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MINIMAL SURFACES AND CRYSTALLOGRAPHYEMIL MOLN�ARAbstract. This survey reports on some directions in the theoryof triply periodic minimal surfaces (TPMS) where the computergives new possibilities in the graphical presentation and in the ex-act numerical calculations as well. Some numerical data and state-ments, in some remarks, are mentioned �rst time here as partlyjoint results with Jen�o Szirmai and Attila B�olcskei, which willbe published later. A classi�cation strategy is formulated at theend, where we prove, respectively disprove the existence of someTPMS's.Dedicated to Professor Johannes B �OHM on the occasion of his 75thbirthday 1. IntroductionWe �rst start with the famous Schwarz'D (diamond) minimal surfacedescribed in Fig. 1 by the pair of space groups Pn�3m/Fd�3m.Here in picture (a) we have indicated the surface patch R0R1R2 andits image BR1R2 under the halfturn about R1R2. The patch R0R1R2will be extended under the crystallographic space group Pn�3m (No.224 in [5]), which is generated byPn�3m: r1 : (x; y; z) 7! (�x + 1; y;�z)(R1R0);r2 : (x; y; z) 7! (�z + 12 ;�y + 12 ;�x + 12)(R1R2);m : (x; y; z) 7! (y; x; z) (in the plane OR0AR2); (1)i.e., by two halfturns (2) and a plane reection (m). The surface isincident to the halfturn axes and perpendicular to the reection plane.The last transform preserves the sides of the surface, the halfturnschange them.Considering only the side preserving transforms of the surface in thespace group Pn�3m, we obtain its subgroup Fd�3m (No. 227) of index2000 Mathematics Subject Classi�cation. 53A10, 20H15.c2001 Institut f�ur Geometrie, TU Wien ISBN 3-902233-00-147



48 EMIL MOLN�ARtwo [5], generated by (x; y; z) 7! (y; x; z) (0R0AR2);Fd�3m : (x; y; z)! (x; z; y) (OAB); (2)(x; y; z)! (z + 12 ;�y + 12 ; x� 12):The last halfturn axis is orthogonal to the plane R0R1R2 in R1. Thereection planes OR0A, OBA and their images under the latter half-turn form a so-called sphenoid, i.e., a tetrahedron of congruent faceswith opposite rectangles at AR0 and OB, respectively, and �3 angles atthe remaining 4 edges.The space group pairPn�3m/Fd�3m exactly describes the whole min-imal D-surface if the patch R0R1R2 will correctly be adjusted by thecomplex parameter domain !0!1!2 in Fig. 1b (to be explained later inSect. 4).In Fig. 1c we have symbolically drawn the surface fundamental do-mains of the hyperbolic plane group pair, induced by our space grouppair. Pn�3m induces a hyperbolic plane reection group ?2,4,6 in JohnConway's notation [13]. That means, the reection lines have the an-gles �2 , �4 and �6 at R1 (222), R0 (�4m2) and R2 (�3m), respectively.In parentheses we have inserted the stabilizers of the points in crys-tallographic notations, respectively. The side preserving space groupFd�3m induces the hyperbolic plane group 2?2,3. That means, thereection lines R0R2; R2B has two corners: �2 at R0 � B and �3 at R2.Furthermore, the halfturn in Fd�3m induces a plane halfturn, aboutR1, as denoted by 2 before the star ? opening the boundary componentof the factor surface (orbifold) H 2/(2?2,3). Thus we have obtainedthe hyperbolic plane group pair?2,4,6/2?2,3 of D surface. (3)We remark that besides the generators of Pn�3m and ?2,4,6, also ingeneral, the relations (by Poincar�e algorithm [16]) refer to each other:Pn�3m > �r1; r2;m 1 = r21 = r22 ==m2 = (r1r2)2 = (mr1)4 = (mr2)6� = ?2,4,6; (4)according to the fact that the action of Pn�3m on the D-surface inducesjust the action of ?2,4,6. This also guarantees that the D surface doesnot have self-intersections. The symbol > means that Pn�3m has afurther relation, namely [15]:1 = (mr1r2)6: (5)
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(a) (b)

(c) (d)Figure 1. H.A.Schwarz' D (diamond) surface: (a) itsspace group pair Pn�3m/ Fd�3m by fundamental domains,(b) its complex domain !0!1!2, (c) its symbolic hyperbolicsurface group pair ?2,4,6/ 2?2,3 (d) some global drawingof D surface by Alan L. Mackay [14], glued together fromtetrahedral saddle surface pieces. Warning: Such a piece isnot a hyperbolic paraboloid (as a usual ruled (straight line)surface, called saddle simply).In Fig. 1d we see a fragment of our D surface by A.L. Mackay from[14] which is very inspiring, although the black and white coloring isnot traditional. In general, the side preserving subgroups Fd�3m >2?2,3 are presented as keeping the colours. This convention is not



