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Abstract

We present a system for automatic reassembly of broken 3D solids.
Given as input 3D digital models of the broken fragments, we ana-
lyze the geometry of the fracture surfaces to find a globally con-
sistent reconstruction of the original object. Our reconstruction
pipeline consists of a graph-cuts based segmentation algorithm for
identifying potential fracture surfaces, feature-based robust global
registration for pairwise matching of fragments, and simultaneous
constrained local registration of multiple fragments. We develop
several new techniques in the area of geometry processing, includ-
ing the novel integral invariants for computing multi-scale surface
characteristics, registration based on forward search techniques and
surface consistency, and a non-penetrating iterated closest point al-
gorithm. We illustrate the performance of our algorithms on a num-
ber of real-world examples.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems; Curve, surface, solid, and object representations.

Keywords: geometric matching, integral invariants, feature-based
registration, non-penetrating alignment, 3D puzzle.

1 Introduction

In the last few years, the problem of reassembling fractured 3D ob-
jects in a fully automatic way has gained an increasing importance,
due mainly to the increasingly wide-spread use of shape acquisition
devices in field archeology. In many cases, reconstruction has to be
based purely on the geometry of the fragments, since information
like color and texture has been long lost. This makes the prob-
lem closely related to the challenging problems of shape matching
and 3D scan alignment in Computer Graphics and Vision. In this
paper, we present an algorithm that automatically reassembles frac-
tured 3D objects from digital models of their fragments. Although
the examples in this paper are related to applications in the area of
archeology, the majority of the algorithms developed here can be
applied with only trivial modifications for constructing an object
from partial 3D scans and other shape matching problems.

1.1 Problem Statement and Contributions

The geometric entities we start with are 3D digital models of the
solid fragments obtained by 3D laser scanning of the fragment
boundary surfaces, see Fig. 1 (top left). The goal is a digitally re-
constructed model as shown in Fig. 1 (right). The problem of auto-
matic 3D reconstruction consists of several challenging parts. There
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Figure 1: Reassembling a gargoyle statue: photo (bottom left) and
3D models (top left) of the fragments, final assembly (right).

is an arbitrary number of fracture surfaces per fragment, which can
match over any part of their extent. Therefore, we need to iden-
tify fracture surfaces on the fragments, and find pairs of matching
surfaces. In order to reassemble the entire 3D object, we need to de-
cide which pairwise matches are correct, and find a global position
for each fragment relative to other fragments. This is different from
many other alignment problems, since the fragments correspond to
physical objects and are not allowed to penetrate each other. Fig. 2
shows the outline of our multi-step solution procedure.

Figure 2: High level overview of our algorithm.

For the main steps of the algorithm our key contributions are:

• novel integral invariants for surfaces and 3D curves that are
computed on multiple scales and are used for multi-level data
segmentation and feature selection,

• robust pairwise matching using feature clusters that incorpo-
rate surface features at different scales,

• graph optimization methods for the multi-piece global match-
ing of fragments,



• constrained optimization for both pairwise and multi-piece lo-
cal registration without mutual penetration.

1.2 Algorithm Overview

The input to our algorithm is a set of point cloud surfaces represent-
ing the pieces of the fractured object. The first step of our algorithm
automatically segments the fragments into a set of faces bounded by
sharp curves (Sec. 3). By examining the roughness of the face sur-
faces, we additionally classify the faces into original faces, which
come from the boundary surface of the unbroken object, and frac-
ture faces, which were created when the object broke. This seg-
mentation increases the robustness and efficiency of the subsequent
matching algorithms in two ways. First, in the reassembly process
of a 3D object only fracture faces can be matched (at least partially)
against each other, and each face provides a natural grouping for a
set of matching features on the surface of the fragment. Matching
pairs of faces instead of considering the entire fragments, therefore,
results in a more stable and faster matching algorithm. Second, we
can increase the robustness of the matching algorithm by enforcing
the consistent alignment of the original faces in the reassembled
model. However, even in cases when the classification into original
and fracture faces is not possible (e.g. when a fragment lies com-
pletely inside the object, or the original and fracture surfaces do not
have distinguishing roughness), one can still successfully employ
the remaining steps of our algorithm as illustrated in Fig. 2.

Figure 3: Reassembling a fractured cake model.

After the segmentation step we compute a novel type of patch-
based surface features called feature clusters for all fracture faces
(Sec. 4) and use these features to match all fracture faces pair-
wise (Sec. 5). There are several differences between our algorithm
and prior feature-based matching work: we use patches instead of
points as features, we allow the features to overlap, and we exploit
the overlap structure to verify potential feature correspondences.
We find all potential matches between pairs of faces and then verify
each match using several consistency checks.

In many cases, pairwise matching is not enough to reassemble the
complete 3D object since some of the matches may be incorrect
(see Fig. 9(b)). Additionally, small errors in pairwise matches can
accumulate incrementally resulting in the fragments not fitting to-
gether, as in Fig. 3 where pairwise matching alone is not enough
to guarantee that the beginning and end of the chain of fragments
will match without penetration. It is necessary therefore that all
matching fragments that have been found so far undergo a simul-
taneous local registration to find a consistent set of matching faces
and mutual fragment positions such that they do not penetrate each
other (Sec. 6). The multi-piece matching is also necessary since
some pairwise matches have a better chance to be found and veri-
fied after previously found matches were precisely registered onto
each other and merged together (the merge/update step in Fig. 2),
see e.g. Fig. 4. In our examples it suffices to perform the four major

Figure 4: The sixth piece has a better chance to be matched after
the first five have been matched and simultaneously registered.

steps of our algorithm and the update/merge outlined in Fig. 2 at
most 3 times until each object is reassembled.

