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Let Πh be a 3-dimensional hyperbolic space with Euclidean ground field K. There is a certain
procedure by which any harmonic mapping of the projective line over the unique quadratic exten-
sion of K induces an orthogonality-preserving Plücker transformation of Πh and, conversely, any
orthogonality-preserving Plücker transformation of Πh is induced by such a harmonic mapping.

1 Introduction

In this paper we discuss orthogonality-preserving Plücker transformations of a 3-dimensional hy-
perbolic space with Euclidean ground field K. They are characterized by the property that two
hyperbolic lines intersect orthogonally if and only if their images do so. In fact it is sufficient to
demand the if part of this characterization (Proposition 2). In [12] the same Plücker transforma-
tions are discussed in hyperbolic planes and hyperbolic spaces with dimension ≥ 4. It turns out
[12] that those Plücker transformations are exactly the bijections of the set of hyperbolic lines that
come from collineations of the hyperbolic space. In the Cayley-Klein model, which is based upon an
absolute quadric Q, such a “hyperbolic collineation” extends to a unique collineation of the ambient
projective space. Conversely, each automorphic collineation of Q yields a hyperbolic collineation.
We will answer the question if all orthogonality-preserving Plücker transformations in hyperbolic 3-
spaces are also induced by collineations. The parallel classes of the hyperbolic space are in one-one
correspondence with the points of the absolute quadric Q in the Cayley-Klein model. The quadric
Q in turn can be identified with the projective line ΠL over the unique quadratic extension L of K.
It turns out that each Plücker transformation preserves the hyperbolic parallelism. Moreover, by
the above identification, each Plücker transformation corresponds to a harmonic mapping of ΠL,
and vice versa (Theorem 1).

By the Theorem of Staudt-Hua each harmonic mapping can be decomposed into a projectiv-
ity of ΠL and a bijection on ΠL induced by an automorphism ζ of L. It depends on the prop-
erties of ζ whether a Plücker transformation ϕ is induced by a projective collineation, a non-
projective collineation or whether ϕ is not induced by any collineation (Theorem 2). In this sense
3-dimensional hyperbolic spaces are exceptional.



Orthogonality-preserving Plücker transformations of Euclidean spaces have been investigated by
W. Benz and E.M. Schröder in [1, 2]. Analogously H. Havlicek discussed orthogonality-
preserving Plücker transformations of elliptic and symplectic spaces [6, 7]. Without going into
details we can conclude that in all these spaces 3-dimensional spaces are exceptional, since ortho-
gonality-preserving Plücker transformations are not necessarily induced by collineations.

2 Plücker Spaces and Hyperbolic Spaces

Let G be an arbitrary non-empty set and ∼ a binary relation on G which is symmetric and reflexive.
Following [1] we call the structure (G,∼) a Plücker space, if for each pair a, b ∈ G there exists a
finite number of elements c1, c2, . . . , cn ∈ G with

a ∼ c1 ∼ c2 ∼ . . . ∼ cn ∼ b.

A Plücker transformation of (G,∼) is a bijection ϕ : G → G with

a ∼ b ⇐⇒ aϕ ∼ bϕ for all a, b ∈ G. (1)

All such Plücker transformations form the Plücker group of (G,∼).

Let Π := Π(P,G) be a Pappian projective space (2 ≤ dimΠ := n < ∞) with point set P, line
set G and Euclidean ground field K. The set H of internal points of an oval quadric Q in Π is
non-empty [4, p.54]. Since K is Euclidean, each projective line g running through a point of H
contains infinitly many points of H and the section g ∩ Q gives two ideal points. Conversely, each
secant of Q contains an internal point of Q [4, p.54]. Now the linear space Πh(H,G) with

G := {g = g ∩H | g 6= ∅, g ∈ G}

is the Cayley-Klein model of the n-dimensional hyperbolic space over K; cf. [5]. We denote the
polarity of the absolute quadric Q by π. In the following we will distinguish between a secant g ∈ G
of Q and the hyperbolic line g := g ∩ H. Obviously there is a one-to-one correspondence between
secants g ∈ G and hyperbolic lines g ∈ G.

The polarity π gives rise to the following binary relations ∼ and ≈ on G: For a, b ∈ G we put

a ≈ b :⇐⇒ a ∩ bπ 6= ∅ and a ∩ b 6= ∅ (orthogonally intersecting lines)
a ∼ b :⇐⇒ a ≈ b or a = b (related lines).

In [12] there is shown that the structure (G,∼) forms a Plücker space. Now we investigate the
Plücker transformations of this Plücker space in the 3-dimensional case. Each Q-collineation1

induces a Plücker transformation of (G,∼) [12]. But the question is if all Plücker transformations
of (G,∼) are induced by Q-collineations.