50 EMIL MOLN�ARfollowed here. Congruent tetrahedral saddle surface pieces are gluedtogether in a cube. Then the continuation is more obvious.2. About the classical theoryIn this sketch we follow the nicely motivated books [7, 8] of Kom-merell brothers, although the newer books, e.g. [1], [11] are morecomplete in some details. J.L. Lagrange (1760/61) posed the follow-ingProblem: Let C be a closed curve and z = f(x; y) be a surface incidentto C such that the surface areaS = ZZT q1 + f 2x + f 2y dx ^ dy (6)is minimal over a parameter domain T whose border curve de�nes C.2Lagrange himself, by his variatonal method, found the partial di�er-ential equation(1 + f 2y )fxx � 2fxfyfxy + (1 + f 2x)fyy = 0 (7)for a function R2 � T 3 (x; y) 7! f(x; y) 2 R (smooth enough). Heree.g. fx := @f@x , fxy = fyx := @2f@x@y denote the partial derivatives as usual.Meusnier (1776) observed that (7) expresses�1 + �2 = 0 = 1R1 + 1R2 (8)for the main (principal) curvatures �i and their radiiRi = 1�i , (i = 1; 2).In Gauss' surface settingR2 � U 3 (u; v) 7! r(u; v) = (x(u; v); y(u; v); z(u; v)) 2 E 3 (9)the equation of minimal surfaces0 = 1R1 + 1R2 = EN � 2FM +GLEG� F 2 (10)holds for the �rst and second fundamental valuesE := hru; rui; F := hru; rvi; G := hrv; rvi;L := hruu;mi; M := hruv;mi; N := hrvv;mi:Here m := ru � rv=D with D := pEG� F 2 = jru � rvj denotes thesurface normal unit vectorm(u; v) =: (a(u; v); b(u; v); c(u; v)) (11)and its coordinates.



MINIMAL SURFACES AND CRYSTALLOGRAPHY 51G. Monge (1784) found the ingenious idea: Try to solve the equa-tion (10) by choosing E = 0 = G through new complex parametersu = u1 + iu2; v = v1 + iv2; both in C : (12)Then the �rst fundamental form becomes(ds)2 = 2Fdudv; with F 6= 0; (13)and the following consequences hold:0 =M := hruv;mi; 0 = Ev := 2hruv; rui; 0 = Gu := 2hruv; rvi (14)=) ruv = 0: (15)Now ruv = 0 and 0 = E = G imply for r(x(u; v); y(u; v); z(u; v)) :x = U1(u) + V1(v); y = U2(u) + V2(v); z = U3(u) + V3(v);and U 021 + U 022 + U 023 = 0 = V 021 + V 022 + V 023 (16)with U 01 := dduU1; V 01 := ddvV1; etc. . .Let us insert from [7, 8] some preliminaryRemarks on minimal curves:1. Consider a complex cone0 = x2 + y2 + z2 = (x+ iy)(x� iy) + z2 (17)by parameters (u; v) 2 C 2 ina) x + iy�z = zx� iy =: u; b) x� iy�z = zx + iy =: v: (18)These describe so-called minimal straight line families of the cone (17).Each straight line has a complex variable w, e.g. for u-family (18a)x = w2 (1� u2); y = iw2 (1 + u2); z = wu: (19)2. Analogously, the complex unit sphere equation0 = x2 + y2 + z2 � 1 = (x+ iy)(x� iy) + (z + 1)(z � 1) (20)leads to two minimal straight line families, parametrized by u and v,respectively:a) x+ iy1� z = 1 + zx� iy = u b) x� iy1� z = 1 + zx + iy = v; (21)and to a complex parametrization of the complex unit sphere:x = u+ v1 + uv ; y = i(v � u)1 + uv ; z = uv � 11 + uv (22)



52 EMIL MOLN�ARwith some extra conditions on (x; y; z) = (0; 0; 1). We obtain real pointsof the unit sphere i�v = u; moreover (0; 0; 1) for u =1; C1 := C [ f1g: (23)Then we get the real unit sphere by one complex parameteru = u1 + iu2 : a = u+ u1 + uu = 2u11 + u21 + u22 ;b = i(u� u)1 + uu = 2u21 + u21 + u22c = uu� 11 + uu = u21 + u22 � 11 + u21 + u22 ; (24)u =1 7! (0; 0; 1):This is the stereographic projection of C1 , as (a; b; 0) = (u1; u2) planeonto the unit sphere from (0; 0; 1).3. A minimal curve is de�ned as a complex curveC � I 3 u 7! r(u) 2 C 3 (25)whose any tangent ddur = ( dxdu , dydu ; dzdu) := (x0; y0; z0) satis�esx02 + y02 + z02 = 0; i.e., 0 = (ds)2 := (dx)2 + (dy)2 + (dz)2: (26)As above by (19) with an `arbitrary' complex function w = �(u), weget the general equation of a minimal curvex = 12 Z (1� u2)�(u)du; y = i2 Z (1 + u2)�(u)du; z = Z u�(u)du(27)by integrating along a curve in a simply connected domain from anystarting point.24. We notice at (26) that the sign of coordinates in (27) can indepen-dently be chosen. This will be important also later on!Putting together the formulas in (16), (26), (27) we get the complexminimal surfaceC 2 � U 3 (u; v) 7! r(u; v) 2 C 3 ; de�ned byx = 12 Z (1� u2)�(u)du+ 12 Z (1� v2)	(v)dv;y = i2 Z (1 + u2)�(u)du� i2 Z (1 + v2)	(v)dv; (28)z = Z u�(u)du+ Z v	(v)dv:



