
Pascal’s triangle, normal rational curves, and
their invariant subspaces

Johannes Gmainer ∗

August 20, 1999

Abstract

Each normal rational curve Γ in PG(n, F ) admits a group PΓL(Γ) of
automorphic collineations. It is well known that for characteristic zero
only the empty and the entire subspace are PΓL(Γ)–invariant. In case
of characteristic p > 0 there may be further invariant subspaces. For
#F ≥ n+ 2, we give a construction of all PΓL(Γ)–invariant subspaces. It
turns out that the corresponding lattice is totally ordered in special cases
only.

1 Introduction

If the (commutative) ground field F of a projective space PG(n, F ) has char-
acteristic zero, then only the trivial subspaces are fixed by the group PΓL(Γ)
of automorphic collineations of a normal rational curve Γ. However, in case of
non-zero characteristic there may be further PΓL(Γ)–invariant subspaces. A well
known example is the intersecting point of the tangents of a conic, the so-called
nucleus, in a projective plane of characteristic two.

In the present paper we show that every non–trivial PΓL(Γ)–invariant subspace is
included in the nucleus of a normal rational curve, which is the intersection of all
osculating hyperplanes. Our results are valid, if the ground field has sufficiently
many elements (#F ≥ n+2). However, in case of a small ground field the problem
is more complicated, since PΓL(Γ) needs not be isomorphic to PΓL(2, F ).

Note, that normal rational curves are just specific examples of Veronese varieties.
In case of non–zero characteristic all Veronese varieties with empty nucleus have
been determined independently by H. Timmermann [9], [10], A. Herzer [6],
and H. Karzel [8]. In [10] and [4] one can find an explicit formula for the
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dimension of the nucleus of a normal rational curve; in [3] this is generalized to
arbitrary Veronese varieties. The term nucleus can be extended in the following
way [4]: Define the intersection over all k–dimensional osculating subspaces of
the curve Γ to be a k–nucleus. Obviously, these subspaces are further examples
of PΓL(Γ)–invariant subspaces.

In the present paper we give a construction of all PΓL(Γ)–invariant subspaces of
a normal rational curve Γ with the usual parametric representation

Γ = {F (1, t, . . . , tn) | t ∈ F ∪ {∞}}. (1)

Note that ∞ yields the point F (0, . . . , 0, 1). We show that in case of #F ≥
n+ 2 each PΓL(Γ)–invariant subspace U is spanned by points Pλ (λ ∈ Λ) of the
standard basis. In Theorem 2 we characterize those index sets Λ ⊂ {0, 1, . . . , n}
which yield invariant subspaces in terms of two closure operators.

In Section 3 we give examples of non–trivial index sets Λ = Λ(I1, . . . , IL; i, b). It
turns out that their construction is closely related to Pascal’s triangle modulo
charF = p and, on the other hand, to the representation of the integer b := n+1
in base p.

The lattice of all PΓL(Γ)–invariant subspaces is investigated in Section 4. We
show that the invariant subspaces constructed in Section 3 are exactly the irre-
ducible elements of the lattice.

2 Necessary and sufficient conditions

Let PG(n, F ) be the n–dimensional projective space on F n+1, where n ≥ 2 and
F is a (commutative) field with #F ≥ n + 2. In this section the characteristic
(charF ) of the ground field is arbitrary.

We put PΓL(Γ) for the group of all collineations fixing the normal rational curve
(1) as a set and PGL(Γ) for the subgroup of all projective collineations in PΓL(Γ).
Due to #F ≥ n+2, PGL(Γ) and PGL(2, F ) are isomorphic transformation groups
on Γ and PG(1, F ), respectively; cf. [5] and [7, 307–308].

The collineations induced by matrices of the form(
1 0
0 a

)
,

(
0 1
1 0

)
,

(
1 0
t 1

)
where a ∈ F \ {0}, t ∈ F , generate the group PGL(2, F ), cf. [1, 320–321]. So the
projective collineations induced by matrices of the form

Aa = diag (1, a, . . . , an) (2)

2



B =



0 0 . . . 0 1

0 0 . . . 1 0
...

... . . .
...

...

0 1 . . . 0 0

1 0 . . . 0 0


(3)

Ct =



(0
0

)
0 0 . . . 0(1

0

)
t

(1
1

)
0 . . . 0(2

0

)
t2

(2
1

)
t

(2
2

)
. . . 0

... . . . ...(
n
0

)
tn

(
n
1

)
tn−1

(
n
2

)
tn−2 . . .

