Proceedings 25. Suddt. Differentialgeometrie-Kolloquium pp- 47-70

MINIMAL SURFACES AND CRYSTALLOGRAPHY

EMIL MOLNAR

ABSTRACT. This survey reports on some directions in the theory
of triply periodic minimal surfaces (TPMS) where the computer
gives new possibilities in the graphical presentation and in the ex-
act numerical calculations as well. Some numerical data and state-
ments, in some remarks, are mentioned first time here as partly
joint results with Jeno SzIRMAI and Attila BOLCSKEI, which will
be published later. A classification strategy is formulated at the
end, where we prove, respectively disprove the existence of some
TPMS’s.

Dedicated to Professor Johannes BOHM on the occasion of his 75th
birthday

1. INTRODUCTION

We first start with the famous SCHWARZ’ D (diamond) minimal surface
described in Fig. 1 by the pair of space groups Pn3m/Fd3m.

Here in picture (a) we have indicated the surface patch RyR; Ry and
its image BR; R, under the halfturn about R;R,. The patch RyR, R,
will be extended under the crystallographic space group Pn3m (No.
224 in [5]), which is generated by

Pn3m: ry:(7,y,2) —~ (—x+1,y,—2)(R1Ry),
1 1 1
ra: (.’I?,y,Z) = (_Z + 57 —y+ 57 —T + 5)(R1R2)7
m: (z,y,2) — (y,z,2z) (in the plane ORyARy), (1)

i.e., by two halfturns (2) and a plane reflection (m). The surface is
incident to the halfturn axes and perpendicular to the reflection plane.
The last transform preserves the sides of the surface, the halfturns
change them.

Considering only the side preserving transforms of the surface in the
space group Pn3m, we obtain its subgroup Fd3m (No. 227) of index
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two [5], generated by
(.’E,y,Z) = (y,.’E,Z) (OROAR2)7

Fd3m: (1,5.2) = (1,2,y) (OAB), 2)
(@57) = (2t 2y + 2z — 1)
T, Y,z & 9’ ) 2,£U 9/

The last halfturn axis is orthogonal to the plane RyR; Ry in R;. The
reflection planes ORyA, OBA and their images under the latter half-
turn form a so-called sphenoid, i.e., a tetrahedron of congruent faces
with opposite rectangles at ARy and OB, respectively, and % angles at
the remaining 4 edges.

The space group pair Pn3m/Fd3m exactly describes the whole min-
imal D-surface if the patch RyR; Ry will correctly be adjusted by the
complex parameter domain wyw;ws in Fig. 1b (to be explained later in
Sect. 4).

In Fig. 1c we have symbolically drawn the surface fundamental do-
mains of the hyperbolic plane group pair, induced by our space group
pair. Pn3m induces a hyperbolic plane reflection group x2,4,6 in John
CONWAY’s notation [13]. That means, the reflection lines have the an-
gles 2, 2 and £ at Ry (222), Ry (4m2) and R, (3m), respectively.
In parentheses we have inserted the stabilizers of the points in crys-
tallographic notations, respectively. The side preserving space group
Fd3m induces the hyperbolic plane group 2%2,3. That means, the
reflection lines Ry Ry, Ry B has two corners: § at Ry ~ B and 3 at Ry.
Furthermore, the halfturn in Fd3m induces a plane halfturn, about
Ry, as denoted by 2 before the star x opening the boundary component
of the factor surface (orbifold) H? /(2x2,3). Thus we have obtained

the hyperbolic plane group pair
*2,4,6/2%2,3 of D surface. (3)

We remark that besides the generators of Pn3m and x2,4,6, also in

general, the relations (by POINCARE algorithm [16]) refer to each other:
Pn3m > (rl,rg,m— l=ri=r3=

=m’ = (rir;)° = (mry)* = (mr,)°%) =x2,4,6, (4)

according to the fact that the action of Pn3m on the D-surface induces

just the action of ¥2,4,6. This also guarantees that the D surface does

not have self-intersections. The symbol > means that Pn3m has a
further relation, namely [15]:

1 = (mr;r,)°. (5)
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FiGure 1. H.A.SCcHWARZ' D (diamond) surface: (a) its
space group pair Pn3m/ Fd3m by fundamental domains,
(b) its complex domain wywiws, (¢) its symbolic hyperbolic
surface group pair x2,4,6/ 2x2,3 (d) some global drawing
of D surface by Alan L. MACKAY [14], glued together from
tetrahedral saddle surface pieces. Warning: Such a piece is
not a hyperbolic paraboloid (as a usual ruled (straight line)
surface, called saddle simply).

In Fig. 1d we see a fragment of our D surface by A.L. MACKAY from
[14] which is very inspiring, although the black and white coloring is
not traditional. In general, the side preserving subgroups Fd3m >
2%2,3 are presented as keeping the colours. This convention is not
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followed here. Congruent tetrahedral saddle surface pieces are glued
together in a cube. Then the continuation is more obvious.