MINIMAL SURFACES AND CRYSTALLOGRAPHY 53This will provide the real minimal surface equation i� u and v = u areconjugate, and for �(u) and 	(v) holds	(u) = �(u); i.e., they are conjugate functions: (29)(The formal generalization by a further smooth bijection u 7! 
(u) ofC is not essential.)Equivalently we get theMonge-Enneper-Weierstrass (1866, brief-ly: `MEW') formulas for the real minimal surfaces:x = Re Z (1� u2)�(u)du;y = Re Z i(1 + u2)�(u)du (30)z = Re Z 2u�(u)dutaken the real parts of the integrals up to a sign, independently for eachcoordinate (see Rem. 2.4). Here we integrate on any complex curve(with real parameter)R � I 3 t 7! u(t) = u1(t) + iu2(t) 2 U � C (31)in a simply connected domain U of C , where the starting point is �xed.The endpoint u = u1 + iu2 provides us the two real parameters (u1; u2)of the minimal surface (30). 2The other important data can be read o� (28), �rst again for a complexminimal surface, then for a real one:(ds)2 = (1 + uv)2�(u)	(v)dudv; (32)the surface normal unit vector m(a; b; c) ism = ru � rv=D;a = u+ v1 + uv ; b = i(v � u)1 + uv ; c = uv � 11 + uv: (33)For the spherical mapping, which associates any (u; v)-point with itsunit normal vector, we have the image arc length quadrat(ds0)2 = (da)2 + (db)2 + (dc)2 = 4dudv(1 + uv)2 ;and L = ��(u); M = 0; N = �	(v): (34)



54 EMIL MOLN�ARThe Gauss curvature isK = �1�2 = 1R1R2 = �4(1 + uv)4�(u)	(v) ;i.e. R1 = �R2 = 12(1 + uv)2p�(u)	(v) (35)(ds0)2 = �K(ds)2 with 	(u) = �(u):In general, it holds theTheorem: A minimal surface is conform (locally similar) with itsspherical image by the surface normals. 2This is a characteristic theorem for the minimal surfaces (and for thespheres). 3. Associate minimal surfacesThe last statement can be strengthened by the followingTheorem 3.1: Isometric minimal surfaces S and S� can be equallyorientied in the space E 3 so that they have parallel surface normalsin the corresponding (equally parametrized) points. Then S� has thefunctions ��(u) and 	�(v) such that��(u) = ei��(u); 	�(v) = e�i�	(v): (36)Here � is the angular constant by Bonnet (1853), it measures theangle of corresponding line elements dr and dr� bycos� = hdr; dr�ijdrjjdr�j ; 0 � � � � (37)2The above S and S� are called associate minimal surfaces. Conjugateminimal surfaces are de�ned by � = �2 . We recall theProblem: (Bj�orling-Bonnet-Schwarz, 1864) Construct a mini-mal surface to a given curve and to a normal vector �eld given alongthe curve.Bonnet and independently H.A. Schwarz found the basicTheorem 3.2: The above problem has a unique solution for a smoothcurve and for its smooth normal vector �eld. 2



MINIMAL SURFACES AND CRYSTALLOGRAPHY 55Consequences: 1. Any incident straight line is a halfturn axis of aminimal surface (see the introductory D surface).2. Any plane, which is perpendicular to a minimal surface in eachintersection point, is a symmetry plane of it.3. In a reection point or at a rotation centre of order at least 3, bothmain curvatures have to be zero (at point of the minimal surface)4. A minimal surface is uniquely determined (locally)a) by a geodesic curve,b) by an asymptotic curve,c) by a main curvature curve.The most famous real minimal surfaces are the catenoid as revolutionsurface about the z axispx2 + y2 = a(ez=2a + e�z=2a); (38)and the helicoid as screw ruled (straight line) surface along the z axisx = y tan z2a: (39)The catenoid and the helicoid are conjugate minimal surfaces for thesame real parameter a > 0.4. Construction of minimal surfaces by MEW formulasWe turn back to ourD minimal surface in Fig. 1, and we shall constructit by Monge-Enneper-Weierstrass (briey MEW) formulas (30).The function �(u) has to be produced, �rst, by the surface normalm(a(u); b(u); c(u)) with u 2 U � C ; (40)second, by its symmetries, thus by the at points of zero curvature (seeformulas (24), (32), (35), (30)).In the points R0 �12 ; 12 ; 0�, R1 �12 ; 14 ; 0�, R2 �14 ; 14 ; 14� we can choose thesurface normals by (24):m0(0; 0;�1) to !0 = 0;m1�� 1p2 ; 0;� 1p2� to !1 = �(p2� 1); (41)m2�� 1p3 ;� 1p3 ;� 1p3� to !2 = �12(p3� 1)(1 + i);