For the investigation of Plücker transformations of (G,∼) we have to observe first the Plücker space
of parallel lines.

3 The Plücker Group of (G, ‖)

On G there we have the hyperbolic parallelism

‖⊂ G × G : a ‖ b ⇐⇒ a ∩ b ∩Q 6= ∅.
1A Q-collineation is a collineation of Π leaving the quadric Q invariant as a set.



Obviously ‖ is reflexive, symmetric and for any two lines a, b we can find a line c such that a ‖ c ‖ b.
We infer that (G, ‖) is a Plücker space. Now we will show that any bijection ϕ : G → G with

a ‖ b =⇒ aϕ ‖ b
ϕ
, ∀a, b ∈ G (2)

is already a Plücker transformation of (G, ‖). By abuse of notation, we define gϕ as the projective
line with gϕ ⊂ gϕ for all secants g of Q.

If there is given a bijection γ : Q → Q then we are able to define the bijection

ι(γ) : G → G, AB 7→ AγBγ (A,B ∈ Q, A 6= B).

For such a ι(γ), parallelism of lines is an invariant property. But since γ is a bijection, parallelism
of lines is also invariant under ι(γ)−1. That means ι(γ) is a Plücker transformation of (G, ‖).

Lemma 1. Let Πh be a 3-dimensional2 hyperbolic space. Any bijection ϕ : G → G fulfilling (2)
induces a bijection

γ : Q → Q, a ∩ b 7→ aϕ ∩ bϕ (a, b ∈ G, a ∩ b ∈ Q),

such that ι(γ) = ϕ.

Proof. For an A ∈ Q let the four distinct lines a, b, c, d be elements3 of the star GA. Their ϕ-images
have to be again parallel. Assuming that aϕ, bϕ, cϕ are the edges of a triangle (⊂ Q) we get the
contradiction aϕ ∩ bϕ, bϕ ∩ cϕ, cϕ ∩ aϕ ∈ dϕ. Therefore all lines aϕ, bϕ, cϕ, dϕ are running through
Aγ := aϕ ∩ bϕ ∈ Q and γ : Q → Q is a well-defined mapping. It remains to be shown that γ is a
bijection.

Assume to the contrary that there exists an A ∈ Q without γ-preimage. Since ϕ is a bijection, we
can choose distinct points B, C ∈ Q with A ∈ BCϕ. But A is not an image of γ and therefore
Bγ = Cγ . For an arbitrary D ∈ Q with D 6= B, C the lines DBϕ, DCϕ are distinct, because ϕ is
a bijection. So Dγ = Bγ = Cγ . But then Qγ = {Bγ} and Bγ ∈ aϕ for all a ∈ G. This contradicts
the surjectivity of ϕ. We showed the surjectivity and injectivity of γ simultaneously, and finally we
see that ι(γ) = ϕ.

Thus we have

Proposition 1. The Plücker group of (G, ‖) consists of all bijections ϕ : G → G fulfilling (2).

Proposition 1 will help us to show an analogous theorem in the Plücker space (G,∼).

4 The Plücker Group of (G,∼)

The following two Lemmata will be helpful in the examination of Plücker transformations of (G,∼).

Lemma 2. Let a be an arbitrary hyperbolic line and GA a star of parallel lines with a 6∈ GA. Then
there exists a unique line g ∈ GA with a ∼ g.

Proof. This unique line is g = ((Aπ ∩ a)π ∩ a)A.
2Lemma 1 is true for any n-dimensional hyperbolic space (2 ≤ n < ∞), but in this paper we focus onto the

3-dimensional case.
3Since charK = 0 any star contains 4 distinct lines.



Lemma 3. In 3-dimensional hyperbolic spaces there is:

a 6= b are parallel ⇐⇒ @n ∈ G with a ∼ n ∼ b.

Proof. From [12] (Theorem 1 and Lemma 1) we already know that hyperparallel and skew lines
have a common orthogonal line. Since dimΠh = 3 the subspace (a ∨ b)π 6= ∅, if a ∩ b 6= ∅.
Therefore n, with n = (a ∨ b)π ∨ (a ∩ b), intersects a and b orthogonally.

Assume to the contrary that two parallel lines a 6= b do have a common orthogonal line n. Then
a, b intersect in the external point nπ ∩ (a ∨ b). This is a contradiction.

Now we are able to show:

Proposition 2. Let Πh be a 3-dimensional hyperbolic space with line set G. Then for each bijection
ϕ : G → G with

a ∼ b =⇒ aϕ ∼ b
ϕ
, ∀a, b ∈ G

there exists a bijection γ of Q such that ι(γ) = ϕ. Moreover, ϕ is a Plücker transformation of
(G,∼).