2. ABOUT THE CLASSICAL THEORY

In this sketch we follow the nicely motivated books [7, 8] of Kowm-
MERELL brothers, although the newer books, e.g. [1], [11] are more
complete in some details. J.L. LAGRANGE (1760/61) posed the follow-
ing

Problem: Let C be a closed curve and z = f(x,y) be a surface incident
to C such that the surface area

S://,/1+f§+fy2dx/\dy (6)
T

1s minimal over a parameter domain T whose border curve defines C.
(I

LAGRANGE himself, by his variatonal method, found the partial differ-
ential equation

(Ut F) fow = 2fafyfoy + (L4 ) fyy =0 (7)
for a function R* D T > (z,y) — f(z,y) € R (smooth enough). Here
e.g. fz:= %, foy = fye = %@fy denote the partial derivatives as usual.
MEUSNIER (1776) observed that (7) expresses

1 1
n1+m2:0:R—1+§2 (8)
for the main (principal) curvatures «; and their radii R; = K%, (1=1,2).
In GAuss’ surface setting
R* D U 3 (u,v) = r(u,v) = (z(u,v),y(u,v), 2(u,v)) €E  (9)
the equation of minimal surfaces
_ 1,1 _EN-2FM+GL
R, Ry EG — F?
holds for the first and second fundamental values
E = (ry,ry), F:=(ry,r,), G:=(r,r,);
L:=(ry,,m), M :=(r,,m), N :=(r,,m).
Here m := r, x r,/D with D := /EG — F? = |r, x r,| denotes the
surface normal unit vector
m(u,v) =: (a(u,v),b(u,v), c(u,v)) (11)

and its coordinates.

0

(10)
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G. MONGE (1784) found the ingenious idea: Try to solve the equa-
tion (10) by choosing E = 0 = G through new complex parameters

U = uy + iug, v = V1 + vy, both in C. (12)
Then the first fundamental form becomes
(ds)? = 2Fdudv, with F # 0, (13)
and the following consequences hold:
0=M :=(ry,m),0=E, :=2(ry,,ry,),0 = Gy := 2(ry,,r,) (14)
= 1, =0. (15)

~—
~—

Now ry, = 0 and 0 = E = G imply for r(z(u,v), y(u,v), z(u,v
z="Ui(u) +Vi(v), y="Us(u) +Va(v), 2z=Us(u)+Vs(v),

and U+ UP+U2=0=V2+V,2+V;> (16)
) d d
with U7 := @Ub V= %Vl, etc. ..

Let us insert from [7, 8] some preliminary

Remarks on minimal curves:
1. Consider a complex cone

0=2a’+y°+ 2> = (z +iy)(z —iy) + 2° (17)

by parameters (u,v) € C? in

a)

These describe so-called minimal straight line families of the cone (17).
Each straight line has a complex variable w, e.g. for u-family (18a)

rrw__ 2 =:u; b)x—zy_ SR (18)

—z T —iy —z  xtiy

w T
:—]_— 2 = —

2. Analogously, the complex unit sphere equation
O=2’+y*+22—1=(z+iy)(x —idy) + (z+1)(z = 1) (20)

leads to two minimal straight line families, parametrized by « and v,
respectively:

(1+4?%), 2z=wu. (19)

) 1 —1 1
a)x+zy: +z:u b)x w1+ z

= 21
l—2z z—1iy U’ (21)

l—2 a+iy

and to a complex parametrization of the complex unit sphere:

u+v i(v—u) uv — 1

y 1+uv’ : 1+ uv (22)

T = ,
1+ wuv
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with some extra conditions on (x,y, z) = (0,0, 1). We obtain real points
of the unit sphere iff

v =1, moreover (0,0, 1) for u = oo, Cy, := CU {o0}. (23)
Then we get the real unit sphere by one complex parameter
4 u+u 2uy
U= uy + iusy : a= =
P 1+ua  14+ud+ud
i(w—u) 2y

L+uu  1+u?+ul
Cuu—1  uitui-—1

C_1+uﬂ_1+u%+u§’
u=o00 ~— (0,0,1).

(24)

This is the stereographic projection of Cu,, as (a,b,0) = (uy, uz) plane
onto the unit sphere from (0,0, 1).
3. A munimal curve is defined as a complex curve

CoI>urrr(u)eC (25)
whose any tangent Lr = (2 & dz).— (37 o/ 21} satisfies

2?4+ y?+ 2 =0, ie., 0= (ds)? := (do)* + (dy)* + (dz)®.  (26)
As above by (19) with an ‘arbitrary’ complex function w = ®(u), we
get the general equation of a minimal curve

= 1/(1 _AO(w)du; y = %/(1 Fu)D(u)du; » = /u@(u)du

2
(27)
by integrating along a curve in a simply connected domain from any
starting point.