56 EMIL MOLN�ARrespectively as Fig. 1b shows. By the symmetries �3m at R2(!2), theGauss curvature K has to be 0, thus it holds�[!2 = �12(p3� 1)(1 + i)] =1 as a limit. (42)We look at (24) that the parameter transformu 7! u0 = �1=u; 0 !1 yields (a; b; c) 7! (�a;�b;�c) (43)and the point reection of Pn�3m in R2R2 : X(x; y; z) 7! X?(�x + 12 ;�y + 12 ;�z + 12) producesR?2[�1=!2 = 12(p3 + 1)(1 + i)] = R2 �14 ; 14 ; 14� (44)R?1(�1=!1) = �0; 14 ; 12� ; R?0(1) = (0; 0; 1):We can also check that, with !2 from (41),!2; i!2; �!2; �i!2; �1!2 ; �i!2 ; 1!2 ; i!2; ; i.e., the roots of (45)(u4 � !42) �u4 � (�1!2 )4� = u8 + 14u4 + 1 all make �!1:We could continue these observations which indicate, how to chooseother equivalent domains !?0!?1!?2 � C1 for describing our minimalsurface, in general. Our essential (and may be new)Theorem 4.1: The MEW function �(u) satis�es the functional equa-tion ���1u � = u4�(u) (46)if a point reection belongs to the symmetry group of the minimal sur-face (the point coincides with the surface).The proof comes from (43) by the integral transformu0 = �1u ; du0 = �1u�2 � du; du0 = �1u�2 du (47)in (28) with v = u and (29). 2Then we can `easily' check a well usedTheorem 4.2: The MEW function for the D minimal surface is (withfreedom of sign of the root, see at (30))�D(u) = �kD=pu8 + 14u4 + 1 (48)



MINIMAL SURFACES AND CRYSTALLOGRAPHY 57where kD � i � 0:593208 2The normalized constant kD is computed by J.Szirmai. To this theMEW formulas (30) have to be integrated, �rst from 0 to !1 = �(p2�1) for the zero z-di�erence of R0 and R1, then from 0 to !2, say, forz-di�erence 14 of points R0 and R2.I saw the Schwarz formula (48) at A.L. Mackay and H. Ter-rones [17] in their lecture in Bielefeld (1990) in equivalent form. Iwould accept any information about the constant kD with thanks, alsofor the later constants. The accuracy is questionable yet.5. The cubic P surface and the G (gyroid) surfaceThe cubic P surface of H.A. Schwarz will be conjugate to the Dsurface (Th. 3.1), the G (gyroid) surface of A. Schoen [20] will beassociate to both ones.In Fig. 2a we see the P surface patch spanned by pointsR0 �12 ; 0; 14� ; R1�12 ; y1; y1� ; R2�14 ; 14 ; 14� : (49)This patch will be continued by the space group Im�3m of E 3 (No. 229by [5]), generated byIm�3m : m1 : (x; y; z) 7! (�x + 1; y; z);m2 : (x; y; z) 7! (x; z; y);r : (x; y; z) 7! (�y + 12 ;�x+ 12 ;�z + 12); (50)i.e., we have two plane reections (m) and a halfturn (2) about R0R2.The halfturn r changes the sides of P surface, both reections preservethem. The index two subgroup of side preserving transforms in Im�3mwill be Pm�3m (No. 221), generated bym1 and m2 above and by their r-conjugates; (51)i.e., in the side planes of tetrahedron OABC. In Fig. 2c we see theinduced hyperbolic group pair ?2,4,6/?2,2,2,3. The �rst group isas at the D surface, the second one is generated by 4 line reectionsby dihedral angles �2 , �2 , �2 , �3 as listed in the symbol. Again, thepresentations refer to each otherIm�3m > (m1;m2; r 1 =m21 =m22 == r2 = (m1m2)2 = (m1r)4 = (m2r)6) =: ?2,4,6 (52)
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(a) (b)

(c) (d)Figure 2. H. A. Schwarz' cubic P surface: (a) its spacegroup pair Im�3m/Pm�3m, (b) its complex domain !0!1!2,(c) its hyperbolic surface group pair ?2,4,6/?2,2,2,3 inConway's notation, (d) A global picture of cubic P mini-mal surface by H. Karcher and K. Polthier from [6].proving the lack of sel�ntersection. Im�3m has one relation more [15]:1 = (m1rm2r)4: (53)Now, we have to adjust the patch as indicated in Fig. 2b by the unitsurface normals. Then by the complex parameters, as at (41) before,we have