1.3 Related Previous Work

Reassembly of broken objects. Most of the work in this area
is motivated by the challenge of reassembling broken archeolog-
ical artifacts. Several approaches have been developed for spe-
cialized reconstruction problems such as matching planar 2D frag-
ments (e.g. fractured tiles) [Hori et al. 1999; Kong and Kimia 2001;
da Gama Leitão and Stolfi 2002; Goldberg et al. 2004] or ob-
jects that are roughly surfaces of revolution (sherds of pottery), see
[Willis and Cooper 2004] and the references therein. A solution
for geometric reconstruction of 3D solids was first developed by
[Papaioannou et al. 2001; Papaioannou and Karabassi 2003]. The
underlying assumption of this method is that the fracture faces are
nearly planar and they match each other completely. After a re-
gion growing segmentation step which computed the set of fracture
faces, the algorithm projects the points of each face in direction
of the average face normal, and uses the resulting depth maps for
matching. In contrast, our method can deal with arbitrarily shaped
fracture faces, and with partial matches, which also makes it less de-
pendent on precise segmentation. Finally, Stanford’s Digital Forma
Urbis Romae project [Koller and Levoy 2005] deals with heavily
eroded fragments, whose fracture surfaces sometimes do not even
touch each other. In this case, instead of using the geometry of the
fracture faces, reconstruction is done by matching annotated inci-
sions on the fragments’ top surfaces.

Pairwise global and local registration. To reassemble a fractured
3D object we search all fragments for pairs of matching fracture
surfaces first. This problem is closely related to pairwise registra-
tion (matching, alignment) of geometric models, for which an abun-
dance of literature exists in Computer Graphics, Computer Vision,
and other fields. The two major steps of pairwise registration are
first global and then local alignment. Starting from arbitrary ini-
tial positions of the two pieces one first looks for a possible coarse
matching. If this global registration is successful, then the second
step aims at improving the mutual spatial position using local regis-
tration. Nearly all global pairwise matching algorithms are feature
based, where different features are chosen in such a way that they
are rare with respect to some descriptor value. Various descriptors
have been proposed including curvatures [Li and Guskov 2005; Gal
and Cohen-Or 2006] and integral invariants [Gelfand et al. 2005].
Related are also spin images [Johnson and Hebert 1999] that have
been used successfully for object recognition. After selection, fea-
tures are matched according to their descriptor values and a few
correct feature correspondences are used to compute a coarse align-
ment. In current approaches this alignment is computed either by
combinatorial optimization [Gelfand et al. 2005; Sara et al. 2005]
or by RANSAC algorithms [Li and Guskov 2005; Shan et al. 2004].
We introduce a novel approach based on the forward search method
[Atkinson et al. 2004], which is more robust to the presence of in-
correct correspondences and also more efficient. If a coarse align-
ment of two pieces can be found, their mutual spatial position is
improved using pairwise local registration. The pioneering work



in this field is the iterative closest point algorithm (ICP) for which
various variants exist, see [Rusinkiewicz and Levoy 2001] for a sur-
vey and classification. Since fragments can not interfere with each
other, we need a novel kind of constrained local registration that
avoids mutual penetration of digital fragments.

Multi-piece global and local registration. While pairwise match-
ing proposes a set of candidate matching pairs of fragments, we
need to employ multi-piece global and local matching algorithms
to reconstruct the entire original object. Multi-piece global match-
ing algorithms are typically graph-based. For a given reassembly
problem, a graph is build with the fragments (or scans) as nodes,
and the pairwise matches between the fragments (computed by one
of the algorithms above) as edges. The goal is to compute the set
of edges that results in the best possible reconstruction of the ob-
ject. To the best of our knowledge, the first work in this direction
is [Huber 2002] which finds a global matching by computing the
best spanning tree in this graph, and proves also that multi-piece
global matching is NP-hard. In addition to the work on multi-
piece matching done in the Computer Graphics literature, a simi-
lar problem is commonly encountered in protein docking, see e.g.
[Inbar et al. 2005]. After the global matching produces the roughly
aligned pieces, the role of multi-piece local registration is to refine
the relative poses. Literature on this topic usually uses the term
‘multi-view’ registration since the purpose of previous algorithms
was the registration of several 3D scans (views) of the same object
(see e.g. [Neugebauer 1997]). Prior art for multi-view local regis-
tration are the doublet based methods [Pulli 1999; Sharp et al. 2004]
that make use of the results from pairwise registration to iteratively
merge scans, and numerical optimization methods [Krishnan et al.
2005], that define an energy function to be minimized where the
rigid body transformations of all scans are the variables.

2 Preliminaries

2.1 Integral Invariants

Our segmentation and pairwise matching algorithms are based on
comparing local curve and surface descriptors computed for points
on the fragment surfaces. We are interested in quantities that are
related to concepts of differential geometry, such as curvature, but
that can be computed robustly and on multiple scales. Simply put,
integral invariants are defined by integrating spatial functions over
moving domains centered at surface points. Here we briefly intro-
duce the concept, a detailed treatment of theory and computation
and further references can be found in [Pottmann et al. 2005].

Surface integral invariants. Suppose the surface Φ under consid-
eration (e.g. the face of a fragment) is the boundary of a domain D
in R3. We use the characteristic function χD, which is 1 for points
of D and 0 elsewhere, and the squared distance function d2(x,Φ)
that gives the squared distance between a point x and the surface
Φ. Br(p) denotes a ball of radius r, centered at the point p, with
bounding sphere Sr(p). Integral invariants computed at a specific
radius are called descriptors. For a point p ∈ Φ, we define the vol-
ume descriptor V r(p) [Gelfand et al. 2005] and the volume distance
descriptor V Dr(p) with respect to the kernel radius r as

V r(p) =
3

4πr3

∫
Br(p)

χDdx, V Dr(p) =
15

4πr5

∫
Br(p)

d2(x,Φ)dx.

(1)
In other words, V r(p) is the ratio between the volume of the in-
tersection Br(p)∩D and the volume of the entire ball Br(p), and
V Dr(p) is the weighted integral of the squared distance function
over the entire ball Br(p) (see Fig. 5). Note that V r(p) = 1/2 and
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Φ

Figure 5: (Left) Intersection of the kernel balls Br(p) with the do-
main D bounded by the surface Φ. (Middle) Volume descriptor, and
(right) volume distance descriptor, both shown for one scale.