(
n
n

)


(4)

generate PGL(Γ).

The automorphic collineations arising from (2) form a subgroup GA of PΓL(Γ).
In an analogous manner the subgroup GC is the set of all collineations induced
by matrices (4).

THEOREM 1 Let Γ be the normal rational curve (1) in PG(n, F ) and #F ≥
n + 2. A subspace U is GA–invariant if and only if U is spanned by points Pλ
(λ ∈ Λ) of the standard basis.

Proof. For all cases of charF we are able to find an element α ∈ F with the
powers α0, α1, . . . , αn being mutually different. If charF = 0, the element α = 2
is appropriate. For charF = p > 0 we have to distinguish three possibilities.
1) For a finite field F = GF (q) the multiplicative group is cyclic with a generating
element α. As #F ≥ n+ 2, the powers α0, α1, . . . , αn are mutually different.
2) If #F =∞ and GF (q) ⊂ F for q ≥ n+ 2, the same argument holds.
3) Now let #F = ∞ and q ≤ n + 1 maximal, so that GF (q) ⊂ F . Each α ∈
F \GF (q) is transcendental over F , because otherwise the field F (α) would have
finite degree over F and q would not be maximal. Again, the powers α0, α1, . . . , αn

are mutually different.

Now we investigate the collineation given by the matrix Aα = diag (1, α1, . . . , αn).
As the eigenvalues are mutually different, exactly the points of the standard basis
are fixed by the induced collineation. So, if U is spanned by base points, we
certainly get GA(U) = U .

On the other hand, let the subspace U be GA–invariant. If dimU ∈ {−1, 0, n},
the assertion is either already shown or trivial. So, consider a k–dimensional
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(1 ≤ k ≤ n − 1) invariant subspace U and choose two hyperplanes H1 and H2,
spanned by points of the standard basis, such that

U1 := U ∩H1 6= U ∩H2 =: U2, dimU i = k − 1.

As GA(U) = U and GA(Hi) = Hi, also the subspaces U i (i = 1, 2) are GA–
invariant. However, by the induction hypothesis, each U i is spanned by points of
the standard basis and, by U = U1 ∨ U2, so is U . 2

REMARK 1 From now on we know that in case of #F ≥ n + 2 an invariant
subspace can be written as U = [{Pλ | λ ∈ Λ}], so that finding invariant subspaces
means characterizing the appropriate sets Λ ⊂ {0, . . . , n}.

Before we are able to characterize the subspaces U which are also GC–invariant,
we need some preparations.

DEFINITION 1 Given charF and a non–negative integer n, then define for
j ∈ N := {0, 1, . . .}:

Ω(j) := {m ∈ N | 0 ≤ m ≤ n,

(
m

j

)
6≡ 0 (mod charF )}. (5)

Moreover, put Ω(J) :=
⋃
j∈J

Ω(j) for every subset J ⊂ {0, . . . , n} .

Note, that Ω(∅) = ∅. As the sets Ω(j) are crucial for the rest of the paper, they
have to be investigated thoroughly. If charF = 0, we get Ω(j) = {m ∈ N | j ≤
m ≤ n}. In case of characteristic p > 0, the following lemma of Lucas, cf. [2,
364], is very helpful: (

m

j

)
≡
∞∏
σ=0

(
mσ

jσ

)
(mod p). (6)

Here jσ and mσ are the digits of the representations of j and m in base p. Now,(
m
j

)
6≡ 0 modulo p, if and only if jσ ≤ mσ for all σ.

This gives rise to a half order �F on N. We have

j �F m :⇔ jσ ≤ mσ for all σ ∈ N. (7)

LEMMA 1 For fixed n and given charF the following antitonicity holds:

i1 �F i2 ⇔ Ω(i1) ⊃ Ω(i2) (8)

Here �F is the above mentioned half order for charF = p, and the canonical half
order “ ≤ ” in case of characteristic zero.
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Proof. The case of charF = 0 is trivial, whereas the assertion in case of charF =
p is a consequence of (5) and (7). 2

The mapping Ω is a closure operator on the set {0, 1, . . . , n}, because for arbitrary
elements A and B of the power set of {0, 1, . . . , n} the following three conditions
hold:

A ⊂ Ω(A)
Ω(Ω(A)) = Ω(A)
A ⊂ B ⇒ Ω(A) ⊂ Ω(B)

Now we characterize those GA–invariant subspaces that are also GC–invariant.