MINIMAL SURFACES AND CRYSTALLOGRAPHY 59!0 = 0 7!m0(0; 0;�1) to R0;!1 = �i(p2� 1) 7!m1(0; �1p2 ; �1p2) to R1; (54)!2 = �12(p3� 1)(1 + i) 7!m2(�1p3 ; �1p3 ; �1p3) to R2:Now, by Th. 4.1 and arguments there, we formulateTheorem 5.1: The MEW function for the cubic P minimal surface is�P (u) = �kP=pu8 + 14u4 + 1 where � kP = 0:463711 (55)i.e. �P (u) � i�D; then y1 = 0:175091 : : : to R1 �12 ; y1; y1� : 2The sign � means proportionality by a positive constant.See also a global picture of cubic P surface in Fig. 2d from [6] whereother (non-cubic) P -surfaces with fewer symmetries are drawn as well.Remark: Side reversing transforms might be not required, in general(see Fig. 4b). Then one space group characterizes the situation (notuniquely). For instance Pmmm (No. 47 by [5] from the orthorhombiccrystal system) allows many minimal surfaces. Then a brick of 6 planereections, as a fundamental domain, may contain many hyberbolicrectangular hexagons, each of them as generating surface piece, per-pendicular to the brick sides. Further point reection, reversing thesides of the surface and introducing the pair Immm/Pmmm, makesthe surface more stabil.In Figure 3a there is described A. Schoen's G surface, indicated byits fundamental patch which is spanned by pointsR0�12 ; 0;�14�; R2(0; 0; 0); R1�14 ; y1;�12 + y1�; R3�12 ; 12 ;�12�: (56)This patch will be extended by the space group (see also Fig. 5b) Ia�3d(No. 230 by [5]), generated only by two transformsIa�3d : z : (x; y; z) 7! (y + 12 ;�x + 12 ;�z � 12) at R0 (57)r : (x; y; z) 7! (�x + 12 ; z + 12 ; y � 12) at R1:Thus, we have a rotatory reection z, reversing the space orientationand the sides of G surface. This is why the two labirinths, bounded by
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(a) (b)
(c) (d)Figure 3. A. Schoen's G (gyroid) surface: (a) its spacegroup pair Ia�3d/I4132, (b) its complex domain !0!2!1!3,(c) its hypberbolic surface group pair 2,4,6/2,2,2,3 in Con-way's notation, the second group 2,2,2,3 preserves the`colours'. The rotatory reection (�4) at R0, reversing thesides of G surface, induces a 4-rotation on the surface, whichchanges the colours. The halfturn (2) at R1 keeps the sides(so the colours), its axis is perpendicular to the G surface.(d) A simpli�ed orbifold diagram refers to the orbit types ofIa�3d, constructed by its generators and fundamental domainABCDER2F [3, 21].the surface, will be enantiomorphic, which was a new phenomenon inthe topic. The author observed that Ia�3d has a minimal presentationIa�3d := (r; z 1 = r2 = z4 = (zr)6 = (z�1rz2rzr)2)> (r; z 1 = r2 = z4 = (zr)6) = 2,4,6 (58)according to the hyperbolic rotation group above. To derive this we canconstruct a fundamental domain for Ia�3d as the half cube R2ABCDEand the pyramid FR2CDE together (Fig. 5). Then the face pairing



MINIMAL SURFACES AND CRYSTALLOGRAPHY 61isometries as generators, by the Poincar�e algorithm for relations [16],provide a presentation for Ia�3d. Then we express the other generatorsby z and r and get the simple presentation in (58).The side preserving transforms in Ia�3d form again a subgroup ofindex two. Now this is the space group I4132 (No. 214 in [5]), generatedby three halfturnsI4132 : r : (x; y; z) 7! (�x + 12 ; z + 12 ; y � 12) above at R1;r0 : (x; y; z) 7! (�x + 1;�y; z) = z2 about BC;r? : (x; y; z) 7! (�z + 12 ;�y + 12 ;�x + 12) = z�1rz: (59)We can `easily' present I4132 as a subgroup of Ia�3dI4132 = (r; r0; r? 1 = r2 = r20 == r?2 = (r0r?r)3 = (r?r0r?r)2 = (r0rr0rr0r?)2): (60)The presentation of 2,2,2,3 is a `part' of (60) as our Fig. 3c shows.Namely the last two relations are missing.Again, we adjust the patch R0R2R1R3 by the MEW theory in Fig.3b. The surface normals involve!0 = 0 7!m0(0; 0;�1) to R0;!1 = �i(p2� 1) 7!m1�0; �1p2 ; �1p2� to R1;!2 = �12(p3� 1)(1 + i) 7!m2��1p3 ; �1p3 ; �1p3� to R2;!3 = i!2 7!m3��1p3 ; 1p3 ; 1p3� to R3: (61)Analogously as earlier, we can formulateTheorem 5.2: The MEW function for the G (gyroid) surface is (withfreedom of sign of the root, see at (30))�G(u) = �kG=pu8 + 14u4 + 1; where�kG = 0:463711� i � 0:593208; and (62)y1 = 0:175091 to R1 in formula (56):The G surface is associate to the D and P surfaces.



