equivalent,
∑

i odd αi ∈ πZ.

αj

αj+2

α̃j

α̃j+2

wj−3

wj−2
wj−1

wjwjwjwjwjwjwjwjwjwjwjwjwjwjwjwjwj

wj+1

wj+2

w̃j

Figure 2. For a regular 8-gon we have an angle of 3π/4 for all αi = ∠(wi−2−wi−3, wi+1−
wi). When changing a vertex wj to w̃j on the circumcircle the corresponding angles αj−1,
αj , αj+2 and αj+3 are replaced by α into α̃j−1 = αj−1−α, α̃j = αj−α, α̃j+2 = αj+2 +α
and α̃j+3 = αj+3 + α, respectively.
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(iii) The multi-ratio q(z0, . . . , zn−1) is real.

(iv) The interior angles θi have the property
∑

i even θi =
∑

i odd θi.

Proof. (i) =⇒ (ii): Without loss of generality let (zi) lie on a circle. For regular
n-gons (wi) (see Figure 2) we have αi = 32π

n
for all i, which yields

∑
i even αi = 3π.

When changing one single vertex of (wi) on the circle, e.g. wj 7−→ w̃j, the directions
wj+1 − wj and wj − wj−1 will change about the same angle α, which follows from
the inscribed angle theorem. We get a new n-gon (w̃i) with w̃i = wi for all
i except for i = j. For the corresponding angles we have α̃j−1 = αj−1 − α,
α̃j = αj − α, α̃j+2 = αj+2 + α and α̃j+3 = αj+3 + α, where all others remain
unchanged. Therefore

∑
i even α̃i =

∑
i even αi = 3π ∈ πZ. If we change each

vertex of the regular polygon (wi) until they come to the positions of (zi) the sum
of the considered angles remains in πZ.

(ii) =⇒ (i): Now we start with a polygon (zi) with corresponding angles αi such
that

∑
i even αi ∈ πZ. Starting with an arbitrary vertex w0 on a circle we construct

vertices w1, . . . , wn on this circle with edges wi − wi−1 parallel to zi − zi−1 for all
i ∈ {0, . . . , n}, where indices are taken modulo n only for zi but not yet for the
points wi (see Figure 3 with wi = zi). Until now we do not know whether wn = w0

or not. From “(i) =⇒ (ii)” we know that the polygon (wi)
n−1
i=0 fulfills condition

(ii). Using the assumptions we can conclude that also wn − wn−1 is parallel to
w0 − wn−1 which yields wn = w0.

(i) ⇐⇒ (iii): With zk − zk−1 = ak exp(iϕk) and αk = ϕk−2 − ϕk−1 we get

q(z0, . . . , zn−1) =
∏
k even

(zk−2 − zk−3)

(zk+1 − zk)
=
∏
k even

ak−2e
iϕk−2

ak+1eiϕk+1
=

=
∏
k even

ak−2

ak+1

eiαk =
( ∏
k even

ak−2

ak+1

)
exp

(
i
∑
j even

αj
)
.

This yields

q(z0, . . . , zn−1) ∈ R⇐⇒
∑
j even

αj ∈ πZ.

(i) ⇐⇒ (iv): see [9]. � �

Corollary 2. Let M be a Möbius transformation and let (zi) be an n-gon with n
even. Then (zi) is quasi-circular if and only if (M(zi)) is.

Proof. q(z0, . . . , zn−1) = q(M(z0), . . . ,M(zn−1)) ∈ R follows from the Möbius
invariance of the multi-ratio. � �

Remark 3. The construction of a parallel polygon with vertices on a circle either
is closing for all starting points z0, or for none of them (see Figure 3). Let (wi)

n−1
i=0

be an arbitrary polygon and let (zi)
n
i=0 be contained in the circle S1 where zi− zi+1

is parallel to wi−wi+1 (indices taken modulo n only for wi). Define µ : S1 −→ R2

by µ(z) = [z1 − z] ∩ [zn−1 − zn]. Then the set µ(S1) is a conic section, which
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is a consequence of properties of projective mappings between pencils of lines (see
Figure 3, right).

Theorem 4 applies the above properties of polygons to meshes. The multi-ratios
which are mentioned are computed w.r.t. an arbitrary choice of Cartesian coordi-
nate system in each face.

Theorem 4. Each of the following statements concerning a mesh M with planar
faces implies the other five.

(i) M has a vertex offset.
(ii) Every face of M is a quasi-circular polygon.
(iii) For each face, the angles αi fulfill both,

∑
i even αi ∈ πZ and

∑
i odd αi ∈ πZ,

respectively.
(iv) For each face, the angles αi fulfill

∑
i odd αi ∈ πZ.

(v) The multi-ratio of each face is real.
(vi) For each face, the interior angles θi have the property

∑
i even θi =

∑
i odd θi.

The equivalence of statements (i) ⇔ (ii) ⇔ (iv) can be found in [9], and (i)
⇔ (ii) for quad meshes can be found in [12]. The rest follows immediately from
Lemma 1.