4. We notice at (26) that the sign of coordinates in (27) can indepen-
dently be chosen. This will be important also later on!

Putting together the formulas in (16), (26), (27) we get the complex
minimal surface

C*> DU 3 (u,v) = r(u,v) € C*, defined by

= %/(1 ) D(u)du + % /(1 )W (v)d,

Y= %/(1 ) () du — %/(1 AT de,  (28)

z:/u@(u)du+/vllf(v)dv.
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This will provide the real minimal surface equation iff v and v = @ are
conjugate, and for ®(u) and ¥(v) holds

U(u) = ®(u), ie., they are conjugate functions. (29)
(The formal generalization by a further smooth bijection u — Q(u) of

C is not essential.)

Equivalently we get the MONGE-ENNEPER-W EIERSTRASS (1866, brief-
ly: ‘MEW’) formulas for the real minimal surfaces:

r = Re/(l — u?)®(u)du;
y = Re/i(l +u?)®(u)du (30)
z = Re/Qu@(u)du

taken the real parts of the integrals up to a sign, independently for each
coordinate (see Rem. 2.4). Here we integrate on any complex curve
(with real parameter)

RS5S¢t ult)=u(t) +ius(t) €U C C (31)

n a simply connected domain U of C, where the starting point is fized.
The endpoint uw = uy + iug provides us the two real parameters (uy, ug)
of the minimal surface (30). O

The other important data can be read off (28), first again for a complex
minimal surface, then for a real one:

(ds)? = (1 4+ uv)*®(u) ¥ (v)dudv; (32)
the surface normal unit vector m(a, b, ¢) is
m=r, xr,/D;

u+v i(v—u) uv — 1

a = R = c =
1+ uv 1+ uv 1+ uw.

(33)

Y

For the spherical mapping, which associates any (u,v)-point with its
unit normal vector, we have the image arc length quadrat

4dudv
(1+ uv)?’
and L=-®(u), M=0, N=-Y(v). (34)

(dso)? = (da)? + (db)? + (de)? =
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The Gauss curvature is

1 —4
K=rmme = e = 0T wo) o) ¥ v)
ie. Ri=-Ry= %(1 + uv)?y/ @ (u) ¥ (v) (35)

(dsg)* = —K(ds)*> with ¥(u) = ®(u).

In general, it holds the

Theorem: A minimal surface is conform (locally similar) with its
spherical image by the surface normals. a

This is a characteristic theorem for the minimal surfaces (and for the
spheres).

3. ASSOCIATE MINIMAL SURFACES
The last statement can be strengthened by the following

Theorem 3.1: Isometric minimal surfaces S and S, can be equally
orientied in the space B2 so that they have parallel surface normals
in the corresponding (equally parametrized) points. Then S, has the
functions @, (u) and V,(v) such that

Do (u) = ®(u), Vu(v) =e*U(v). (36)

Here « is the angular constant by BONNET (1853), it measures the
angle of corresponding line elements dr and dr, by

(dr,drg)
|dr||dr|’

cosa = 0<a<lTn (37)

O

The above S and S, are called associate minimal surfaces. Conjugate
minimal surfaces are defined by o = 7. We recall the

Problem: (BJORLING-BONNET-SCHWARZ, 1864) Construct a mini-
mal surface to a given curve and to a normal vector field given along
the curve.

BONNET and independently H.A. SCHWARZ found the basic

Theorem 3.2: The above problem has a unique solution for a smooth
curve and for its smooth normal vector field. a
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Consequences: 1. Any incident straight line is a halfturn azis of a
minimal surface (see the introductory D surface).

2. Any plane, which is perpendicular to a minimal surface in each
intersection point, 1s a symmetry plane of it.

3. In a reflection point or at a rotation centre of order at least 3, both
main curvatures have to be zero (flat point of the minimal surface)

4. A minimal surface is uniquely determined (locally)
a) by a geodesic curve,
b) by an asymptotic curve,

¢) by a main curvature curve.

The most famous real minimal surfaces are the catenoid as revolution
surface about the z axis

Va2 4 y? = a(e?/? 4 e7#/%), (38)

and the helicoid as screw ruled (straight line) surface along the z axis
fan — (39)

T =y tan —.

Y 2a

The catenoid and the helicoid are conjugate minimal surfaces for the
same real parameter a > 0.

4. CONSTRUCTION OF MINIMAL SURFACES BY MEW FORMULAS

We turn back to our D minimal surface in Fig. 1, and we shall construct
it by MONGE-ENNEPER-WEIERSTRASS (briefly MEW) formulas (30).
The function ®(u) has to be produced, first, by the surface normal

m(a(u),b(u),c(u)) with weU CC, (40)

second, by its symmetries, thus by the flat points of zero curvature (see
formulas (24), (32), (35), (30)).