V Dr(p) = 1 if the patch of Φ contained in Br(p) is planar. V r(p)
is related to the mean curvature H, and V Dr(p) to the difference of
the principal curvatures κ1, κ2 at p. As r → 0, we can express these
relations as follows (for a proof see [Pottmann et al. 2005]):

V r(p)=
1
2
− 3

16
H ·r+O(r2), V Dr(p)= 1−(κ1−κ2)2 · r2

28
+O(r3).

Spatial curve integral invariants. Let c ⊂ R3 be a spatial curve,
such as an edge of a fragment. We define the deviation descriptor
Dr(p) at a curve point p ∈ c with respect to the kernel radius r as,

Dr(p) =
1
r2

∫ r

x=0
‖cx(p)−dx(p)‖dx, (2)

where cx(p) and dx(p) are the first two points obtained by inter-
secting the sphere Sx(p) with the curve c when going left and right
from the point p on c. For a straight line c we have Dr(p) = 1. In
general, as r → 0, Dr(p) is related to the curvature κ of c at p,

Dr(p) = 1− κ2

16
· r2 +O(r3). (3)

2.2 Multi-scale Surface Characteristics

For data segmentation we use the following multi-scale surface
characteristics computed using the above integral invariants.

Surface sharpness. Based on the integral invariants V ri(p) of
Equ. (1) we define the surface sharpness svol(p) as,

svol(p) =
[ 1

N

N

∑
i=1

(V ri(p)− 1
2
)2

] 1
2
. (4)

We set ri = rmin + i · (rmax − rmin)/(N − 1) for user specified rmin
and rmax at N, typically 6 to 8, equidistant scales. We give details
on the choice of rmin,rmax and on any thresholds and parameters
defined below in the discussion of experiments in Sec. 7. Note that
via V ri(p) we incorporate mean curvature information of the sur-
face at multiple scales into the surface sharpness characteristic. For
example, svol vanishes if the neighborhood of the point p is planar.
Surface sharpness will be used in Sec. 3 to segment the fragment
into a set of faces, since for points p on the break curves between
faces we have a high value of svol(p).

Surface roughness. In order to differentiate between original and
fracture faces, we introduce the surface roughness characteristic.
When speaking of a surface Φ in the following, we mean the dis-
crete set of measurement points from 3D scanning. Additionally,
we write |P| for the number of points of a subset P ⊂ Φ. Let qi
be the k-nearest neighbors of a point p ∈ Φ, and let np and nqi be
the surface normal vectors at these points. Then we define the local
bending energy ek(p) at p as

ek(p) =
1
k

k

∑
i=1

‖np−nqi‖2

‖p−qi‖2 . (5)



Notice that we could incorporate surface curvature information us-
ing the integral invariants of Equ. (1). However we found, that at the
small scales needed to compute the surface roughness, the integral
invariants become expensive to compute and unstable. Therefore,
we integrate the above bending energy over the local neighborhood
Nr(p) = Br(p)∩Φ instead,

ek,r(p) =
1

|Nr(p)| ∑
q∈Nr(p)

ek(q). (6)

The characteristic value ek,r(p) varies according to the number k
of nearest neighbors and the kernel radius r. To ensure that ek,r(p)
reflects the actual kind of surface, we should choose a suitable k
based on the correct local structure, and a suitable r based on the
noise level. As we do not know the surface structure and noise, we
assume that the correct ek,r(p) will give a better classification result
into original and fracture surfaces. For this purpose we manually
select two groups of points from both original and fracture surfaces
and build a statistical model of ek,r(p) for both surface classes using
supervised learning [Duda et al. 2000]. The optimal parameters
k0 and r0 are determined for each fractured 3D object according
to the classification error. The binary classification result ρ(p) is
called surface roughness characteristic at p; we set ρ(p) = 1 for an
original and ρ(p) = 0 for a fracture surface point.

3 Data Segmentation

The first stage of our reassembly algorithm segments the surface of
each fragment into a set of faces. We first perform a multi-scale
edge extraction on the point sampled surfaces that represent the
fragments of a 3D object. By constraining the multi-scale edge
extraction to return cycles of edges, we achieve an initial segmen-
tation of each fragment into faces. Once this initial set of faces is
computed, we use a graph cut algorithm to partition the set into
the original faces and fracture faces. Additionally, since the multi-
scale edge extraction sometimes results in an over-segmentation of
a fragment into too many fracture faces, we improve the initial seg-
mentation by merging together some of the adjacent fracture faces
as dictated by the graph cut algorithm.

3.1 Multi-scale Edge Extraction

For multi-scale edge extraction we use a modified version of the
method presented by [Pauly et al. 2003]. The details of the algo-
rithm can be found in the above paper. Here we just mention the
two modifications that we made to the algorithm. In the classifica-
tion step we replace their ‘surface variation’ by our surface integral
invariants and surface roughness measure. This means essentially
that we classify points p as edge points if they have persistent high
curvatures at multiple scales as measured by the integral invariants
V r(p) and V Dr(p) of Equ. (1), and high variance of ρ in the neigh-
borhood of p. The second modification of Pauly’s method concerns
the reconstruction step of the algorithm. After constructing the min-
imum spanning graph of the edge points, we specifically extract the
long closed cycles from the graph. The cycles are not a by-product
of the algorithm for us, but the main goal of our multi-scale edge
extraction, since they frame the boundaries of the fragments’ faces.

3.2 Final Segmentation

Since we focused on the extraction of edges that form closed cycles
we already obtain an initial segmentation of each fragment into a

Figure 6: Data segmentation of two fragments. (Left) Initial seg-
mentation. (Middle) Segmentation into original and fracture sur-
faces. (Right) Final segmentation of fracture surfaces.

set of faces Fi. We now refine this segmentation to produce a mean-
ingful set of faces for matching, see Fig. 6. We begin with the
definition of a weighted graph G(F,E). The set of nodes F of the
graph G are the faces Fi. The set E of edges is given by those pairs
of faces Fi and Fj with a common border edge. We assign to each
edge in E two weights, namely the surface roughness weight wr
and the surface sharpness weight ws,

wr = |ρ(Fi)−ρ(Fj)|, ws =
1

|Fi∩Fj| ∑
p∈Fi∩Fj

svol(p).