LEMMA 2 A subspace U = [{Pλ | λ ∈ Λ}] is GC–invariant if and only if the
following condition holds:

j ∈ Λ⇒ Ω(j) ⊂ Λ

Proof. If j ∈ Λ, we investigate the j–th column of a matrix (4) in the general
case (t 6= 0). As U is spanned by base points, it is GC–invariant if and only if the
condition (

m

j

)
6≡ 0 (mod charF ) ⇒ m ∈ Λ

holds. However,
(
m
j

)
6≡ 0 (mod charF ) ⇔ m ∈ Ω(j). 2

If U is PGL(Γ)–invariant, it has to be invariant under the collineation B in (3),
which leads us to the next lemma.

LEMMA 3 A subspace U = [{Pλ | λ ∈ Λ}] is invariant under the collineation
B if and only if the following symmetry–condition holds:

j ∈ Λ ⇔ j∗ := n− j ∈ Λ ∀j ∈ {0, 1, . . . , n}. (9)

Proof. This condition is an immediate consequence of the structure of the matrix
B in (3). 2

In analogy to the operator Ω we may define another closure operator Σ, also
called “the symmetry operator”, on the power set of {0, 1, . . . , n}:

Σ(A) :=
⋃
a∈A

{a, a∗} (10)

Now we are able to formulate the main theorem for invariant subspaces.

THEOREM 2 (main theorem) If F has at least n + 2 elements, then the
PΓL(Γ)–invariant subspaces can be characterized in the following way:
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1. The subspace U = [{Pλ | λ ∈ Λ}] with Λ ⊂ {0, 1, . . . , n} is spanned by base
points of the standard frame of reference.

2. The symmetry–condition Σ(Λ) ⊂ Λ holds.

3. The set Λ has the closure property Ω(Λ) ⊂ Λ.

Proof. Note, that PGL(Γ) is generated by the 3 types of collineations induced by
(2),(3), and (4). Due to #F ≥ n + 2, we may apply Theorem 1, Lemma 2, and
Lemma 3 to find out that the above theorem characterizes the PGL(Γ)–invariant
subspaces. However, PGL(Γ) is a subgroup of PΓL(Γ) and each collineation
κ ∈ PΓL(Γ) can be written as a product κ = κ1 ◦κ2; here κ1 ∈ PGL(Γ) and κ2 is
fixing each point of the standard frame of reference. Thus each PGL(Γ)–invariant
subspace is also κ2–invariant and therefore PΓL(Γ)–invariant. 2

REMARK 2 The trivial subspaces U = ∅ and U = P are certainly PΓL(Γ)–
invariant and the corresponding trivial index sets are Λ = ∅ and Λ = {0, 1, . . . , n}.
We easily show that in case of charF = 0 these subspaces are the only ones:

∃ j ∈ Λ Ω⇒ n ∈ Ω(j) Σ⇒ 0 ∈ Λ Ω⇒ Ω(0) = {0, . . . , n} ⊂ Λ.

Thus we are going to concentrate on the case charF > 0 for the rest of the paper.
The main theorem enables us to decide for given dimension n, whether a given
index set Λ represents a PΓL(Γ)–invariant subspace, or not. However, we aim
at a construction of all appropriate sets Λ, which we are going to give in the
following section.

3 Examples of invariant subspaces

Throughout this section the projective space PG(n, F ) has fixed dimension n and
prime–number characteristic p = charF . For j ∈ {0, 1, . . . , n} the symmetric
index n− j is written as j∗. The representation of a non–negative integer b ∈ N
in base p has the form

b =
∞∑
σ=0

bσp
σ =: 〈bσ〉. (11)

We are going to construct index sets Λ, for which the last two conditions of the
main theorem hold. As Ω and Σ are both closure operators, suitable sets Λ can
be created in the following way:

The starting point is a set J0 := {j0}. Now compute Ω(J0) and J1 := Σ(Ω(J0)).
If J0 = J1 we have found a suitable set Λ := J1. Otherwise, repeat the two oper-
ations from above to get J2 and so on. As Ω and Σ are closure operators acting
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on a finite set, there exists an index α, so that Jα+1 = Jα and the construction is
successful. We are going to follow up this idea later on; cf. Theorem 6.

Right now, our starting point are sets of the form Λ =
⋃
σ Ω(σ) with the property

Σ(Λ) = Λ. Later on we are able to show that these sets Λ are exactly those that
we get by the above mentioned method.