Proof. Two distinct parallel lines aϕ, b
ϕ

have no common orthogonal line (see Lemma 3). Since
orthogonal intersection is an invariant property under ϕ,

aϕ ‖ b
ϕ

=⇒ a ‖ b, ∀a, b ∈ G.

By Proposition 1, we know that ϕ is a Plücker transformation of (G, ‖) and therefore

a ‖ b =⇒ aϕ ‖ b
ϕ
, ∀a, b ∈ G.

So, according to Lemma 1, ϕ gives rise to a bijection γ : Q → Q with ι(γ) = ϕ.

Now let a 6∼ b and A ∈ Q with b 63 A ∈ a. By Lemma 2, there exists exactly one n ∈ G with
A ∈ n and n ≈ b. Moreover, nϕ ≈ b

ϕ
and nϕ 3 Aγ ∈ aϕ. By a 6= n, we get aϕ 6= nϕ and finally

aϕ 6∼ b
ϕ
.

5 Analytic Description of the Plücker Group of (G,∼)

We already know that a Plücker transformation induces a bijection on the absolute quadric Q.
Furthermore we show that there exists a bijection between the point set of Q and the projective
line ΠL over the unique quadratic extension L := K(i) of K with i2 = −1. Then we are able to
show that exactly the harmonic mappings in ΠL are induced by Plücker transformations of (G,∼);
cf.Theorem 1.

So let us introduce the bijection between Q and ΠL. The projective space Π is isomorphic to the
projective space Π(K4) over the vector space K4. As K is a Euclidean field, it can be ordered
uniquely. For any a ∈ K+ there exists an element

√
a ∈ K with (

√
a)2 = a. Therefore [13, p. 234ff.]

the quadric Q has the same normal form as in real projective spaces. We can describe Q by the
equation

−x0x3 + x2
1 + x2

2 = 0.

Now we are able to define the bijection ξ between the projective line ΠL and Q (see [9, p.814]):

ξ : ΠL → Q, L(x0 + ix1, y0 + iy1) 7→ K(x2
0 + x2

1, x0y0 + x1y1, x0y1 − x1y0, y2
0 + y2

1). (3)



Let β : ΠL → ΠL be a bijection of ΠL. Then by β there is induced the bijection ξ−1βξ on Q.
Now we have to find out under which conditions such a bijection induces a Plücker transformation
ι(ξ−1βξ) of (G,∼).

If there is given a projectivity α of ΠL, then the bijection ξ−1αξ of Q can be extended to a projective
Q-collineation [9, p.815]. Therefore ι(ξ−1αξ) is a Plücker transformation of (G,∼).

Proposition 3. Let A,B,C, D ∈ Q be four distinct points. Then AB and CD intersect orthogo-
nally if and only if (Aξ−1

, Bξ−1
) and (Cξ−1

, Dξ−1
) are harmonic pairs.

Proof. By the action of the group of projectivities of ΠL or equivalently, by the action of the induced
group of Q-collineations, we may assume w.l.o.g. that

Aξ−1
= L(1, 0), Bξ−1

= L(0, 1), Cξ−1
= L(1, 1)

or equivalently,
A = K(1, 0, 0, 0), B = K(0, 0, 0, 1), C = K(1, 1, 0, 1).

If the pairs (Aξ−1
, Bξ−1

), (Cξ−1
, Dξ−1

) are harmonic then

Dξ−1
= L(1,−1) and D = K(1,−1, 0, 1).

It is easy to prove that AB, CD intersect orthogonally. Vice versa we have given AB, CD in-
tersecting orthogonally. We may assume that the coordinates of A,B, C are the ones from above.
With Lemma 2 we get that also D has the coordinates from above. But we already know that the
ξ-preimages of (A,B), (C, D) are harmonic pairs.

Now it is obvious that every bijection on ΠL preserving the harmonic position of pairs induces a
Plücker transformation of (G,∼). Again we see that every projectivity α of ΠL yields the Plücker
transformation ι(ξ−1αξ) of (G,∼). By each automorphism ζ : L→ L we have given the bijection

ζ : ΠL → ΠL, L(x0 + ix1, y0 + iy1) 7→ L((x0 + ix1)ζ , (y0 + iy1)ζ), (4)

which preserves also the harmonic position of pairs ([4, p.40]). Therefore the Plücker transformation
ι(ξ−1ζξ) is induced by ζ.

Theorem 1. Let Πh be a 3-dimensional hyperbolic space and ϕ a Plücker transformation of (G,∼).
Then ϕ can be decomposed into a product ϕ = ι(ξ−1αξ)ι(ξ−1ζξ) of two Plücker transformations
where:

1. ζ is an automorphism of the quadratic extension K(i) := L of K with i2 = −1.
2. α is a projectivity of ΠL, the projective line over L.

Moreover ϕ is induced by a harmonic mapping4 of ΠL.