In the points R (%, %, 0), Ry (%, i, 0), Ry (i, i, i) we can choose the
surface normals by (24):

mO(O,O,—l) to wy :0,

1 1
m; <_ﬁ’0’ _ﬁ> to w =—(V2-1), (41)
1

m, <——3, —i?), —\/%> to wy=—=(V3—-1)(1+1),
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respectively as Fig. 1b shows. By the symmetries 3m at Ry(w,), the
Gauss curvature K has to be 0, thus it holds

1
Qlwy = —5(\/3 —1)(1+41i)] =00 as a limit. (42)
We look at (24) that the parameter transform
u—u' =-1/u, 0+— o0 yields (a,b,¢c)+— (—a,—b,—c) (43)
and the point reflection of Pn3m in R,

1 1 1
Ry: X(z,y,2) = X*(—z+ 2 Y + 3 7% + 5) produces

1 , 111
23 — 1 1 23
Rl(—l/wl): (0,1,5) s RO(OO):(O,O,I)
We can also check that, with wy from (41),
-1 — 1 1

w2, iMQ, —Wwa2, —iWQ, — oy — y — oy — > i.e., the roots of (45)
W2 W2 W2 Wy,

~1
(u* — w)) [u4 — (_—)4] =u® + 14u* + 1 all make & — oco.
w2

We could continue these observations which indicate, how to choose
other equivalent domains wjwiwi; C C. for describing our minimal
surface, in general. Our essential (and may be new)

Theorem 4.1: The MEW function ®(u) satisfies the functional equa-
tion

P <_—1> = u'®(u) (46)

u

if a point reflection belongs to the symmetry group of the minimal sur-
face (the point coincides with the surface).

The proof comes from (43) by the integral transform

1 1\ 2 1\ 2
v=—, du = (:) -du, du = (—) du (47)

u u
in (28) with v = @ and (29). O

Then we can ‘easily’ check a well used

Theorem 4.2: The MEW function for the D minimal surface is (with
freedom of sign of the root, see at (30))

@D(u):—kp/vu8+14u4+1 (48)
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where kp ~ i - 0.593208 O

The normalized constant kp is computed by J.SZIRMAI. To this the
MEW formulas (30) have to be integrated, first from 0 to w; = — (/2 —
1) for the zero z-difference of Ry and R;, then from 0 to wy, say, for
z-difference i of points Ry and R».

I saw the ScHwWARz formula (48) at A.L. MACKAY and H. TER-
RONES [17] in their lecture in Bielefeld (1990) in equivalent form. I
would accept any information about the constant kp with thanks, also
for the later constants. The accuracy is questionable yet.

5. THE CUBIC P SURFACE AND THE (G (GYROID) SURFACE

The cubic P surface of H.A. SCHWARZ will be conjugate to the D
surface (Th. 3.1), the G (gyroid) surface of A. SCHOEN [20] will be
associate to both ones.

In Fig. 2a we see the P surface patch spanned by points

1 1 1 111
Ry (5,0; Z) , By <§;y17y1> , Ry <Z’ Z’ Z) . (49)

This patch will be continued by the space group Im3m of E* (No. 229
by [5]), generated by

Im3m: m,: (z,y,2)— (—z+1,y,2),

my : (.Z‘, Y, Z) = (.Z‘, %y y)a
‘ 1 1 1 “
£ (r,2) o (cy g et g, st g), (50)
i.e., we have two plane reflections (m) and a halfturn (2) about RyRs.
The halfturn r changes the sides of P surface, both reflections preserve
them. The index two subgroup of side preserving transforms in Im3m
will be

Pm3m (No. 221), generated by

m; and my above and by their r-conjugates, (51)

i.e., in the side planes of tetrahedron OABC. In Fig. 2c we see the
induced hyperbolic group pair %2,4,6/%2,2,2,3. The first group is
as at the D surface, the second one is generated by 4 line reflections
by dihedral angles 7, 7, 5, % as listed in the symbol. Again, the
presentations refer to each other

N DN
I

Im3m > (m;,myr— 1=m=m
= r2 = (m1m2)2 = (mlr)4 = (m2r)6) = *2,4,6 (52)
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proving the lack of selfintersection. Im3m has one relation more

(53)

(m;rmor)?.

1

Now, we have to adjust the patch as indicated in Fig. 2b by the unit

(41) before,

surface normals. Then by the complex parameters, as at

we have
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wp =0+ mO(O,O, —1) to RO,
-1

o = —i(VZ = 1) = my (0, ;—; =) o B, (54)
1 . -1 -1 -1
Wy = —5(\/5— 1)(]. +Z) — mg(%, %, ﬁ) to Rs.

Now, by Th. 4.1 and arguments there, we formulate
Theorem 5.1: The MEW function for the cubic P minimal surface is

Op(u) = —kp/Vud + 14u* + 1 where — kp = 0.463711  (55)
1
i.e.  DPp(u) ~i®p, then y; = 0.175091... to Ry <§,y1,y1> O

The sign ~ means proportionality by a positive constant.