62 EMIL MOLN�AR6. A strategy for classifying all TPMS's, some commentsAlan Schoen [20] was brave enough to overview the classical examplesof H. A. Schwarz and his students, and he found also new examplesby a systematic method. Hermann Karcher [6] approached to thetopic by interpreting Schoen's work with contemporary mathemat-ics, refreshing the classical MEW theory. He collaborated with hiscolleagues and extended the topic to spherical S3 and hyperbolic H 3spaces [10, 18] as well. They combined these with modern discrete com-putations and computer graphics [19]. All these have been reported e.g.in (the preprint of) [9] where other references are listed, too.The author met this problem, �rst, in a lecture of Alan L. Mackay[14] who wrote also other papers, partly with his doctorand H. Ter-rones [17]. As a `lucky work', at the change of 1999/2000 my colleagueHenrik Farkas (Dept. of Chemical Physics of BUTE) asked me forrefereeing two related papers of Paul Gandy and Jacek Klinowski(Dept. of Chemistry, University of Cambridge, they do not know thisstory yet). They computed and pictured the P and G surfaces by thetheory of elliptic integrals. (I hope their work will be published soonwith my suggestions). Then I had to refresh my knowledge about theclassical theory, crystallography non-euclidean geometry and topologyas reported here.We discussed the topic in our geometry seminars. Jen�o Szirmaihelped me in some computations. Meanwhile I get the prepint [9] inthe framework of our collaboration with TU Berlin.I am very grateful to all colleagues mentioned above, and to theorganizers of this conference mainly to Helmut Pottmann and Hell-muth Stachel for the kind invitation in the framework of our contractbetween TU's Vienna and Budapest.Since we are far from a complete classi�cation of TPMS's (withoutsel�ntersection and with equivalent two labyrinths), I am optimisticenough to suggest a Strategy for this problem:1. The principle of classi�cation is how to form a concept of equiva-lence. As expressed in this report, a TPMS is characterized by the com-plete symmetry group of its self isometries, and by the subgroups of sidepreserving isometries. We may assume that side reversing transformoccurs, to guarantee the congruence of the two labyrinths, boundedby TPMS, and so a balance for its stability. Triply periodicity justmeans the existence of three independent translations. Thus we havea space group pair for each TPMS, say �=�0, where � means the com-plete isometry group, and �0 is the side preserving subgroup of indextwo.



MINIMAL SURFACES AND CRYSTALLOGRAPHY 63a). Since the classi�cation of space groups are by some geometric equiv-alence| called namely, aÆne equivariance| in general, we chose �rstthe group of topological transforms of E 3 to select the so called maxi-mal classes of TPMS's, each representing a family (see [2] for analogousproblem).For instance, P type mimal surfaces, as to group pairs Im�3m/Pm�3m (Th. 5.1) and Immm/Pmmm (in Remark of Sect. 5), re-spectively, belong to the same family, and will be represented by thecubic P surface to the �rst mentioned group pair. Intuitively, thefundamental brick to Pmmm with the rectangular hexagon surface,now with a side reversing point reection in the centre of the brickwhich extends Pmmm to Immm, can topologically be deformed to acube with a rectangular `regular' hexagon surface, with maximal self-symmetries (�3m), thus we get Im�3m/Pm�3m. The hyperbolic sur-face group pair was �rst 2?2,2,2/?2,2,2,2,2,2 and then it became to?2,4,6/?2,2,2,3.b). Now we are ready to formulateDe�nition 6.1: Two minimal surfaces F1, F2 with space group pairs�1=�01 and �2=�02, respectively, belong to the same family, i� there is atopological transform ' of E 3 , mapping the �rst surface onto the secondone and the following subgroup relations hold'�1�1' < �2; '�1�01' < �02: (63)By words: ' deforms the actions of �1=�01 on F1 onto the actions of�'1 := '�1�1' and �0'1 := '�1�01' on F2 so that the subgroup relationsin (63) stand, i.e., the two surfaces are homeomorphic but the secondone has more symmetries. If there exist ' above, such that equalitiesstand in (63), then F1 and F2 are called equivariant, and they belongto the same (equivariance) class. 2A TPMS of maximal space group pair always exists, e.g., if the au-tomorphism group of the surface can be realised by isometries. Sucha realization can be proved (!!!?). Then the `symmetry breakings' ofsuch a representative surface F (�=�0) can be produced.Werner Fischer and ElkeKoch [4] indicated some analogous thingsfor cubic space group pairs and surfaces containing certain straightlines. They found new TPMS's and made a mistake as well, beingmentioned later.2. To look for representative surfaces of maximal space group pairs,we consider a `simple fundamental domain' of each space group, �rst,for those with higher order point groups [5], e.g., in cubic and hexag-onal systems. Then we insert a surface into a fundamental domain,