3. Conformal hexagons

Both conformal and curvature line parametrisations play a fundamental role in
the theory of minimal surfaces. On the one hand, the Weierstrass representation
converts a pair of holomorphic functions (i.e., conformal parametrizations of S2)
to a certain parametrization of a minimal surface. On the other hand, Christof-
fel duality converts a conformal parametrization of the sphere to an isothermic
parametrization of a minimal surface and vice versa. We now aim at a discrete
analogue of a continuous conformal surface, using hexagonal meshes.

z0
z0 z2 z1

z0

zn

zn−1

µ(z0)

Figure 3. Left: The construction of a parallel polygon with vertices on a circle is closing
for all starting points z0 or for none. Right: The set of all points µ(z0) which arise from
the construction of Remark 3 are located on a conic section.
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Definition 5. A hexagon (z0, . . . , z5) is called conformal if both cr(z0, z1, z2, z3) =
−1/2 and cr(z0, z5, z4, z3) = −1/2.

The prototype of a conformal hexagon is a regular hexagon. Since Möbius
transformations leave the cross-ratio of four points invariant, we immediately see
that conformality of hexagons is Möbius invariant and each hexagon which is
Möbius equivalent to a regular hexagon is conformal.

For a conformal hexagon both quadrilaterals z0, z1, z2, z3 and z0, z5, z4, z3 are
circular since their cross-ratios are real (see Figure 4). The multi-ratio of conformal
hexagons is

q(z0, . . . , z5) =
(z0 − z1)(z2 − z3)(z4 − z5)

(z1 − z2)(z3 − z4)(z5 − z0)
= −1

2

(z3 − z0)(z4 − z5)

(z3 − z4)(z5 − z0)
= −1,

which implies, with Lemma 1, that (zi) is quasi-circular.

Definition 6. Let f : U ⊆ R2 −→ R3 be a smooth regular mapping (i.e., the
partial derivatives fx, fy are linearly independent in U). Then the hexagon

f0 = f + εfx f3 = f − εfx

f1 = f +
ε

2
fx +

√
3

2
εfy f4 = f − ε

2
fx −

√
3

2
εfy

f2 = f − ε

2
fx +

√
3

2
εfy f5 = f +

ε

2
fx −

√
3

2
εfy

is called infinitesimal hexagon at (x, y) where f = f(x, y) ∈ R3, fx = ∂f/∂x and
fy = ∂f/∂y.

Note that in general infinitesimal hexagons are not planar. According to the
Taylor expansion the vertices fi of the infinitesimal hexagon differ from f(zi) in
terms of order o(ε), where zi are the vertices of a regular hexagon with radius ε
and centered at (x, y).

For the following we extend the cross-ratio to points of R3 (see e.g. [3]). Four
points in R3, define a plane or sphere, which is identified with C ∪∞ via stereo-
graphic projection.

z0

z1

z2

z3
z4

z5

Figure 4. An arbitrary conformal hexagon (zi) with its two circles.
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Theorem 7. Consider a regular mapping f : U ⊆ R2 −→ R3 and the associated
infinitesimal hexagon f0, . . . , f5 for a point (x, y) ∈ U . Then cr(f0, f1, f2, f3) =
−1/2 + o(ε) and cr(f0, f5, f4, f3) = −1/2 + o(ε) for all (x, y) ∈ U if and only if f
is a conformal mapping.

Proof. Translation x 7→ x− f − εfx and scaling x 7→ 2x/ε transform the vertices
to

X̂0 = 0 X̂3 = −4fx

X̂1 = −fx +
√

3fy X̂4 = −3fx −
√

3fy

X̂2 = −3fx +
√

3fy X̂5 = −fx −
√

3fy.

The inversion X̃i = X̂i/‖X̂i‖2 sends X̂0 to ∞. As all three transformations do not
change the cross-ratio we get

cr(f0, f1, f2, f3) = cr(X̂0, X̂1, X̂2, X̂3) = cr(∞, X̃1, X̃2, X̃3) =
X̃3 − X̃2

X̃1 − X̃2

.

We start with the first cross-ratio condition

(1) cr(f0, f1, f2, f3) = −1

2
+ o(ε)⇐⇒ X̃3 − X̃2 = −1

2
(X̃1 − X̃2) + o(ε),

which is equivalent to

− fx
2C
− 3
−3fx +

√
3fy

A
+
−fx +

√
3fy

B
= o(ε),

where A = ‖− 3fx +
√

3fy‖2, B = ‖− fx +
√

3fy‖2 and C = ‖fx‖2. Collecting the
coefficients of fx and fy we get

fx ·
(−1/2

C
+

9

A
− 1

B

)
+ fy ·

(−3
√

3

A
+

√
3

B

)
= o(ε),

which is equivalent to

−1

2
AB + 9BC − AC = 0 and − 3B + A = 0

because of the linear independence of {fx, fy}. It is easy to see that −3B +A = 0
⇔ ‖fx‖ = ‖fy‖ and −1

2
AB + 9CB − CA = 0 ⇔ 3〈fx, fx〉2 − 6〈fy, fy〉〈fx, fx〉 +

12〈fx, fy〉2 + 3〈fy, fy〉2 − 8
√

3〈fx, fy〉〈fy, fy〉 = 0. Further, it is easy to see that
Equation (1) is equivalent to

(2) ‖fx‖ = ‖fy‖ and
[
〈fx, fy〉 = 0 or 〈fx, fy〉 =

2
√

3〈fy, fy〉
3

]
.