See also a global picture of cubic P surface in Fig. 2d from [6] where
other (non-cubic) P-surfaces with fewer symmetries are drawn as well.

Remark: Side reversing transforms might be not required, in general
(see Fig. 4b). Then one space group characterizes the situation (not
uniquely). For instance Pmmm (No. 47 by [5] from the orthorhombic
crystal system) allows many minimal surfaces. Then a brick of 6 plane
reflections, as a fundamental domain, may contain many hyberbolic
rectangular hexagons, each of them as generating surface piece, per-
pendicular to the brick sides. Further point reflection, reversing the
sides of the surface and introducing the pair Immm/Pmmm, makes
the surface more stabil.

In Figure 3a there is described A. SCHOEN’s GG surface, indicated by
its fundamental patch which is spanned by points

1 1 1 11 1
—=), Ry(0,0,0), Ri(=,y1,—= R3(=,=,—=).
4)7 2( y YUy )7 1(4ay17 2+y1)7 3(2727 2)
This patch will be extended by the space group (see also Fig. 5b) Ia3d

(No. 230 by [5]), generated only by two transforms

1
R0(§7 07 (56)

_ 1 1 1
Ia3d: z:(z,y,2) — (y+§,—x+§,—z—§) at Ry (57)
( ) = ( +1 +1 1) t R
r:(r,y,2 —x+—,z+ -,y — =) at Ry.
'Y 9’ 2ay 9 1

Thus, we have a rotatory reflection z, reversing the space orientation
and the sides of G surface. This is why the two labirinths, bounded by
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FIGURE 3. A. SCHOEN’s G (gyroid) surface: (a) its space
group pair Ia3d/I4,32, (b) its complex domain wowowiws,
(c) its hypberbolic surface group pair 2,4,6/2,2,2,3 in CON-
WAY’s notation, the second group 2,2,2,3 preserves the
‘colours’. The rotatory reflection (4) at Ry, reversing the
sides of G surface, induces a 4-rotation on the surface, which
changes the colours. The halfturn (2) at R; keeps the sides
(so the colours), its axis is perpendicular to the G surface.
(d) A simplified orbifold diagram refers to the orbit types of
Ia3d, constructed by its generators and fundamental domain
ABCDERyF [3, 21].

the surface, will be enantiomorphic, which was a new phenomenon in
the topic. The author observed that Ia3d has a minimal presentation

Ia3d = (r,z— 1 =r1%=2z"= (2r)° = (z 'rz’rzr)?)
> (r,z— 1=r1r’=2"= (zr)°) =2,4,6 (58)
according to the hyperbolic rotation group above. To derive this we can

construct a fundamental domain for Ia3d as the half cube Ry ABCDE
and the pyramid FRy,CDE together (Fig. 5). Then the face pairing
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isometries as generators, by the POINCARE algorithm for relations [16],
provide a presentation for Ia3d. Then we express the other generators
by z and r and get the simple presentation in (58).

The side preserving transforms in Ia3d form again a subgroup of
index two. Now this is the space group 14,32 (No. 214 in [5]), generated
by three halfturns

1 1 1
14,32: r:(z,y,2) = (—z+ §,z+ Y- 5) above at Ry,
ro: (2,9,2) = (—x + 1, —y, 2) = z* about BC,
1 1 1
r:(x,y,2) = (—z+ 27 -y + 2% + 5) =z 'rz. (59)

We can ‘easily’ present 14,32 as a subgroup of Ia3d

14132 = (I',I'(),I'* — 1= r2 = r(2) —

=1r** = (ror*r)® = (r*ror*r)? = (rorrorror*)?). (60)

The presentation of 2,2,2,3 is a ‘part’ of (60) as our Fig. 3¢ shows.
Namely the last two relations are missing.

Again, we adjust the patch RyRsR;R3 by the MEW theory in Fig.
3b. The surface normals involve

wo =0+ mO(O, 0, —]_) to RQ,

-1 -1
w1 = —Z(\/§— 1) — 1m, (0,@, E) to Rl,
1

-1 -1 -1
wy=—=(V3—=1)1+44) »my | —,—,— | to Ry,
Wy <_1 L ) to R (61)
W3 = 1w m3 | —,—,— ] to Rs.
3 2 3 NV 3
Analogously as earlier, we can formulate

Theorem 5.2: The MEW function for the G (gyroid) surface is (with
freedom of sign of the root, see at (30))

Qi(u) = —kg/Vud + 14u* + 1, where
—kg = 0.463711 — 7 - 0.593208, and (62)
y1 = 0.175091 to Ry in formula (56).