64 EMIL MOLN�ARtaking in mind the face paring and the simple requirements in Sect.2{3. This hyperbolic surface has an induced hyperbolic plane groupwhose factor group will be the original space group with correspondinggenerators and more relations. This also holds for the subgroups ofindex two. This last criterion might exclude many space group pairs.Reection planes and axes of halfturns always help. If further symme-try occurs, then we examine this richer space group pair with smaller(easier) fundamental domains.a). We have �nitely many combinatorial possibilities for a surface con-tour in a fundamental domain (i.e., in an orbit space or orbifold E 3=�[3, 21]) of a space group �. Moreover, such a contour | by its side pair-ing transforms | must determine a hyperbolic surface group (see e.g.[13], such groups have already been classi�ed by A. M. Macbeath)with a simply connected fundamental surface domain.b). Any TPMS may have only �nitely many super space group pairswhich can be read of [5], step by step, not easily. For instance, thecubic P surface with Im�3m/Pm�3m is maximal (as Fig. 2a,c illustrateit), but surprisingly it is not unique, as the surface C(P ) shows [4] withH2 group pair ?446/?2434.3. To a combinatorial contour in a fundamental domain of a maximalspace group (consider its pair as well), we determine the �tting minimalsurface by the symmetry criteria (as in Sect. 3).a). The MEW theory gives one possibility by the given surface normals,thus the complex parameters in given points, as we illustrated in thissurvey. This program needs computer of course, but nowadays it isobvious and hopeful [6].b). The method of discrete minimal surface gives a newer possibilityof realization [19, 9]. This is related to the general J.A.F. Plateauproblem (as Lagrange posed, especially, for smooth curve in Sect. 2).The method is illustrated in Fig. 4a. We recall aLemma (from [K-P96]; Balancing Condition). The formula@@P Area (of triangulation) := # neigh-bours of PXi=1 (ctg�i + ctg�i)(p� qi) = 0(64)has to be ful�lled by every discrete minimal surface in every point P (p)(meaning that the surface tension balances at P , i.e., the area gradientvanishes in every P , as for a soap �lm.) 2



MINIMAL SURFACES AND CRYSTALLOGRAPHY 65The point system must be �tted to an appropriate boundary, withincreasing number of points.I think that this method has a good chance in the future (see the niceillustrations of [9], we show only Fig. 4b of them with kind permissionof the authors).Remarks: Our strategy seems to be useful with a lot of technical prob-lems. We mention the following.1. The criterion of the presentation of space group pair and its hyper-bolic plane group pair excludes e.g. the existence of TPMS by Ia�3/Pa�3.The space group Ia�3 (No. 206 in [5]) is presented in Fig. 5a by gener-ators Ia�3 : r : AA1C 7! AA2C (about AC);z : CA1A12 7! CA12A2 (at A);h : AA1A12A2 7! A1AA2A12 (B1B1): (65)Going around the edge equivalence classes we get the relations by thePoincar�e algorithm [16] (see also the hyperbolic generalization 3! pin [22]):Ia�3 := (r; z;h 1 = r3 = z2r�1 = h2 = rhzhz�1 hr�1h): (66)The subgroup Pa�3 has a double fundamental domain obtained by thehalfturn h from that of Ia�3. Besides r and z their h-conjugates in Ia�3,i.e., r = hrh(r : A1AD 7!A1A12D4) and z = hzh (z : DAA2 7!DA2A12)) will be thegenerators of Pa�3. We get the presentation:Pa�3 (No. 205, in [5])= (r; z; r; z 1 = r3 = z2r�1 = r3 = z2r�1 = rzz�1r�1):(67)Now, think a simply connected surface in the interior of the bipyra-mid, so that the halfturn h transforms it onto, moreover, the surfaceboundary follows the Ia�3-paired faces of the bipyramid, similarly as itis indicated by a dotted line in Fig. 5a. We can do this for a while, e.g.B1X B2, but after that the surface pairing of Ia�3 involves more thantwo boundary lines meeting B1 (say, then also B2, etc.) on the faces ofthe bipyramid. Thus we get sel�ntersection e.g. in B1. Other starting(broken) line from B1, say to Y on AC leads to similar contradictionin few steps. A curve from B1 to A on the surface of the bipyramidcan not be orthogonal to AC, since both angles B1AC and DAC lessthan rectangle. Since the rotational order of A is 3 (bigger than 2), thiswould be a necessary condition for a TPMS through A. We concludeto our
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(a) (b)Figure 4. (a) Neighbourhood around a point on a trian-gulated discrete minimal surface. (b) The F-Rd surface ofA. Schoen by [9] to the space group Fm�3m (No. 225) withnon-equivalent labyrinths.Theorem 6.1: The space group pair Ia�3/Pa�3 does not permit anyTPMS. 2This contradicts to [4], however, the authors `modelled the surface' intheir Fig. 5(?). They confess: `The existence of minimal surfaces withthe described properties is very probable but the mathematical proofhas still to be done.' This is not possible anymore!2. I can prove that TPMS to Ia3d=Ia3 of Fischer and KOCH [4]does exist, indeed. Here only aSketch of the proof. will be described: In Fig. 5b there are picturedthe former fundamental domain ABCDER2F of Ia�3d as in Fig. 3a.But we double this domain now by the halfturn r about H1G to get afundamental domain, now for Ia�3, after appropriate face pairing.Then we place the surface through the halfturn axes of Ia�3d, asfollows H1G for r; GF for r1; FH2 for r2 (68)then through the arcs to z : R0H1 7! R0H2:These transforms all reverse the side of the surface. Then we applythe hafturn r to get a domain for side preserving hyperbolic groupand a new side pairing for the double polygon and double polyhedron,consequently.
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(a) (b)Figure 5. (a) Fundamental domains for space group Ia�3:the pyramid CAA1A12A2, and its pair Pa�3: the bipyramidCAA1A12A2D which can not contain a TPMS (without self-intersection), contradicting to [4]. (b) A new possibility ofTPMS by Ia�3d/Ia�3 as indicated in [4] and interpreted bythe author. Very probably it was discovered also by S. Lidin[12] (1990).Next we give the exact presentation of Ia�3d and its subgroup, nowIa�3, of index two, as promised. The group Ia�3d (No. 230) is generatedin Fig. 5b byIa�3d : r : ABDE 7! BAED (about H1G)z1 : R0BH1AC ! R0CH2DB (at R0)z2 : R2CA 7! R2AE (at R2)r2 : FCD 7! FDC (FH2)t : R2CF 7! R2EF (R2F )r1 : FDE 7! FED (GF ) (69)Nowr; z1 := z; r2 = z�1rz; z2 = zr; t = z22; r1 = r2t = (z�1rz)(zr)2(70)can be de�ned and all relations can be derived by the angular conditionsof H. Poincar�e [16] Thus, we get a minimal presentation in (58),indeed. But now, according to the surface H1GFH2R0 we can derive