Here we denote by ρ(S) the mean surface roughness of all points
contained in the set S. These weights have the following meaning:
wr is the difference between the mean surface roughness of adja-
cent faces Fi and Fj (and thus will be high between original and
fracture faces), and ws is the mean surface sharpness of all points
that are shared by faces Fi and Fj (and thus will be high for a sharp
edge between two faces). Now we iteratively apply the normalized
cut method of [Shi and Malik 2000] to the weighted graph G(F,E).
With a first series of normalized cuts we partition G(F,E) into the
set P1 of original faces and the set P2 of fracture faces, as follows.
We use the surface roughness weight wr and terminate the partition-
ing of the graph G(F,E) if the surface roughness variance σ2

ρ (Pk),

σ
2
ρ (Pk) =

1
|Pk| ∑

p∈Pk

[ρ(p)−ρ(Pk)]
2 , k = 1,2,

is less than 0.3 for each part P1,P2. The multi-scale edge extraction
sometimes results in an over-segmentation of the fragment into too
many faces (see Fig. 6 (left)). Using the graph cut method we can
merge those faces that are likely to belong to one larger fracture
face. Therefore, we perform a second series of normalized cuts of
the graph G(F,E). We further partition the set P2 of fracture faces
into meaningful groups, such that the weight ws is small between
adjacent faces in a group, but large for the cuts separating different
groups. Using the surface sharpness weight ws as a criterion, we
iteratively subdivide the groups of fracture faces into two subgroups
along the cut of highest total ws. We obtained the final segmentation
once the graph-cut threshold ws falls below 0.1.

4 Feature Selection and Representation

Our pairwise matching algorithm is based on matching similar fea-
tures of fracture surfaces. Each surface feature is a cluster of points
with similar descriptor values (we will use the terms feature and
cluster interchangeably). Our feature selection algorithm produces
a dense set of such features, computed for a set of multi-scale in-
tegral invariants. Two key differences of our algorithm from prior
work are first that we use feature clusters, and second the property
that the feature clusters overlap with each other. We keep track of
which clusters overlap, and use the structure of the overlaps in the
matching algorithm to discard or verify feature correspondences.



4.1 Feature Selection

The key idea of our feature selection for fracture surfaces is very
simple. Suppose we have a series of descriptors {g1, . . . ,gn}, which
are functions defined on a surface Φ (e.g. a set of integral invariants
as defined in Sec. 2.1). We use the level sets of these functions to
partition Φ into surface patches. These patches and combinations of
them are used as features (also called feature clusters henceforth).
We first introduce feature selection using a single descriptor g, and
then we proceed with multiple descriptor based feature selection.

Feature selection using single descriptor. Given a descriptor g
whose range is Ig = [0,b], we partition Ig into equally sized inter-
vals [li, li+1], usually 32 in number. For each pair of levels li < l j,
we denote the set of surface points p whose descriptor values g(p)
fall into the interval [li, l j] by Si j (see Fig. 7). Starting from an ar-
bitrary point of Si j and using depth-first search on the K-nearest
neighbors, we cluster the points of Si j into Ck

i j (this clustering is
analogous to extracting connected components, but performed in
a point cloud setting). Then we remove those clusters Ck

i j where
either minp g(p) > li+1 or maxp g(p) < l j−1 holds for a p ∈Ck

i j be-
cause they are redundant. This selection process produces a dense
set of overlapping feature clusters, since clusters corresponding to
larger intervals contain clusters corresponding to smaller intervals.

Feature selection using multiple descriptors. We first order the
descriptors g1, . . . ,gn according to their associated scales (kernel
radii) ri, i.e., gi > gi+1 if ri > ri+1. Later in the matching algo-
rithm, we will use feature correspondences produced by descrip-
tors of small scales to verify feature correspondences produced by
descriptors of large scales. We select features using the single de-
scriptor algorithm described above for each gi. We designate as Cgi

a cluster produced by the single descriptor feature selection algo-
rithm for descriptor gi.

The above process is repeated for computing feature clusters from
points that belong to the boundaries between the fragment faces, as
computed by the segmentation algorithm in Sec. 3. Therefore, the
feature selection algorithm produces a set of fracture surface fea-
tures and a set of fracture edge features. The descriptors we use are
based on the integral invariants introduced in Sec. 2.1. For selecting
fracture surface features we use two volume descriptors g1 = V rmax ,
g3 = V rmin , and two volume distance descriptors g2 = V Drmax , and
g4 = V Drmin (see Equ. (1)), and we discard descriptors near the sur-
face boundary. For fracture edge features we use deviation descrip-
tors g1 = Drmax and g2 = Drmin (see Equ. (2)). The use of different
scales makes the descriptors robust to noise.
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Figure 7: Feature selection and representation. (Left) Color coded
sets Si,i+1 for a single descriptor g on a fracture surface Φ. (Right)
Three feature clusters Ck

g, k = 1,2,3 and the representation via
barycenter b, vectors n j, and set R (disc like), see Equ. (7).

Feature cluster topology. The above feature selection process pro-
duces a large number of overlapping feature clusters. In order to
efficiently process feature correspondences in the matching stage

of our algorithm, we will define a topology on the feature clusters.
We call two clusters C and D neighbors if they have any points in
common. Notice that C and D can be clusters that correspond to the
same descriptor, or two different descriptors. In the case of feature
clusters corresponding to two different descriptors, gi and g j, we
additionally call Cg j a parent of Cgi if the kernel radius r j > ri.

4.2 Feature Representation

In order to use the selected feature clusters for matching fragment
faces, we derive a concise representation of each cluster using a set
of characteristic values, vectors, and points. We perform principal
component analysis (PCA) on all points in each feature cluster C.
The principal components and corresponding principal directions
are denoted by λ1 < λ2 < λ3 and n1,n2,n3, respectively. Moreover,
the n j are put in a right-handed coordinate system.

Representation of fracture surface features. We store the follow-
ing information for each cluster C:

C = {b(C),n j(C),p±k (C),R(C),µi(C)}. (7)

• The point b(C) represents the position of the feature (for
which we choose the barycenter of the point set C). Notice
that b(C) does not necessarily lie on the fracture surface.