The G surface is associate to the D and P surfaces.
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6. A STRATEGY FOR CLASSIFYING ALL TPMS’S, SOME COMMENTS

Alan SCHOEN [20] was brave enough to overview the classical examples
of H. A. SCHWARZ and his students, and he found also new examples
by a systematic method. Hermann KARCHER [6] approached to the
topic by interpreting SCHOEN’s work with contemporary mathemat-
ics, refreshing the classical MEW theory. He collaborated with his
colleagues and extended the topic to spherical S® and hyperbolic H?
spaces [10, 18] as well. They combined these with modern discrete com-
putations and computer graphics [19]. All these have been reported e.g.
in (the preprint of) [9] where other references are listed, too.

The author met this problem, first, in a lecture of Alan L. MACKAY
[14] who wrote also other papers, partly with his doctorand H. TER-
RONES [17]. As a ‘lucky work’, at the change of 1999/2000 my colleague
Henrik FARKAS (Dept. of Chemical Physics of BUTE) asked me for
refereeing two related papers of Paul GANDY and Jacek KLINOWSKI
(Dept. of Chemistry, University of Cambridge, they do not know this
story yet). They computed and pictured the P and G surfaces by the
theory of elliptic integrals. (I hope their work will be published soon
with my suggestions). Then I had to refresh my knowledge about the
classical theory, crystallography non-euclidean geometry and topology
as reported here.

We discussed the topic in our geometry seminars. Jend SZIRMAI
helped me in some computations. Meanwhile I get the prepint [9] in
the framework of our collaboration with TU Berlin.

I am very grateful to all colleagues mentioned above, and to the
organizers of this conference mainly to Helmut POTTMANN and Hell-
muth STACHEL for the kind invitation in the framework of our contract
between TU’s Vienna and Budapest.

Since we are far from a complete classification of TPMS’s (without
selfintersection and with equivalent two labyrinths), I am optimistic
enough to suggest a Strategy for this problem:

1. The principle of classification is how to form a concept of equiva-
lence. As expressed in this report, a TPMS is characterized by the com-
plete symmetry group of its self isometries, and by the subgroups of side
preserving isometries. We may assume that side reversing transform
occurs, to guarantee the congruence of the two labyrinths, bounded
by TPMS, and so a balance for its stability. Triply periodicity just
means the existence of three independent translations. Thus we have
a space group pair for each TPMS, say I'/T", where I' means the com-
plete isometry group, and I is the side preserving subgroup of index
two.
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a). Since the classification of space groups are by some geometric equiv-
alence — called namely, affine equivariance — in general, we chose first
the group of topological transforms of E? to select the so called mawi-
mal classes of TPMS’s, each representing a family (see [2] for analogous
problem).

For instance, P type mimal surfaces, as to group pairs Im3m/
Pm3m (Th. 5.1) and Immm/Pmmm (in Remark of Sect. 5), re-
spectively, belong to the same family, and will be represented by the
cubic P surface to the first mentioned group pair. Intuitively, the
fundamental brick to Pmmm with the rectangular hexagon surface,
now with a side reversing point reflection in the centre of the brick
which extends Pmmm to Immm, can topologically be deformed to a
cube with a rectangular ‘regular’ hexagon surface, with maximal self-
symmetries (3m), thus we get Im3m/Pm3m. The hyperbolic sur-
face group pair was first 2%2,2,2/%2,2,2,2,2,2 and then it became to
*2,4,6/%2,2,2,3.

b). Now we are ready to formulate

Definition 6.1: Two minimal surfaces Fy, Fy with space group pairs
[y /T and Ty /T, respectively, belong to the same family, iff there is a
topological transform ¢ of B3, mapping the first surface onto the second
one and the following subgroup relations hold

e T < Ty, ¢ T < T, (63)

By words: ¢ deforms the actions of T'1/T'} on Fy onto the actions of
I'Y:= ¢ T and T'Y := ¢~ 'T"\¢ on F, so that the subgroup relations
in (63) stand, i.e., the two surfaces are homeomorphic but the second
one has more symmetries. If there exist ¢ above, such that equalities
stand in (63), then Fy and Fy are called equivariant, and they belong
to the same (equivariance) class. O

A TPMS of mazximal space group pair always exists, e.g., if the au-
tomorphism group of the surface can be realised by isometries. Such
a realization can be proved (!!!7). Then the ‘symmetry breakings’ of
such a representative surface F(I'/I") can be produced.

Werner F1sCcHER and Elke KocH [4] indicated some analogous things
for cubic space group pairs and surfaces containing certain straight
lines. They found new TPMS’s and made a mistake as well, being
mentioned later.