68 EMIL MOLN�ARa hyperbolic plane group 4?2,3 as followsIa�3d > (z; r; r1; r2 1 = z4 = r2 = r21 == r22 = z�1rzr2 = (r2r1)3 = (r1r)2) =: 4?2,3 (Fig. 5b).(71)That means, the side reversing rotatory reection z induces a 4-rotationin H 2 . This closes the boundary component (after ?), where dihedralcorners �2 , �3 appear. The group Ia�3 (No. 206) is generated by Fig. 5bIa�3 : z2 := z1r : R2CBA 7! R2ACE (at R2)t : R2CF 7! R2EF (about R2F )h := r1r : DFEF 7! DFEF (DE)s := r2r : FCD 7! FEC (screw motion)z2 := rz2r : R2CAB 7! R2BCD (at R2)t := rtr : R2 �C �F 7! R2DF (R2F ): (72)Now withz := z2 and h; t = z2; s = th = z2h; z2 = zhz�2; t = zhz�1hz�2(73)we get just the presentation in (66).For side preserving hyperbolic group we get the surface group withsymbol: 2,2,3
 by Fig. 5b [13]. That means, the corresponding orb-ifold is over the projective plane with cone points as the rotation ordersshow. The realization of minimal surface Ia�3d/Ia�3 can be solved byMEW-theory again by careful computations, analogously as before orby discrete method (J. Szirmai obtained k = 0:463711 + i � 0:593208for the �(u) analogous to (48), but with opposite sign in the z-coordi-nate). It turns out that this surface is associate to P;D;G surfaces. In[9] there is mentioned and cited [12] that S. Lidin (with his colleagues)has found an associate surface to above ones by numerical method.The name `lidinoid' has to be changed to FKL surface or, simply toIa�3d/Ia�3 surface. Or to Ia�3d/I�43d surface as follows?3. It is very probable now that the minimal surface to space group pairIa�3d/I�43d, discovered and modelled (not proved) by W. Fischerand E. Koch, Fig. 1 in [4], does indeed exist and belong to the aboveassociate company (This is the case with I4132/P4132, too.) Ourmethod in Fig. 5b seems to be e�ective. `Only' the Ia�3d/I�43d pairhas to be modelled now by another plane intersection through FFH1for the fundamental domain of Ia�3d, with convenient side face pairing.Then I�43d will have the former double polyhedron as fundamentaldomain with other face pairing as before. The surface will have the



MINIMAL SURFACES AND CRYSTALLOGRAPHY 69frame, as indicated in [4] by Wyckoff positions [5]G(222)� 2� F (32)�H2(2)^ R2(3)^ H1(2)�G (74)for Ia�3d and a hyperbolic surface 6?2,3. The halfturn about H1Gresults the side preserving surface group 2,3,3
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