Right at the beginning we have to give some definitions and notations:

DEFINITION 2 Given an expansion of the form (11) we define the function
V (i, b) as follows:

V (i, b) : N× N → N

(i, b) 7→
i−1∑
σ=0

bσp
σ (12)

From now on, the second argument b := n + 1 of the function V is constant.
Note, that for variable i the values V (i, b) are not necessarily different, but we
need a consistent description of these values. Let N1 < N2 < . . . < Nd be the
positions of the non–zero digits of b in base p. Then we have

V (i, b) = 0 if i ≤ N1 (13)
V (i, b) = b = n+ 1 if i ≥ Nd + 1 (14)

and for all α ∈ {1, 2, . . . , d− 1} the relation

V (Nα + 1, b) = V (Nα + 2, b) = . . . = V (Nα+1, b) < V (Nα+1 + 1, b).

REMARK 3 Observe that (13) and (14) describe the trivial index sets Ω(0) =
{0, 1, . . . , n} and Ω(n+1) = ∅, in which we are no longer interested, cf. Remark 2.

With the settings from above, the different values of V (i, b) besides 0 and n + 1
are denoted by V (N2, b), . . . , V (Nd, b). Each V (i, b) will lead us to a PΓL(Γ)–
invariant subspace.

THEOREM 3 The sets of the form Λ = Ω(V (i, b)) are symmetric.

Proof. We have to investigate, if j∗ ∈ Λ for each index j ∈ Λ. The digits of j in
base p satisfy:

jα ∈ {0, 1, . . . , p− 1} 0 ≤ α ≤ N1 − 1
jN1 > nN1

jβ ≥ nβ N1 + 1 ≤ β ≤ i− 1
ji ∈ {0, 1, . . . , p− 1}
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For the symmetric index j∗ = n− j we get digits:

j∗α = nα − jα 0 ≤ α ≤ N1 − 1
j∗N1

> nN1

j∗β ≥ nβ N1 ≤ β ≤ i− 1

With these inequalities the assertion j∗ ∈ Ω(V (i, b)) is shown. 2

Note, that nα = p − 1 in case of 0 ≤ α ≤ N1 − 1 and that for N1 ≤ β ≤ i − 1
there is always a “carry” in the p–adic addition jβ + j∗β.

The following example illustrates the general situation:
With p = 5 and n = 1424 = 〈2, 1, 1, 4, 4〉 we get n+ 1 = b = 1425 = 〈2, 1, 2, 0, 0〉.
The interesting values V (i, b) are

V (3, b) = 〈2, 0, 0〉
V (4, b) = 〈1, 2, 0, 0〉

We get Ω(V (4, b)) = {j = 〈j4, j3, j2, j1, j0〉 | j ≤ n, j2 ≥ 2, j3 ≥ 1}. The digits of
the symmetric index j∗ are:

n0 − j0 = 4− j0 = j∗0
n1 − j1 = 4− j1 = j∗1

j2 = 2 ⇔ j∗2 = 4
j2 = 3 ⇔ j∗2 = 3
j2 = 4 ⇔ j∗2 = 2
j3 = 1 ⇔ j∗3 = 4
j3 = 2 ⇔ j∗3 = 3
j3 = 3 ⇔ j∗3 = 2
j3 = 4 ⇔ j∗3 = 1

However, the values V (i, b) are just the starting points for the construction of all
invariant subspaces, and that is why further values V (I1, . . . , IL; i, b) are defined.

DEFINITION 3 Given a set {0, 1, . . . , i} we consider for σ = 1, 2, . . . , L sub-
sets of the form Iσ := {iσ, iσ + 1, . . . , iσ + kσ}. With the conditions

iσ, kσ ∈ N σ = 1, . . . , L (15)
iσ + kσ ≤ iσ+1 − 2 σ = 1, . . . , L− 1 (16)
iL + kL ≤ i− 2 (17)

biσ > 0 σ = 1, . . . , L (18)
biσ+kσ+1 < p− 1 σ = 1, . . . , L (19)
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we define

V (I1, . . . , IL; i, b) := V (i, b)−
L∑
σ=1

kσ∑
µ=0

biσ+µ p
iσ+µ +

L∑
σ=1

piσ+kσ+1. (20)

For each Iσ we have a system T (Iσ) of subsets:

T (Iσ) := {Tσ; tσ = {iσ, iσ + 1, . . . , iσ + tσ} | tσ = −1, 0, . . . , kσ} (21)

The value tσ = −1 describes the empty set and T (I1 × . . . × IL) is a shorthand
for the product T (I1)× . . .× T (IL).