Since ‖fy‖2 ≥ 〈fx, fy〉 = 2
√

3/3‖fy‖2 would impliy 1 ≥ 2
√

3/3, which is a contra-
diction, fx and fy must be orthogonal. We get

cr(f0, f1, f2, f3) = −1/2 + o(ε) and cr(f0, f5, f4, f3) = −1/2 + o(ε)
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is equivalent to ‖fx‖ = ‖fy‖ and 〈fx, fy〉 = 0, which is further equivalent to the
conformality of f . � �

4. A dual construction for conformal hexagons

With a view towards the smooth Christoffel dual construction of Section 5, we
introduce a dual construction for conformal hexagons.

Definition 8. For a conformal hexagon (zi), let ai := zi+1−zi be the edge vectors,
where indices are taken modulo n. A hexagon (z∗i ) is called dual to (zi) if

z∗1 − z∗0 = −1/(z1 − z0) = −1/a0 z∗4 − z∗3 = −1/(z4 − z3) = −1/a3

z∗2 − z∗1 = 2/(z2 − z1) = 2/a1 z∗5 − z∗4 = 2/(z5 − z4) = 2/a4

z∗3 − z∗2 = −1/(z3 − z2) = −1/a2 z∗0 − z∗5 = −1/(z0 − z5) = −1/a5

(see Figure 5).

Proposition 9. Let (zi) be a conformal hexagon, ai := zi+1 − zi and b := z0 − z3.
Then

(i)
∑5

i=0 ai = 0, a0 + a1 + a2 + b = 0,
a0a2

a1b
= −1

2
,

a3a5

a4b
=

1

2
.

(ii) z∗0 − z∗3 = 2/b and in particular z0 − z3 is parallel to z∗0 − z∗3.
(iii) The hexagon (zi) posesses a dual hexagon.
(iv) The dual (z∗i ) is a conformal hexagon, and is unique up to translation.
(v) Non-corresponding diagonals of both quadrilaterals z0, z1, z2, z3 and z0, z5, z4, z3

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

-1
 2

-1

z0

z1 z2

z3

z4

z5

z∗0

z∗1 z∗2

z∗3

z∗4

z∗5

Figure 5. Left: Edge coefficients in the discrete dual construction (Definition 8). Right:
A conformal hexagon and its dual. For each conformal hexagon z0, . . . , z5 both quadri-
laterals z0, z1, z2, z3 and z0, z3, z4, z5 are circular.
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are transformed according to

z∗1 − z∗3 = 3
z0 − z2

|z0 − z2|2
, z∗2 − z∗0 = 3

z3 − z1

|z3 − z1|2
,

z∗5 − z∗3 = 3
z0 − z4

|z0 − z4|2
, z∗4 − z∗0 = 3

z3 − z5

|z3 − z5|2
.

In particular they are parallel:

z2 − z0 ‖ z∗1 − z∗3 , z1 − z3 ‖ z∗0 − z∗2 ,
z4 − z0 ‖ z∗5 − z∗3 , z5 − z3 ‖ z∗4 − z∗0 .

(vi) Applying the duality twice yields the original hexagon, up to translation:
(z∗∗i ) = (zi).

Proof. The statements follow immediately from the definition or are straightfor-
ward except for (v), which is [6, Corollary 31]. � �

5. Christoffel dual construction

The following theorem by E. B. Christoffel [7] characterizes isothermic surfaces
via a dual construction. An isothermic parametrization is a conformal cuvature
line parametrization. It is known that all minimal surfaces can be expressed in
isothermic parameters. For the unit sphere S2, every conformal parametrization
is isothermic.

Figure 6. A discrete catenoid and its discrete Gauss image (see Example 2).
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Theorem 10 (Christoffel). Let f be an isothermic parametrisation. Then the
Christoffel dual f ∗, defined by the formulas

f ∗x =
fx
‖fx‖2

and f ∗y = − fy
‖fy‖2

exists and is isothermic again. The dual f ∗ is a minimal surface if and only if f
is a sphere.

The next two propositions state properties of the smooth Christoffel dual con-
struction.

Proposition 11. Let f : U ⊆ R2 −→ R3 be an isothermic parametrisation, let f ∗

be its dual, and consider the ball Br(x, y) with radius r centered at (x, y). Then

lim
r→0

A(f(Br(x, y)))

A(f ∗(Br(x, y)))
= ‖fx(x, y)‖2‖fy(x, y)‖2,

where A is the surface area.