• The vectors n j(C) are directions associated with C as given
by the PCA.

• The points p±k (C) = b(C)± ld nk(C) where k = 1,2,3. They
are used for rough registration of feature clusters.

• The set R(C) is a collection of representative surface points
chosen from C, defined as R(C) = Brmax(b(C))∩Φ. This point
set is used for the fine registration of surface features.

• Finally, µi(C) contains four signatures of the cluster C. We
call the values li and l j of the descriptor level sets correspond-
ing to C descriptor signatures. We also compute the size
signature sigS(C) and the anisotropy signature sigA(C),

sigS(C) = (λ1 +λ2 +λ3)
1
2 , sigA(C) = |λ2/λ3|

1
2 . (8)

The relatively low dimension of our features allows a fast retrieval
of matching parts and suits better for fracture surfaces (with rather
similar local neighborhoods) than other, richer descriptors such as
shape contexts or spin images.

Representation of fracture edge features. Edge features are rep-
resented similar to surface features. The barycenter, set R(C), de-
scriptor signatures, and size signature are computed analogously to
the surface case. The anisotropy signature for an edge feature C
is defined as sigA(C) = |λ1/λ3|1/2. The direction vectors n j for
an edge feature are defined as follows. By performing PCA on C
we obtain n1 as that principal direction pointing along the fracture
edge. n2 is given as the principal direction of R(C) correspond-
ing to the smallest eigenvalue. The points p±k (C) are computed for
k = 1,2 only. If an edge feature C belongs to the break curve of
a fracture surface and an original surface, we additionally assign
it an angle signature siga(C) = ∠(n1,no), where no is the average
surface normal of points in C of the original surface.

5 Pairwise Matching

We use the features introduced in the preceding section to match
the fragments pairwise. Let S and T be two faces on two fragments,



produced by the segmentation algorithm. We seek to find the set
of common features on S and T and find an aligning transforma-
tion that brings S close to T . For each feature on S, we find all
corresponding features on T and then extract subsets of consistent
feature correspondences. The initial correspondence set is refined
by several novel pruning algorithms and the final set of matching
features is found robustly using a forward search algorithm. Sim-
ilar to [Gelfand et al. 2005] we keep all consistent sets of match-
ing features, instead of choosing just one best match. We then use
multi-piece matching described in Sec. 6 to select the best match
between a pair of faces in the global context.

5.1 Feature Correspondences

We build the initial set of correspondences by finding for each fea-
ture cluster C in S all clusters D in T which have similar descrip-
tor values. Two features Cgi and Dgi potentially correspond if they
were computed using the same descriptor gi and have the same de-
scriptor signatures (level sets of the descriptor). For edge features,
we additionally ensure the match of the angle signature, if it exists.
Every edge feature correspondence with angle signatures siga(Cgi)
and siga(Dgi) is required to satisfy |siga(Cgi)+ siga(Dgi)|< εθ . In
the remainder of the matching algorithm, we no longer make any
distinction between surface and edge features. As this initial set of
correspondences is quite large, we prune the set of potential cor-
respondences by examining the feature properties of Cgi and Dgi

and the associated feature topology. This pruning makes the suc-
ceeding forward search method (which is of quadratic complexity)
run faster, but does not effect the correctness of our algorithm. For
this reason, we can be rather conservative on setting any pruning
thresholds without much need to tune them (see Sec. 7).

Shape pruning. Let p = (C,D) be a potential feature correspon-
dence between faces S and T respectively. We assess the qual-
ity of p by comparing the cluster signatures of C and D. We de-
fine SD(p) =

∣∣∣ sigS(C)−sigS(D)
sigS(C)+sigS(D)

∣∣∣ and AD(p) =
∣∣∣ sigA(C)−sigA(D)

sigA(C)+sigA(D)

∣∣∣ as the
size deviation and the anisotropy deviation of two clusters. A fea-
ture correspondence p is considered further only if SD(p)≤ εs and
AD(p)≤ εa hold, otherwise we discard it.

Topological pruning. We use the topology of the feature clusters
to discard redundant and false correspondences and to verify the
correct ones. The pruning works in two steps. In the first step, we
consider feature correspondence pairs that were generated by dif-
ferent descriptors. For each feature correspondence p = (Cg j ,Dg j )
we find all feature correspondences pi = (Ci

gk
,Di

gk
) where Ci

gk
and

Di
gk

are parent clusters of Cg j and Dg j , respectively (this will only
happen if the corresponding clusters overlap, and the kernel radius
rk > r j). If the set {pi} is not empty, we mark all feature corre-
spondences in {pi} and ’hide’ p. After we perform this operation
for all feature cluster correspondences, we remove all hidden and
unmarked correspondences. The motivation behind this operation
is that correspondences with smaller radius descriptors verify over-
lapping correspondences with larger radius descriptors, but larger
radii are used for matching since these descriptors have better noise
tolerance. Additionally, correspondences whose features are not
verified by their children are likely to be incorrect, and are thus
removed.

In the second step, we consider correspondence pairs with overlap-
ping clusters corresponding to the same descriptor. For each pair of
feature correspondences p1 = (C1,D1), p2 = (C2,D2) such that C1

is a neighbor of C2 and D1 is a neighbor of D2, and p1 and p2 are
geometrically consistent (see Sec. 5.2), we remove the one in p1, p2
that has larger average size signature. Having both, p1 and p2, is

S T
p

(a) potential correspondences

S T
p

(b) after pruning

S T
p

(c) valid correspondences
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Figure 8: Pairwise matching. The potential feature correspon-
dences {p} between faces S and T are pruned; valid correspon-
dences are extracted using a forward search. The iteration step m∗,
when outliers become included, is clearly seen in the residual plot.

redundant, and always keeping the larger one would reduce the set
of potential correspondences too much for successful matching.