2. To look for representative surfaces of maximal space group pairs,
we consider a ‘simple fundamental domain’ of each space group, first,
for those with higher order point groups [5], e.g., in cubic and hexag-
onal systems. Then we insert a surface into a fundamental domain,
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taking in mind the face paring and the simple requirements in Sect.
2-3. This hyperbolic surface has an induced hyperbolic plane group
whose factor group will be the original space group with corresponding
generators and more relations. This also holds for the subgroups of
index two. This last criterion might exclude many space group pairs.
Reflection planes and axes of halfturns always help. If further symme-
try occurs, then we examine this richer space group pair with smaller
(easier) fundamental domains.

a). We have finitely many combinatorial possibilities for a surface con-
tour in a fundamental domain (i.e., in an orbit space or orbifold 2 /T’
[3, 21]) of a space group I'. Moreover, such a contour — by its side pair-
ing transforms — must determine a hyperbolic surface group (see e.g.
[13], such groups have already been classified by A. M. MACBEATH)
with a simply connected fundamental surface domain.

b). Any TPMS may have only finitely many super space group pairs
which can be read of [5], step by step, not easily. For instance, the
cubic P surface with Im3m/Pm3m is maximal (as Fig. 2a,c illustrate
it), but surprisingly it is not unique, as the surface C'(P) shows [4] with
H? group pair %446 /%2434.

3. To a combinatorial contour in a fundamental domain of a maximal
space group (consider its pair as well), we determine the fitting minimal
surface by the symmetry criteria (as in Sect. 3).

a). The MEW theory gives one possibility by the given surface normals,
thus the complex parameters in given points, as we illustrated in this
survey. This program needs computer of course, but nowadays it is
obvious and hopeful [6].

b). The method of discrete minimal surface gives a newer possibility
of realization [19, 9]. This is related to the general J.A.F. PLATEAU
problem (as LAGRANGE posed, especially, for smooth curve in Sect. 2).
The method is illustrated in Fig. 4a. We recall a

Lemma (from [K-P96]; Balancing Condition). The formula

# neigh-
) bours of P
a—PArea (of triangulation) := ;1 (ctgoy +ctgBi)(p—q;) =0

(64)

has to be fulfilled by every discrete minimal surface in every point P(p)
(meaning that the surface tension balances at P, i.e., the area gradient
vanishes in every P, as for a soap film.) ad
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The point system must be fitted to an appropriate boundary, with
increasing number of points.

I think that this method has a good chance in the future (see the nice
illustrations of [9], we show only Fig. 4b of them with kind permission
of the authors).

Remarks: Our strategy seems to be useful with a lot of technical prob-
lems. We mention the following.

1. The criterion of the presentation of space group pair and its hyper-
bolic plane group pair excludes e.g. the existence of TPMS by a3 /Pa3.
The space group Ia3 (No. 206 in [5]) is presented in Fig. 5a by gener-
ators

Ia3: r:AAC— AA,C (about AC),
Z . OA1A12 — CA12A2 (at A),
h: AA1A12A2 — AIAAQAIQ (BIEI) (65)

Going around the edge equivalence classes we get the relations by the
POINCARE algorithm [16] (see also the hyperbolic generalization 3 — p
in [22]):

Ia3 := (r,z,h—— 1 =r1* = z’r ! = h? =rhzhz 'hr 'h).  (66)

The subgroup Pa3 has a double fundamental domain obtained by the
halfturn h from that of Ia3. Besides r and z their h-conjugates in Ia3,
i.e.,, T = hrh

(f : AlADF—)AlAlgDZL) and z = hzh (Z : DAAQP—)DAQAlg)) will be the
generators of Pa3. We get the presentation:

Pa3 (No. 205, in [5])
=(r,z5z—1=r’=z2r'= =72t =rzz7 't !).(67)

Now, think a simply connected surface in the interior of the bipyra-
mid, so that the halfturn h transforms it onto, moreover, the surface
boundary follows the Ia3-paired faces of the bipyramid, similarly as it
is indicated by a dotted line in Fig. 5a. We can do this for a while, e.g.
B X By, but after that the surface pairing of Ia3 involves more than
two boundary lines meeting B, (say, then also Bo, etc.) on the faces of
the bipyramid. Thus we get selfintersection e.g. in B;. Other starting
(broken) line from By, say to Y on AC leads to similar contradiction
in few steps. A curve from B; to A on the surface of the bipyramid
can not be orthogonal to AC, since both angles By AC' and DAC' less
than rectangle. Since the rotational order of A is 3 (bigger than 2), this
would be a necessary condition for a TPMS through A. We conclude
to our
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FiGUuRE 4. (a) Neighbourhood around a point on a trian-
gulated discrete minimal surface. (b) The F-Rd surface of
A. SCHOEN by [9] to the space group Fm3m (No. 225) with
non-equivalent labyrinths.

Theorem 6.1: The space group pair 1a3/Pa3 does not permit any
TPMS. O

This contradicts to [4], however, the authors ‘modelled the surface’ in
their Fig. 5(7). They confess: ‘The existence of minimal surfaces with
the described properties is very probable but the mathematical proof
has still to be done.” This is not possible anymore!