Now we check, if we can apply Definition 3 to (T1, . . . , TL) ∈ T (I1 × . . . × IL)
to obtain a number V (T1, . . . , TL; i, b). Of course, this is only possible, if all the
conditions in Definition 3 are fulfilled, in other words tσ ≥ 0 and biσ+tσ+1 < p− 1
for all σ ∈ {1, 2, . . . , L}. This means that all sets Tσ have to be non–empty.
However, we want to get

V (. . . , Tα−1, Tα, Tα+1, . . . ; i, b) = V (. . . , Tα−1, Tα+1, . . . ; i, b),

if a set Tα is empty, and so Definition 3 has to be modified in the following sense:
“Take an L-tuple (T1, . . . , TL) ∈ T (I1 × . . . × IL). If there are empty sets Tα,
then ignore these sets and apply Definition 3 to the remaining tuple with only
non–empty sets.”

Again, a short example for illustration: We consider p = 2 and b = 372 =
〈1, 0, 1, 1, 1, 0, 1, 0, 0〉. Taking V (8, b) = 〈0, 1, 1, 1, 0, 1, 0, 0〉 as a starting point, it is
not possible to generate a value V (I1, I2, I3; 8, b): As the conditions in Definition 3
imply i2 ≥ i1 + 2, i3 ≥ i2 + 2 and biµ > 0, the only permissible triple (i3, i2, i1)
and (k3, k2, k1) are (6, 4, 2) and (0, 0, 0). However, we are not allowed to define
V ({2}, {4}, {6}; 8, b) due to bi2+k2+1 = b5 = p− 1 = 1.

In an analogous manner we are restricted to i1 = 2 in defining a value V (I1, I2; 8, b).
For i2 we may choose i2 = 4, but then again have to decide on k2 = 2 due to
(19). We get V ({2}, {4, 5, 6}; 8, b) = 〈1, 0, 0, 0, 1, 0, 0, 0〉. The subsets (T1, T2) ∈
T (I1× I2), for which we are able to define V (T1, T2; 8, b) are ({2}, ∅), (∅, {4, 5, 6})
and (∅, ∅):

V ({2}; 8, b) = 〈0, 1, 1, 1, 1, 0, 0, 0〉
V ({4, 5, 6}; 8, b) = 〈1, 0, 0, 0, 0, 1, 0, 0〉

V (8, b) = 〈0, 1, 1, 1, 0, 1, 0, 0〉

After all these preparations, the indices V (I1, . . . , IL; i, b) will lead us to further
non–trivial PΓL(Γ)–invariant subspaces.
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THEOREM 4 For each (T1, . . . , TL) ∈ T (I1×. . .×IL), such that V (T1, . . . , TL; i, b)
is defined, there exists a number j ∈ Ω(V (I1, . . . , IL; i, b)), with

j∗ ∈ Ω(V (T1, . . . , TL; i, b)) but
j∗ /∈ Ω(V (S1, . . . , SL; i, b)) for all (S1, . . . , SL) ∈

T (I1 × . . .× IL) \ (T1, . . . , TL)

Proof. With Tµ := Tµ; tµ for all µ ∈ {1, 2, . . . , L}, we are going to choose j ∈
Ω(V (I1, . . . , IL; i, b)), such that j∗ = V (T1, . . . , TL; i, b). Define j in terms of its
digits in base p:

jα = nα = p− 1 0 ≤ α ≤ N1 − 1

iff i1 > N1

{
jβ = p− 1 N1 ≤ β ≤ i1 − 1
ji1 = ni1 − 1

iff i1 = N1 ji1 = ni1
jγ = nγ i1 + 1 ≤ γ ≤ i1 + t1
jδ = p− 1 i1 + t1 + 1 ≤ δ ≤ i2 − 1
ji2 = ni2 − 1
jγ = nγ i2 + 1 ≤ γ ≤ i2 + t2
jδ = p− 1 i2 + t2 + 1 ≤ δ ≤ i3 − 1

...
jiL = niL − 1
jγ = nγ iL + 1 ≤ γ ≤ iL + tL
jδ = p− 1 iL + tL + 1 ≤ δ ≤ i− 1
ji = ni − 1
jγ = nγ i+ 1 ≤ γ ≤ Nd

In case of tσ = −1 we simply omit the line jiσ = niσ − 1, respectively ji1 = ni1 (if
t1 = −1 and i1 = N1).