Proposition 12. Let f : U ⊆ R2 −→ R3 be an isothermic parametrisation, ε > 0
and r = ε/

√
π. Further let ϕ : U ′ −→ U with ϕ(x, y) = (εx, εy) be a parameter

transformation, fε := f ◦ ϕ the transformed function and f ∗ε its dual. Then

(3) lim
ε→0
A(fε(Br(x, y)))A(f ∗ε (Br(x, y))) = 1.

We consider the dual construction of discrete isothermic surfaces as quad meshes
[3, 1]. The dual z∗0 , . . . , z

∗
3 of a conformal square with vertices z0, . . . , z3 is defined

via z∗i+1 − z∗i = (−1)i/(zi+1 − zi). For a square P with edge length l and its dual
P ∗, which then has edge length 1/l, we obtain A(P ) = l2, A(P ∗) = 1/l2 and
therefore

A(P )

A(P ∗)
= l4 and A(P )A(P ∗) = 1,

which are discrete analogues of Propositions 11 and 12.
Computing the area of hexagons is more involved than the rectangle case. For

a conformal hexagon (zi) and its dual (z∗i ) we have z∗i+1 − z∗i = −1/(zi+1 − zi)
for i ∈ {0, 2, 3, 5} and z∗i+1 − z∗i = 2/(zi+1 − zi) for i ∈ {1, 4}. Multiplying each
vertex zi with r ∈ R \ 0 we get the hexagon (wi) := (rzi) and its dual (w∗i ) with
wi+1 − wi = r(zi+1 − zi) and w∗i+1 − w∗i = −r−1/(zi+1 − zi) for i ∈ {0, 2, 3, 5}
and w∗i+1 − w∗i = 2r−1/(zi+1 − zi) for i ∈ {1, 4}. Consequently w∗i+1 − w∗i =
r−1(z∗i+1− z∗i ). The areas of (zi) and (z∗i ), are denoted by A(zi) = p and A(z∗i ) = q
respectively. Then

A(wi) = r2A(zi) = r2p and A(w∗i ) = A
(1

r
z∗i
)

=
1

r2
q.
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This yields disretizations of Propositions 11 and 12, namely

(4)
A(vi)

A(v∗i )
=
r2p
1

r2
q

= r2r2p

q
and A(vi)A(v∗i ) = pq.

The fact that r does not occur in (4) means that A(vi)A(v∗i ) does not depend on
the discrete parametrisation.

6. Discrete conformal and discrete minimal surfaces

Definition 13. A discrete (hexagonal) conformal surface is a mesh with regular
hexagonal combinatorics where each hexagon is conformal in the sense of Defini-
tion 5.

This definition is motivated by the following statements:

(i) The definition of planar discrete conformal surfaces (Definition 13) is Möbius
invariant (see Section 3).

(ii) According to Theorem 7, the limit of cross-ratios of the two quadrilaterals
of the infinitesimal hexagon both equal −1/2 if and only if the considered
mapping is conformal.

Figure 7. Linear combinations of parallel meshes, where one is a discrete catenoid
and the second is a discrete helical surface are members of the corresponding associated
family of minimal surfaces. Special combinations can lead to quad meshes. The case
illustrated here is in fact a discrete helicoid, which means that it discretizes a surface
generated by the helical motion of a straight line which orthogonally intersects the helical
axis (see Example 4).
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(iii) The discrete dual construction fulfils the property (z∗∗i ) = (zi), which is
analogous to the smooth dual construction (see Proposition 9 (vi)).

(iv) The discrete dual construction always closes for conformal hexagons and
transforms a discrete conformal surface into another one (see Proposi-
tion 9).

(v) The discrete dual construction of Definition 8 fulfils discrete analogues of
properties of the smooth dual construction (see Propositions 11 and 12 and
Equations (4)).

Consequently, a discrete conformal surface can be seen as a discrete analogue of a
smooth conformal parametrized surface.
Remark 14.

(i) Since each face of a conformal mesh has multi-ratio −1, it posesses the
vertex offset property (see Theorem 4).

(ii) All vertices of a circular hexagonal mesh are always contained in a sphere
or in a plane. We can say that a circular hexagonal surface is a discrete
analogue of a surface with umbilic points only.

The next definition is motivated by Theorem 10.

Definition 15. A discrete (hexagonal) minimal surface is the dual of a conformal
mesh covering the unit sphere.

Here the word “covering” can be understood as “inscribed”, “edge-wise tan-
gent”, i.e., circumscribed or “face-wise tangent”, i.e., circumscribed. Later we
show that a certain notion of discrete mean curvature vanishes for all such mini-
mal surfaces.

Remark 16. A more general definition of conformal hexagonal meshes can be
derived from the dual construction for quad meshes in [6]. Instead of taking cross-
ratios −1/2 in Definition 5, we take fractions −αn/βm where m and n identify the
row and the column of the position of the quadrilateral. This can be interpreted as a
discrete reparametrization of the standard conformal mesh. The dual construction
then must be modified in the following way:

z∗1 − z∗0 = −βm/(z1 − z0) z∗4 − z∗3 = −βm/(z4 − z3)

z∗2 − z∗1 = αn/(z2 − z1) z∗5 − z∗4 = αn/(z5 − z4)

z∗3 − z∗2 = −βm/(z3 − z2) z∗0 − z∗5 = −βm/(z0 − z5).