5.2 Potential Matches

After selecting high quality feature correspondences we face the
task of finding possible matches between fracture faces S and T .
We regard this problem as a fitting problem, where the data points
to be fitted are feature correspondences. As incorrect feature cor-
respondences can be seen as masked outliers, we use the forward
search method, which has successfully been used in defining point
set surfaces by [Fleishman et al. 2005]. We choose a pair of fea-
ture correspondences as the starting subset for the search. Since
forward search needs a noise-free initial subset, we first perform
several consistency tests on pairs of correspondences, and only then
build larger correspondence sets.

Geometric consistency. We consider feature correspondences pair-
wise. As in [Shan et al. 2004], we call a pair of feature corre-
spondences p1 = (C1,D1) and p2 = (C2,D2) geometrically con-
sistent if the displacement vectors between the features’ position
b(C1)− b(C2) and b(D1)− b(D2) are of similar length, and the
angles between corresponding pairs of vectors ∠(nk(C1),nl(C2))
and ∠(nk(D1),nl(D2)) do not differ more than a certain threshold
εθ for all possible pairs (k, l) with k, l = 1,2,3.

Registration consistency. All geometrically consistent correspon-
dence pairs are further checked using local registration by mini-
mizing the sum of squared distances between certain correspond-
ing points related to p1 = (C1,D1) and p2 = (C2,D2). Using the
quaternion method proposed by [Horn 1987], we find the optimal
Euclidean transformation that maps the points (b(C1),p±k (C1)) of
feature C1 to their corresponding points (b(D1),p±k (D1)) of D1,
and similarly for C2,D2. The obtained initial position of the fea-
tures is further improved using local registration as described by
[Pottmann et al. 2006] using the whole set of data points contained
in the sets R(C) of all four features. We keep only those feature
correspondence pairs where this registration process converges and
leads to a final positioning with mean deviation below a certain
threshold εdev. At the end of these tests (which are performed in
order of increasing complexity so as to discard the most incorrect
pairings cheaply), we are left with pairs of consistent feature cor-
respondences. We now concentrate on building a set of consistent
feature correspondences from these pairs.



Forward search. Let P = {pi} be the set of edge and surface fea-
ture correspondences determined in the previous paragraph. We or-
der the correspondences in P by increasing score AD(pi) · SD(pi).
We also form the set {Mi j = (pi, p j)} of correspondence pairs that
pass the geometric and registration consistency tests. The forward
search iteratively builds the set of matching features as follows. Let
Em be the subset of selected feature correspondences at iteration
m. We start with choosing an unmarked element of {Mi j} with
the minimum i + j that satisfies |b(Ci)−b(C j)| > 2 · ld for stabil-
ity reasons (see [Shan et al. 2004]) to form E1. To form Em+1 we
first use the correspondence pairs in Em to compute a rigid transfor-
mation αm that aligns face S to face T . Similar to the registration
consistency step, αm is computed by the registration of the points
(b(Cl),p±k (Cl)) and their corresponding points (b(Dl),p±k (Dl)) for
each correspondence pl ∈ Em. We define the residual of a feature
correspondence pl = (Cl ,Dl) as ‖αm(b(Cl))−b(Dl)‖ and include
the feature correspondences with the m + 1 smallest residuals in
Em+1. We define the critical point of time in the forward search,
i.e., when outliers begin to be included, as that index m for which
the largest residual tmax of Em exceeds 2 · εdev and denote it by m∗

(see Fig. 8(d)). Finally, we output the rigid body motion specified
by Em∗

as a potential initial alignment, set all pairs of feature corre-
spondences of Em∗

as marked, and continue with the next iteration.
This process is repeated until all correspondence pairs in {Mi j} are
marked.

Each final set of correspondences Em∗
represents a match between

the faces S and T . We define three parameters wd , we and w f

to assess the quality of the match. wd and we are defined as
the average deviation of the overlapping regions of fracture faces
and fracture edges, respectively. We use the bidirectional closest
point search method introduced in [Pauly et al. 2005] to compute
overlapping regions. w f is defined as the integral of the surface
sharpness over the fragment surfaces’ overlapping regions S∩ T ,
w f =

∫
p∈S∩T svol(p)dp. A good match is supposed to have high

values of w f , indicating a high number of ’features’ (or the amount
of total curvature), and small deviation errors wd and we. Hence,
we define the quality w of a match as

w = log(w f )− log(we)− log(wd). (9)

In the case when the matching faces contain edges between original
and fracture faces, we enforce a surface consistency, requiring the
edges to be within a threshold distance of each other.

6 Multi-piece Matching

The pairwise matching step gives a set of possible matches between
the fragments of a broken 3D object along with a quality rating for
each match. Based on this information we iteratively compute a
global multi-piece matching, perform a local multi-piece registra-
tion and merge matched fragments until the object is reassembled.

6.1 Global Multi-piece Matching

Based on the results of the pairwise matching we define a graph
G (F ,E ), where each node Fi ∈F represents a fragment and each
edge e = (Fi,F j) ∈ E one of (possibly several) matches between
two fragments Fi and F j. Let w(e) denote the weight of such an
edge and T (e) its associated relative transformation. With the help
of such a graph [Huber 2002] examines the global matching prob-
lem in its most general, NP-hard form. For the same problem, we

Gk

Gl

Fi

F jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF jF j

Gk

Gl

(a) merging sub-graphs (b) incorrect (c) correct

Figure 9: Different strategies for merging two sub-graphs Gk and
Gl . (Left) Using the edge of maximum weight that connects these
two sub-graphs. (Right) Using the group of consistent edges of
maximum weight that connect these two sub-graphs.

introduce a well-behaved greedy algorithm, based on two observa-
tions specific for our application of reassembling broken objects.
First, incorrect matches lead to heavy penetration effects and thus
can easily be detected. Second, it is advantageous to design the
matching algorithm iteratively as we are typically lacking sufficient
correct pairwise matching information for a single step solution.