Proof. From above we know that a Plücker transformation ϕ induces a bijection γ on Q. Further-
more we have induced a bijection on ΠL. Orthogonal intersection is invariant under ϕ. Therefore
the harmonic position of pairs in ΠL is invariant under β := ξγξ−1 (Proposition 3). Now we
decompose the harmonic mapping β.

Obviously each projectivity of ΠL is a harmonic mapping. Since through a triple of points and it’s
image a projectivity α is given [3, p.142], we may assume that the product βα has three fixed points.
So we can use the Theorem of Staudt-Hua [4, p. 40] and get that βα = ζ, for an automorphism
ζ : L→ L.

4A harmonic mapping of ΠL is a bijection on ΠL which maps harmonic pairs onto harmonic pairs.



6 Plücker Transformations and Collineations

Theorem 1 gives no answer to the question whether all Plücker transformations of Πh are induced
by collineations of Π or not. But by Theorem 1 we just have to investigate Plücker transformations
ϕ that are induced by

1. projectivities of ΠL
2. automorphisms ζ of L.

In the following we will use the notation introduced in section 5. Two collineations ψ1, ψ2 fixing the
quadric Q are identical if ψ1|Q = ψ2|Q. This is obvious because every point of Π is the intersection
point of two secants of Q. Therefore, if there exists a collineation of Π inducing ϕ, it is already
unique.

We already know that projectivities of ΠL induce projective Q-collineation [9, p.815]. Therefore
Plücker transformations induced by automorphisms of L remain to be investigated in detail.

On ΠL the automorphism ζ induces the bijection ζ (see (4)).

1. In case Kζ = K we get for L = K(i) that iζ = ±i [13, p.277]. Furthermore, ζ yields (with
respect to [9, p.814], (3)) the bijection ξ−1ζξ on Q, which is obviously also induced by the
collineation

ψζ : Π → Π,K(a0, a1, a2, a3) 7→ K(aζ
0, a

ζ
1,±aζ

2, a
ζ
3)

If ζ|K = idK then ψζ is a projective collineation, otherwise ζ|K 6= idK and ψζ is a non-
projective collineation.

2. Now let ζ be an automorphism with Kζ 6⊂ K. That means there exists an element x ∈ K
with xζ 6∈ K. The points A = L(1, 0), B = L(0, 1), C = L(1, 1) are fixed under ζ, but not
D = L(1, x). The ξ-images of A,B, C, D are on a planar section of Q. Since xζ 6∈ K, the
ξ-images of Aζ , Bζ , Cζ , Dζ are not coplanar. Therefore the bijection ξ−1ζξ on Q cannot be
extended to a collineation of Π. The Plücker transformation ι(ξ−1ζξ) is not induced by a
collineation.

We remark that under each Q-collineation hyperbolic distances [11, p.158] are transformed by the
accompanying automorphism of K. Therefore each projective Q-collineation preserves hyperbolic
distances, so it is a hyperbolic motion.

The real numbers R form an Euclidean field. Their unique quadratic extension is C. But the
existence of automorphisms ζ : C → C with Rζ 6⊂ R is well known (see [10, p.517] or [1, p.114f]).
Therefore in real hyperbolic 3-spaces there exist orthogonality-preserving Plücker transformations
that are not induced by collineations of the ambient projective space. Such Plücker transformations
do not exist in hyperbolic spaces with dimension other than three [12]. Summing up Proposition 2,
Theorem 1, and the results from above we get

Theorem 2. Let Πh be a 3-dimensional hyperbolic space and ϕ : G → G a bijection with

a ∼ b =⇒ aϕ ∼ b
ϕ ∀a, b ∈ G.

Then ϕ = ι(ξ−1αξ)ι(ξ−1ζξ) is a Plücker transformation, where α is a projectivity of ΠL and ζ is
an automorphism of L. Moreover:



1. ϕ is induced by a projective Q-collineation of the ambient projective space, if ζ|K = idK.
2. ϕ is induced by a non-projective Q-collineation of the ambient projective space, if Kζ = K but

ζ|K 6= idK.
3. ϕ is not induced by a collineation, if Kζ 6⊂ K.
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[4] Brauner H.: Geometrie projektiver Räume II, B.I. Wissenschaftsverlag, Mannheim Wien
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[12] List K.: On Orthogonality-preserving Plücker Transformations of Hyperbolic Spaces, Abh.
Math. Sem. Univ. Hamburg, to appear.

[13] Schaal H.: Lineare Algebra und Analytische Geometrie, Band II, Vieweg-Verlag, Braun-
schweig, 1976.

TU Wien – Institut für Geometrie
Wiedner Hauptstraße 8-10
A-1040 Wien
klaus.list@tuwien.ac.at

Eingegangen am 30. Juli 1999; in revidierter Fassung am 25. November 1999