After this change Proposition 9 is still valid.

7. A construction of planar conformal meshes

This section describes an explicit construction of a conformal hexagonal mesh,
which we are going to use later.
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Proposition 17. Let (zi) be a conformal hexagon and let α and β be two simi-
larities, which map (z4, z5) to (z2, z1) and (z3, z4) to (z1, z0), respectively. Then α
and β commute, i.e., α ◦ β = β ◦ α and βk ◦ αl(zi) = αl ◦ βk(zi) is a conformal
mesh, with no gaps, where (k, l) ∈ Z2 (Figure 8).

Proof. There exist ϕ, ψ ∈ R and v, w ∈ C such that α(z) = reiϕz + v and
β(z) = seiψz + w. We obtain

α(z5) = reiϕz5 + v = z1 β(z4) = seiψz4 + w = z0

α(z4) = reiϕz4 + v = z2 β(z3) = seiψz3 + w = z1,

which implies reiϕ(z5 − z4) = z1 − z2 and seiψ(z4 − z3) = z0 − z1. It follows that

r

s
ei(ϕ−ψ) z4 − z5

z3 − z4

=
z1 − z2

z0 − z1

⇐⇒ r

s
ei(ϕ−ψ) z5 − z0

z0 − z3

= −z2 − z3

z3 − z0

,

because of the cross-ratio condition of conformal hexagons. Further,

seiψz2 + w − (seiψz3 + w)︸ ︷︷ ︸
=z1

= reiϕz0 + v − (reiϕz5 + v)︸ ︷︷ ︸
=z1

,

which implies β(z2) = α(z0). Since β−1(z) = s−1e−iψz − s−1e−iψw, α−1(z) =
r−1e−iϕz − r−1e−iϕv and α−1(z2) = β−1(z0) we have

r−1e−iϕz2 − r−1e−iϕv = s−1e−iψz0 − s−1e−iψw, reiϕz0 + v = seiψz2 + w.

We multiply the last two equations and get

z0z2 − z0v + vα−1(z2) = z0z2 − wz2 + wβ−1(z0) ⇐⇒ v = w
(z4 − z2)

(z4 − z0)
.

z0

z1

z2

z3

z4

z5

(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi) (zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi) α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)α(zi)

α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)α2(zi)

β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)β(zi)
β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)β ◦ α(zi)

Figure 8. Left: An arbitrary conformal hexagon (zi). Right: A planar conformal mesh
βk ◦ αl(zi) = αl ◦ βk(zi) (see Proposition 17).
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We want to show that β ◦α = α◦β. Therefore we compute α◦β(z) = rsei(ϕ+ψ)z+
reiψw + v and β ◦ α(z) = rsei(ϕ+ψ)z + seiϕv + w. Consequently,

(5) α ◦ β = β ◦ α ⇐⇒ (reiϕ − 1)w = (seiψ − 1)v.

Replacing v by w(z4 − z2)/(z4 − z0), the last equation is further equivalent to

(reiϕ − 1) = (seiψ − 1)
(z4 − z2)

(z4 − z0)
⇐⇒ β(z2) = α(z0),

which we have already shown to be true. � �

To obtain circular conformal meshes we have to start with a circular conformal
hexagon and then apply Proposition 17.

A similarity which is no translation is decomposable into a dilation and a rota-
tion. The center of rotation of α and β is v/(1−reiϕ) and w/(1−seiψ), respectively.
From equation (5) we obtain that both centers must be the same if and only if
α ◦ β = β ◦ α. In R2 we take the 3× 3 matrices

A =

 1 0
Re v
Im v

rDϕ

 and B =

 1 0
Rew
Imw

sDψ


for α and β, where Dω is the 2×2 rotation matrix by an angle of ω. Since A and B
commute, i.e., AB = BA, αl ◦βk can be written in the form exp(l logA+k logB).

7.1. Discrete holomorphic functions. Now, we consider a mesh M with ar-
bitrary combinatorics stored in the graph G. The double D of G is a quad graph
defined such that the new vertices V (D) are the old ones V (G) combined with
the vertices of the dual graph V (G∗) (see e.g. [5]). A quadrilateral of D consists
of the two vertices incident with an edge of G and the two vertices incident with
the corresponding edge of G∗. A function f is discrete holomorphic with (possibly
complex) weights ν if for each quadrilateral (z0, w0, z1, w1) of the double graph D
the equation

(6)
f(w1)− f(w0)

f(z1)− f(z0)
= iν(z0, z1) = − 1

iν(w0, w1)

holds. A discrete Laplacian operator with (in general different) weights ν of a
complex function f is

(∆f)(z) =
∑

w∈star(z)

ν(w, z)(f(w)− f(z)),

where star(z) consists of all vertices which are connected with z by an edge of
G. Further, f is called discrete harmonic if (∆f)(z) = 0 for all verticies z of the
graph.