To ease the discussion below, we introduce another weighted
graph M(Γ,L). Each node Gk ∈ Γ of M is a weighted sub-graph
Gk(Fk,Ek) of G for a group Fk of fragments. Two sub-graphs G1

and G2 are connected in M if two fragments Fi ∈ F1 and F j ∈ F2

exist such that (Fi,F j) ∈ E . The weight w(G1,G2) of the con-
necting edge is defined as the sum of weights w(e), see Equ. (9), of
all edges e = (Fi,F j) ∈ E ,Fi ∈ G1,F j ∈ G2,

w(G1,G2) = ∑e w(e). (10)

Similar to the incremental merging algorithm of [Huber 2002] our
multi-piece global matching is an iterative process. As long as there
exists more than one fragment, the graph G is built through exhaus-
tive pairwise matching of the current fragments, using the algo-
rithms described in the previous sections. Accordingly, we con-
struct the affiliated model graph M(Γ,L) by regarding each frag-
ment as a single sub-graph. At each iteration, we select a group
of edges in M (see details below) and merge their corresponding
sub-graphs Gk and Gl into a new sub-graph. Then, we check if all
the fragments in this new sub-graph do not penetrate each other and
continue with the next iteration step if the merging passed this test.
Otherwise, we try another group of edges.

Sub-graph merging. Let Ek,l denote the set of edges that con-
nect two sub-graphs Gk and Gl . A straightforward strategy [Huber
2002] would be to let every edge in Ek,l represent a single group,
sort these groups according to their weights and merge the sub-
graphs by using the highest weighted edge. However, this strategy
is unfavorable in some cases (see Fig. 9) and relies heavily on pen-
etration tests to discard incorrect merges. Our approach is based
on a global consistency argument, which states that the associated
relative transformations of the edges of a loop in M(Γ,L) should
approximate the identity motion when applied one after another.
Thus, we classify each Ek,l into subsets Ek,l

s such that the sub-
graphs Gk,l

s (Fk∪F l , Ek,l
s ∪Ek∪E l) are globally consistent and use

the highest rated subset of edges for merging.

The edge subsets Ek,l
s are computed using forward searches. We

order the edges in Ek,l according to their weights and select the
unclassified edge of Ek,l with maximum weight as initial set. Let
Em denote the selected edges in the m-th step of the forward search.
We compute the current relative motions A = {α1, . . . ,α|Fk |+|F l |}



of the fragments by minimizing the quadratic function Q that sums
over all edges e = (Fi,F j) ∈ Ek ∪E l ∪Em,

Q = ∑e w(e) ·
(
‖αi−α j ◦T (e)‖2

Fi
+‖α j −αi ◦T (e)‖2

F j

)
.

Thereby, ‖·‖Fi is a metric for affine maps as defined in [Hofer et al.
2004]. After obtaining A we order all unclassified edges by their
residuals ‖αi −T (e) ◦α j‖2

Fi
+ ‖α j −T (e) ◦αi‖2

F j
and choose the

edges corresponding to the m+1 smallest residuals for Em+1. The
forward search is repeated until either all unclassified edges in Ek,l

are classified or the sub-graph becomes disconnected. Again, we
find that iteration m∗ of the forward search in which outliers start to
be included. The edges of Em∗

form a new subset Ek,l
s of classified

edges. Note that we only obtained the optimal affine motions αi
of the fragments in Fk ∪F l . In order to get Euclidean motions, we
project αi onto the rigid body motion manifold using the method
introduced in [Krishnan et al. 2005].

These edge subsets Ek,l
s are ordered as follows. The key value is

the size of each subset, so that we favor big subsets over smaller
ones and select strong connections between Gk and Gl first. Edge
subsets of the same size are sorted according to their weights as
defined in Equ. (10). In this way, better matches are chosen first.

Penetration test. We employ a collision detection algorithm [Lin
and Manocha 2004] between all pairs of fragments in Gk,l

s . As
wrong matches yield severe penetration effects, we terminate the
sub-graph merging if fragments are found to intersect with more
than a predefined threshold.

Our multi-piece matching as described above is a greedy process.
It will fail when the penetration test accepts incorrect pair-wise
matches. However, the strong local and global consistency checks
prune out incorrect matches and the algorithm achieves good results
in practice.

6.2 Multi-piece Local Constrained Registration

After global multi-piece matching of the 3D fragments we move
them to their final alignment by simultaneous registration. The
nature of reassembling fractured 3D objects imposes an interest-
ing new aspect on registration: as in reality, the objects’s fractured
parts must not penetrate each other on recomposing, thus asking for
a constrained registration. We illustrate this aspect on two systems
in Fig. 10. The penetration free registration is shown on the brick
example in Fig. 11.

(a) standard registration
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(b) penetration free

Figure 10: Front and back view of two registered systems Σ j,Σk.

We choose the fragments of a sub-graph as the distinct systems of
our registration process. Let Σi denote the union of fracture faces of
the i-th fragment Fi. We fix Σ0 and simultaneously register those
parts that are adjacent after the global matching. In order to be able
to express the distances of the elements of two nearby systems Σ j
and Σk, we work with the relative linearized motion of Σ j and Σk,

v jk(x) = v j0(x)−vk0(x),

Figure 11: (Left) Final alignment of 6 brick fragments after multi-
piece local constrained registration. (Right) After removing the top
and bottom faces we see the penetration free fracture faces.

where vi0(x) = c̄i + ci × x denotes the velocity vector of the i-th
fragment towards Σ0. Only a subset X jk ⊂ Σ j of points located
sufficiently close to the target point cloud is registered onto Σk. For
xi ∈ X jk, the closest point yi ∈ Σk, the normed residue ri = (xi −
yi)/(‖xi−yi‖) and the distance di = ‖xi−yi‖ are computed. Then,

d̃2(xi +v jk(xi),yi) = [di + rT
i ·v jk(xi)]2

approximates the squared distance of a moved point xi to yi ∈ Σk.
By performing this initial step for all pairs of adjacent faces, the
linearized motions v j0 are found by minimizing

F(c1, c̄1, . . . ,cn, c̄n) = ∑
|X |
i=1[di + rT

i ·v jk(xi)]2. (11)

Here, X denotes the union of all chosen point clouds X jk. Note, that
the objective function is quadratic in the unknowns c1, c̄1, . . . ,cn, c̄n.