2. T can prove that TPMS to Ia3d/Ia3 of FiSCHER and KOCH [4]
does exist, indeed. Here only a

Sketch of the proof. will be described: In Fig. 5b there are pictured
the former fundamental domain ABCDER,F of Ia3d as in Fig. 3a.
But we double this domain now by the halfturn r about H,G to get a
fundamental domain, now for Ia3, after appropriate face pairing.

Then we place the surface through the halfturn axes of Ia3d, as
follows

H,G forr, GF forr,, FH,forr, (68)
then through the arcs to z : RyH, — RyH,.
These transforms all reverse the side of the surface. Then we apply
the hafturn r to get a domain for side preserving hyperbolic group

and a new side pairing for the double polygon and double polyhedron,
consequently.
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Pa3 a3
(a) (b)

FIGURE 5. (a) Fundamental domains for space group Ia3:
the pyramid C AA;A19As, and its pair Pa3: the bipyramid
CAA A1 A9 D which can not contain a TPMS (without self-
intersection), contradicting to [4]. (b) A new possibility of
TPMS by Ia3d/Ia3 as indicated in [4] and interpreted by
the author. Very probably it was discovered also by S. LIDIN
[12] (1990).

Next we give the exact presentation of Ia3d and its subgroup, now
Ia3, of index two, as promised. The group Ia3d (No. 230) is generated
in Fig. 5b by

Ia3d: r:ABDE — BAED (about H,G)

z, : RyBH,AC — RyCH,;DB (at Ry)

zy: RyCA — Ry AE (at Ry)

ro: FCD — FDC (FH,)

t: RyCF — RyEF (RyF)

ry: FDE — FED (GF) (69)
Now

T, Z,:=2, Ty =Z 'z, Zy = zr, t = z5°, | = rot = (z 'rz)(zr)*
(70)

can be defined and all relations can be derived by the angular conditions

of H. POINCARE [16] Thus, we get a minimal presentation in (58),
indeed. But now, according to the surface HiGF HyRy we can derive
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a hyperbolic plane group 4%2,3 as follows

Ia3d > (z,rr,r,—1=z'=r’=rl=

= r% = zflrer = (r2r1)3 = (rlr)z) =: 4*2,3 (Fig. 5b071)

That means, the side reversing rotatory reflection z induces a 4-rotation
in H?. This closes the boundary component (after %), where dihedral

corners 3, 3 appear. The group Ta3 (No. 206) is generated by Fig. 5b
Ia3 : Zy = Z1T : RQCBA — RQAUE (at RQ)

t: RQCF — RoEF (about RQF)

h:=rr: DFEF  DFEF (DE)

s:=ryr: FCD +— FEC (screw motion)

22 = TZor : EQGAB — E2BCD (at Eg)

t:=rtr: EQCF — EQDF (EQF) (72)
Now with

z:=12, and h, t =22 s =th =2z’h, z, =zhz %, t = zhz 'hz >
(73)
we get just the presentation in (66).

For side preserving hyperbolic group we get the surface group with
symbol: 2,2,3® by Fig. 5b [13]. That means, the corresponding orb-
ifold is over the projective plane with cone points as the rotation orders
show. The realization of minimal surface Ia3d/Ia3 can be solved by
MEW-theory again by careful computations, analogously as before or
by discrete method (J. SZIRMAI obtained k& = 0.463711 + i - 0.593208
for the ®(u) analogous to (48), but with opposite sign in the z-coordi-
nate). It turns out that this surface is associate to P, D, G surfaces. In
[9] there is mentioned and cited [12] that S. LIDIN (with his colleagues)
has found an associate surface to above ones by numerical method.
The name ‘lidinoid’” has to be changed to FKL surface or, simply to
Ia3d/Ia3 surface. Or to Ia3d/I143d surface as follows?

3. It is very probable now that the minimal surface to space group pair
Ia3d/143d, discovered and modelled (not proved) by W. FISCHER
and E. KocH, Fig. 1 in [4], does indeed exist and belong to the above
associate company (This is the case with 14,32/P4,32, too.) Our
method in Fig. 5b seems to be effective. ‘Only’ the Ia3d/I143d pair
has to be modelled now by another plane intersection through FFH,
for the fundamental domain of Ia3d, with convenient side face pairing.
Then I43d will have the former double polyhedron as fundamental
domain with other face pairing as before. The surface will have the
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frame, as indicated in [4] by WYCKOFF positions [5]
G(222) —2 - F(32) — Hy(2) — Ry(3) — H1(2) -G (74)

for Ia3d and a hyperbolic surface 6x2,3. The halfturn about H,G
results the side preserving surface group 2,3,3® similarly as before.
Then comes the realization by MEW theory or by discrete minimal
surface.

We intend to deal with these problems with my colleages A. BOLCS-
KEI and J. SZIRMAI and others. I expect for results in the collaboration
with geometers in Berlin and Vienna and with colleagues interested in
chemistry, crystallography, physics and other sciences.
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