We consider complex functions defined an a graph G with values coming from
the embedding in C.
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Proposition 18. The mesh M with double graph combinatorics derived from a
conformal hexagonal mesh generated with Proposition 17 are function values of a
discrete holomorphic function defined on a regular hexagonal graph.

Proof. We consider points wi generated with the same similarities as the mesh
M, starting with one arbitrary point. These new points are the function values
of the vertices of the dual mesh M∗. Since the new mesh with vertices V (M) ∪
V (M∗) and double graph combinatorics is generated via similarities, the ratio
(z1 − z0)/(w1 − w0) is constant for each quadrilateral. Therfore exists a “nice”
weight function ν that fulfills (6) and is constant at (z0, z1) and (w0, w1) on the
mesh. � �

Corollary 19. The conformal hexagonal mesh M generated with Proposition 17
and its dual mesh M∗ are function values of a discrete harmonic function defined
on a regular hexagonal graph.

Proof. This follows immediately from Proposition 18 and [5, Theorem 7.3]. �

Corollary 20. Let (zi) be a hexagon which is Möbius equivalent to a regular one.
Then, the conformal hexagonal mesh M generated with Proposition 17 is discrete
harmonic with constant weights.

Proof. Let (zi) be a hexagon of the mesh M. Then, without loss of generality
we have to show that the sum of the vectors of the edges emanating from z2 is the
zero vector. If (zi) is a regular hexagon, then the proposition is obvious. For the
non-regular case let us assume further without loss of generality that α(z) = reiϕz
which means that the center of rotation is 0. Therefore we have to show that
(z1 − z2) + (z3 − z2) + (reiϕz3 − z2) = 0.

reiϕz3 − z2 = reiϕ(z3 − z4) = −1

2
reiϕ

(z2 − z3)(z4 − z1)

(z1 − z2)
=

= −1

2

(z2 − z3)(z4 − z1)

(z5 − z4)
=

(z1 − z2)(z3 − z4)

(z5 − z4)
.

To finish the proof we must show that p := (z1 − z2)(z5 − z4) + (z3 − z2)(z5 −
z4)+(z1−z2)(z3−z4) is zero. The cross-ratio conditions of four successive vertices
of (zi) are equivalent to crp(k) = 0 for all k ∈ {0, . . . , 5}, where

crp(k) := (zk − zk+1)(zk+2 − zk+3) +
1

2
(zk+1 − zk+2)(zk+3 − zk).

A careful computation shows that

p2 =
4

3
crp(0)crp(2)− 8

3
crp(1)crp(2) +

4

3
crp(1)crp(3)

− 2

3
crp(0)p+

4

3
crp(1)p+ 2crp(2)p− 4

3
crp(3)p+

2

3
crp(4)p = 0,

which we wanted to show. � �
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8. Polygons with vanishing mixed area and discrete minimal
surfaces

The mixed area of two parallel polygons P = (pi) and Q = (qi) (i = 0, . . . , n−1)
is defined by

area(P,Q) =
1

4

∑
0≤i<n

(det(pi, qi+1) + det(qi, pi+1)),

where indices are taken modulo n. A discrete curvature theory based on mixed
areas [4] takes this notion to define a discrete mean curvature of a face P by

HP = −area(P, σ(P ))

area(P )
,

where σ(P ) denotes the corresponding face of a discrete Gauss image.
In smooth differential geometry a minimal surface can be defined as a surface

with vanishing mean curvature in each point. A discrete minimal surface in this
setting is a mesh where the discrete mean curvature HP is zero for all faces P of
the mesh. Incidence geometric properties of the polygons with vanishing mixed

p0 p1

p2

p3

q0 q1

q2

q3

Figure 9. A pair of parallel quadrilaterals p0, . . . , p3 and q0, . . . , q3 has vanishing mixed
area if and only if their non-corresponding diagonals are parallel: q0q2 ‖ q1q3 and q1q3 ‖
q0q2.

(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)(zi)

(z∗i )(z∗i )(z∗i )(z∗i )(z∗i )(z∗i )(z∗i )(z∗i )(z∗i )(z∗i )(z∗i )(z∗i )(z∗i )(z∗i )(z∗i )(z∗i )(z∗i )