On recomposing the fractured pieces, registration has to avoid any
penetration of the boundary surfaces. Thus, all elements of Σ j must
be located on the same side of an adjacent system Σk. Accordingly,
we write ni for the outward oriented normal in yi and require the
distances from Σ j to Σk to have the same sign,

nT
i · (xi−yi +v jk(xi))≥ 0, i = 1, . . . , |X |.

In total, we obtain a quadratic optimization problem with linear
constraints that we solve with an active set method (see e.g. [No-
cedal and Wright 1999]). As x 7→ x + vi0(x) is an affine but not a
Euclidean motion, we perform the underlying helical motion on Σi
as described in [Pottmann et al. 2006]. A final alignment without
penetration is achieved after 5 to 10 iteration steps.

Fragment merging. After constrained local registration we merge
the fragments of each sub-graph into a single ‘virtual’ fragment for
further global matching. We remove the points of all matching
fracture faces using the bidirectional closest point search method
of [Pauly et al. 2005]. In a second step we fill any holes using a
modified method of [Amenta and Kil 2004] such that the virtual
fragment is a single closed surface.

7 Results and Discussion

We have created several challenging examples to test our reassem-
bly algorithm (see Table 1 for an overview). For all models except
the Forma Urbis Romae (FUR) example [Koller and Levoy 2005]
the fracturing process (either dropping on the floor or hammer and
chisel) returned several larger fragments, some small fragments,
and quite some debris (see e.g. Fig. 3). We scanned all the frag-
ments with a 3D laser scanner, created 3D digital models as dense
point set surfaces (available at http://www.geometrie.tuwien.ac.at/
ig/3dpuzzles.html), and estimated outward oriented surface normal
vectors, which are used throughout the whole processing pipeline.
For all examples, our algorithm could differ between fracture and



original surfaces. The gargoyle and the FUR example both contain
noticeably large and small fragments, which shows the robustness
of our method to different sizes of matching features.

Garg. Cake Brick Venus Sculp. Head FUR
stone mortar stone clay clay clay marble
30f 11f 6f 7f 15f 12f 20f

3.54m 1.45m 1.49m 1.84m 1.66m 1.15m 9.45m

Table 1: Example overview: name, material, number of fragments,
and total number of fragment data points.

Examples. The gargoyle model consists of 30 fragments from
which we could successfully reassemble 28 (Fig. 1). The fragments
that could not be matched are marked by a tiny ∗ in Fig. 1 (left top).
Some of the gargoyle fragments only possess fracture surfaces since
they are completely from the interior of the original model. This
additional challenge shows that we do not rely on the presence of
original surfaces in our fragments.

The fragments and two views of the reconstructed cake model can
be seen in Fig. 3. The reassembled 3D model of the brick and the
penetration free fracture surfaces (in the final alignment position)
are shown in Fig. 11. For the Venus example (Fig. 12) we could
only match the 6 largest fragments. As shown in Fig. 13 we could
reassemble the fractured sculpture completely.

*

Figure 12: Reassembling a fractured Venus model.

For the FUR example we choose a set of 20 fragments with vary-
ing size from the online database http://formaurbis.stanford.edu/,
including some fragments known to match each other. Our motiva-
tion for working with this FUR data was not to find new matches
(an ambitious task for future work) but to verify that our method
succeeds for heavily eroded fracture faces. We are able to find the
correct matching fragments based purely on the geometry of the
fracture surfaces, as shown in Fig. 14.

In Fig. 15 we show the original fragments of the head model, their
3D digital counterparts, and the reconstructed head. The head
model is not a solid but a thin shell. This poses the challenge of
rather small fracturing surfaces that have to be matched against each
other. We could automatically match the 10 largest of the 12 frag-
ments. The two small fragments marked by a ∗ in Fig. 15 (left top)
are from a hole in the forehead (the location of impact on fractur-
ing) and could not be matched automatically.

Timing results. On a 1.4GHz machine with 512MB RAM, we need
on average 1 minute for processing a fragment with 400k points.
This includes building the necessary data structures and computing
the integral invariants on 8 different scales for every data point. The
segmentation, feature selection, and pruning are linear in the num-
ber of data points and take around 4s per fragment. The time for
pairwise and multi-piece matching depends on the number of faces.
For the brick example, the set of potential matches was built in
2s while the multi-piece matching (including the dominating con-
strained registration) took 5s. We passed through the whole pipeline
two times which took 15s.

Figure 13: Reassembling a fractured sculpture model.

Choice of thresholds. Different parts of our algorithm are guided
by thresholds. In general, the choice of these thresholds does not
greatly influence the final results, since most of them are used for
pruning, but affects the running time of the algorithm. The sur-
face sharpness measure Equ. (4) is defined for scales ranging from
rmin to rmax. We encounter these thresholds throughout this work
and they are set to reflect the fragments’ size. We set rmax to 0.1
times the average size of all fragments and rmin = rmax/2, whereas
a fragment may be composed of several smaller fragments at later
iterations of the algorithm. Our feature representation contains aux-
iliary points p±k for rough registration. These are defined at distance
of ld = rmax/2 from the clusters’ barycenter. Feature pruning uses
three hard thresholds: angle signatures are required to differ by less
than εθ = 0.2 and the size and anisotropy deviation must be below
0.1 (thresholds εa and εs). Finally, two thresholds are set to verify
registration results. Registration consistency in pairwise matching
requires a mean deviation of less than εdev. We do not rely on a
user defined constant here but use a strategy similar to the method
in [Fleishman et al. 2005] which takes into account the noise level
of the surface. The penetration test of global multi-piece matching
discards any matches with a penetration exceeding rmin.
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Figure 14: Matching parts of the Forma Urbis Romae project.
(Left) The fragments for which we found matches based on the ge-
ometry of the fracture surfaces only. (Right) Aligned fragments.

Conclusions. We presented a method for automatic reassembly of
fractured 3D solids. Our matching algorithm assembles the broken
object by using purely the geometric information contained in the
fracture surfaces of the fragments. It is straightforward to include
additional information such as 2D and 3D textures. Although the
motivating application for this work comes from archeology, we
contribute several novel techniques for surface analysis and match-
ing to Computer Graphics, Vision, and Geometry Processing.
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Figure 15: Reassembling a fractured head model.