z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0z0

z1z1z1z1z1z1z1z1z1z1z1z1z1z1z1z1z1 z2z2z2z2z2z2z2z2z2z2z2z2z2z2z2z2z2

z3z3z3z3z3z3z3z3z3z3z3z3z3z3z3z3z3

z4z4z4z4z4z4z4z4z4z4z4z4z4z4z4z4z4z5z5z5z5z5z5z5z5z5z5z5z5z5z5z5z5z5

z∗0z
∗
0z
∗
0z∗0z
∗
0z∗0z
∗
0z∗0z
∗
0z∗0z
∗
0z∗0z
∗
0z
∗
0z
∗
0z
∗
0z
∗
0

z∗1z
∗
1z
∗
1z∗1z
∗
1z∗1z
∗
1z∗1z
∗
1z∗1z
∗
1z∗1z
∗
1z
∗
1z
∗
1z
∗
1z
∗
1 z∗2z

∗
2z
∗
2z∗2z
∗
2z∗2z
∗
2z∗2z
∗
2z∗2z
∗
2z∗2z
∗
2z
∗
2z
∗
2z
∗
2z
∗
2

z∗3z
∗
3z
∗
3z∗3z
∗
3z∗3z
∗
3z∗3z
∗
3z∗3z
∗
3z∗3z
∗
3z
∗
3z
∗
3z
∗
3z
∗
3

z∗4z
∗
4z
∗
4z∗4z
∗
4z∗4z
∗
4z∗4z
∗
4z∗4z
∗
4z∗4z
∗
4z
∗
4z
∗
4z
∗
4z
∗
4z∗5z

∗
5z
∗
5z∗5z
∗
5z∗5z
∗
5z∗5z
∗
5z∗5z
∗
5z∗5z
∗
5z
∗
5z
∗
5z
∗
5z
∗
5

Figure 10. A pair of dual hexagonal meshes M and M∗. The mesh M on the left
hand side consists of hexagons (zi) where the union of the vertices z0, z2, z4 form a quad
mesh M (dashed). The dual hexagonal mesh M∗ consists of hexagons (z∗i ), where the
union of the vertices z∗1 , z

∗
3 , z
∗
5 form a quad mesh M∗. According to Remark 22 and

Proposition 9, (v), M and M∗ are reciprocal parallel.
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area were studied in [10]. A result of [4] is that two parallel quadrilaterals have
vanishing mean curvature if and only if their non-corresponding diagonals are
parallel (see Figure 9).

According to Proposition 9, (v) the non-corresponding diagonals of the quadri-
laterals of a conformal hexagon and its dual are parallel. This yields

Proposition 21. A discrete minimal surface in the sense of Definition 15 has
vanishing discrete mean curvature and therefore is a discrete minimal surface in
the sense of [4].

Remark 22. A pair of meshes M and M′ is called reciprocal parallel, if their
combinatorics are dual (correspondences are vertex-face, face-vertex and edge-edge)
and corresponding edges are parallel. The connection between the existence of a
reciprocal parallel mesh and infinitesimal flexibility was studied in [16].

Proposition 9, (v) says that non-corresponding diagonals of conformal hexagons
of the quadrilaterals with cross-ratio equal to −1/2 are parallel.

From a discrete conformal surface and its dual we can derive two pairs of recip-
rocal parallel quad meshes by choosing the edges z2−z0 ‖ z∗3−z∗1 and z4−z0 ‖ z∗3−z∗5
for the first pair and z1− z3 ‖ z∗0 − z∗2 and z5− z3 ‖ z∗0 − z∗4 for the second pair (see
Figure 10).

9. Examples of discrete minimal surfaces

As a preparation to the construction of examples, we have to discuss the rela-
tion between Christoffel duality and Weierstrass representation. We start with an
arbitrary conformal map which is a holomorphic function g : U ⊂ C −→ C where
g′(z0) 6= 0 for all z0 ∈ U . This is a conformal parametrisation of a part of the
plane. With the stereographic projection

Φ(z) :=
1

(|z2|+ 1)
(2z, |z|2 − 1)

we get n := Φ ◦ g as a conformal parametrisation of the sphere. By applying the
Christoffel duality (Theorem 10) to n we get an isothermic parametrisation f ∗ of
a minimal surface with

(7) f ∗x =
nx
‖nx‖2

and f ∗y = − ny
‖ny‖2

.

On the other hand we get minimal surfaces f with the same Gauss image as f ∗

via the Weierstrass representation (see e.g. [8]):

Theorem 23 (Weierstrass representation). For a holomorphic function h and a
meromorphic function g (with some restrictions) the map

(8) f = Re

∫
h ·
(

1

2
(
1

g
− g),− 1

2i
(
1

g
+ g), 1

)
is a parametrisation of a minimal surface. Φ ◦ g is the Gauss image of f .
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zzzzzzzzzzzzzzzzz
[0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0][0, 0]

[1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0][1, 0]

[0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1][0, 1]

[1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1][1, 1]

Figure 11. The derived quad mesh (dashed) [m,n] := αm−n ◦ β2n(z) with (m,n) ∈ Z2

represents a discrete parametrization of the conformal hexagonal mesh generated with
two similarities α and β following Proposition 17. We chose z arbitrarily.

As any holomorphic function f(x + iy) satisfies Re(f ′) = ∂
∂x

Re f , Equations (7)
and (8) produce the same result if and only if n = Φ◦g satisfies the condition that
nx/‖nx‖2 equals the integrand in (8).

9.1. Examples. For our examples, we start with a circular hexagonal conformal
mesh in C and apply the discrete Christoffel duality to the stereographic projection
of the mesh.

Let α and β be two similarities which generate a conformal hexagonal mesh
as explained in Section 7 and choose z ∈ C such that α(z) 6= z 6= β(z). We
call a mesh αm−n ◦ β2n(z) with (m,n) ∈ Z2 a derived quad mesh (Figure 11). The
derived quad mesh represents a discrete parametrization assigned to the conformal
hexagonal surface. We basically distinguish three cases:

(i) Both, α and β are translations.
(ii) α is a rotation and β is a dilation with the same fixed point.

(iii) Both, α and β are similarities with the same fixed point but different from
a pure translation, rotation, or dilation.

For (m,n) ∈ Z2 and after an appropriate change of parameters, the derived quad
mesh is of the form m + in in (i), ea(m+in) in (ii), and e(a+ib)(m+in) in (iii), where
a, b ∈ R, a, b 6= 0. Therefore the meshes discretize the meppings z 7→ z, z 7→ eaz,
and z 7→ e(a+ib)z, respectively.

Example 1 (Discrete Enneper’s surface). Letting g(z) = z and h(z) = z yields

n(x+ iy) =
1

x2 + y2 + 1
(2x, 2y, x2 + y2 − 1),

and it is easy to verify that nx/‖nx‖2 is equal to the real part of the integrand
of (8). This is exactly the case of Enneper’s surface (see Figures 1 and 12). We
see that Christoffel duality of the regular hexagonal mesh generates a discrete
Enneper’s suface.
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Figure 12. Left: Circular conformal mesh which discretizes z 7−→ z. Center: Discrete
Gauss image, which is the stereographic projection of the circular conformal mesh. Right:
Discrete minimal surface generated as the discrete Christoffel dual of the Gauss image.
According to Example 1 the hexagonal mesh is a discrete Enneper’s surface.

Figure 13. Left: Circular conformal mesh which discretizes z 7−→ eλz (λ > 0) (a
symmetric hexagon, which is Möbius equivalent to a regular one is marked). Center:
Discrete Gauss image, which is the stereographic projection of the circular conformal
mesh. Right: Discrete minimal surface generated as the discrete Christoffel dual of the
Gauss image. Referring to Example 2 the hexagonal mesh is a discrete catenoid.

Figure 14. Left: Circular conformal meshM which discretizes z 7−→ eaz (a ∈ C \ (R∪
iR)). According to Proposition 17 we start with an arbitrary hexagon which is Möbius
equivalent to a regular hexagon and apply similarities. Here the meshM overlaps itself
(multi-valued function). Right: Stereographic projection of the mesh M.
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Figure 15. A discrete minimal surface which discretizes the smooth helical surface
given by (9). The corresponding Gauss image is shown by Figure 14, right.

Example 2 (Discrete catenoid). We start with a symmetric hexagon which is
Möbius equivalent to a regular hexagon but not itself regular (see Figure 13, left)
and apply Proposition 17 to get a circular conformal mesh with rotational symme-
try. This mesh discretizes the holomorphic function g(z) = eλz with an appropriate
choice of λ > 0. We compute n(z) = (Φ ◦ g)(z) = Φ(eλz) and see that nx/‖nx‖2
equals the real part of the integrand of (8) for h(z) = 1/λ = const. The resulting
minimal surface is the catenoid. We see that Christoffel duality of a hexagonal
mesh with rotational symmetries as described generates a discrete catenoid (see
Figures 6 and 13).

Example 3 (Helical surface). We start with an arbitrary hexagon, which is not
regular, but Möbius equivalent to a regular hexagon and apply Proposition 17
to get a mesh which discretizes the function g(z) = eaz, where a ∈ C \ 0 (see
Figure 14, left). With h(z) = 1/a it is easy to verify that nx/‖nx‖2 equals the real
part of the integrand of (8). For a ∈ R we obtain the catenoid (see Example 2)
and for a ∈ iR we obtain the helicoid and especially for a = i the helicoid with
the parametrization

f(x, y) = (sin(x) sinh(y), cos(x) sinh(y), x).

For a = a1 + ia2 (a1, a2 6= 0) we get the surface

f(u, v) = Dωu ·Dαv

+
(−a2

1 + a2
2)/(aa)2 cosh v

2a1a2/(aa)2 sinh v
0

+

 0
0

u/(aa)

 ,(9)

where Dt is the rotation matrix for rotation around the z-axis by an angle of t,
ω = aa/(2a1a2) and α = (a2

2 − a2
1)/(2a1a2). We see that this is a helical surface

too.
The Christoffel dual of the considered hexagonal mesh generates a discrete min-

imal surface illustrated in Figure 15.
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Example 4 (Associated family, helicoid). The spherical hexagonal mesh of Ex-
ample 2 can be dualized in yet another way. We interchange the coefficients 2 and
−1 in the discrete dual construction and get a helical surface. The edges of all
faces of this mesh are parallel to the corresponding edges of the catenoid given in
Example 2. Linear combinations of these two discrete surfaces give all members
of the associated family of this minimal surface. A special combination yields a
quad mesh which discretizes the helicoid (see Figures 5 and 16).
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