For the symmetric index j∗ we get:

j∗α = 0 0 ≤ α ≤ N1 − 1

iff i1 > N1

{
j∗N1

= nN1 + 1
j∗β = nβ N1 + 1 ≤ β ≤ i1 − 1
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j∗i1 = 0
j∗γ = 0 i1 + 1 ≤ γ ≤ i1 + t1

j∗i1+t1+1 = ni1+t1+1 + 1
j∗δ = nδ i1 + t1 + 2 ≤ δ ≤ i2 − 1
j∗γ = 0 i2 ≤ γ ≤ i2 + t2

j∗i2+t2+1 = ni2+t2+1 + 1
j∗δ = nδ i2 + t2 + 2 ≤ δ ≤ i3 − 1

...
j∗γ = 0 iL ≤ γ ≤ iL + tL

j∗iL+tL+1 = niL+tL+1 + 1
j∗δ = nδ iL + tL + 2 ≤ δ ≤ i− 1

It is obvious that we have j∗ = V (T1, . . . , TL; i, b) ∈ Ω(V (T1, . . . , TL; i, b)).
It remains to show that V (T1, . . . , TL; i, b) ∈ Ω(V (S1, . . . , SL; i, b)) if and only if
(S1, . . . , SL) = (T1, . . . , TL): So we assume that there exists Y with SY 6= TY and
V (T1, . . . , TL; i, b) ∈ Ω(V (S1, . . . , SL; i, b)). There are two possibilities, i) sY < tY
and ii) sY > tY .
i) If sY = −1, we have hiY ≥ biY > 0 for all h ∈ Ω(V (S1, . . . , SL; i, b)), whereas
V (T1, . . . , TL; i, b)iY = 0. Otherwise (sY ≥ 0) we have hiY +sY +1 > biY +sY +1, but
V (T1, . . . , TL; i, b)iY +sY +1 = 0 ≤ biY +sY +1, which is always a contradiction.
ii) Similarly hiY +sY +1 > biY +sY +1, but V (T1, . . . , TL; i, b)iY +sY +1 = biY +sY +1, if
tY = −1; and otherwise hiY +sY +1 > biY +sY +1, but V (T1, . . . , TL; i, b)iY +sY +1 =
biY +sY +1, which is again a contradiction. 2

Theorem 4 tells us that starting with Ω(V (I1, . . . , IL; i, b)), the smallest set which
might pass the conditions of the main theorem is

Λ(I1, . . . , IL; i, b) :=
⋃

Ω(V (T1, . . . , TL; i, b)), (22)

taking the union over all L-tuples (T1, . . . , TL) ∈ T (I1 × . . .× IL). In fact, these
sets Λ(I1, . . . , IL; i, b) meet the symmetry–condition of the main theorem. This
will be proved by the help of the following two lemmas.

LEMMA 4 Let j be an element of Λ(I1, . . . , IL; i, b). Then we have

j /∈ Ω(V (T1, . . . , TL; i, b))

for all
(T1, . . . , TL) ∈ (T (I1 × . . .× IL) \ (I1, . . . , IL))

if and only if

νµ := max{α ∈ {0, 1, . . . , kµ} | jiµ+α < biµ+α} (23)

exists for all µ ∈ {1, 2, . . . , L} and

min{β ∈ {νµ + 1, . . . , kµ + 1} | jiµ+β > biµ+β} = kµ + 1. (24)
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Proof. Assume j ∈ Λ(I1, . . . , IL; i, b) and j /∈ Ω(V (T1, . . . , TL; i, b)) for all
(T1, . . . , TL) ∈ (T (I1 × . . . × IL) \ (I1, . . . , IL)). If there were Y ∈ {1, 2, . . . , L}
with jiY +α ≥ biY +α for α = 0, 1, . . . , kY , then we would get the contradiction
j ∈ Ω(V (I1, . . . , IY−1, ∅, IY+1, . . . , IL; i, b)). So the maximum νµ exists for all
indices. Now assume, that for Y ∈ {1, 2, . . . , L} we have

min{β ∈ {νY + 1, . . . , kY + 1} | jiY +β > biY +β} =: tY + 1 < kY + 1.

However, this results in j ∈ Ω(V (I1, . . . , IY−1, TY , IY+1, . . . , IL; i, b)) with (TY 6=
IY ), which is also a contradiction.

Now let us have j ∈ Λ(I1, . . . , IL; i, b) with conditions (23) and (24). Assume
to the contrary that j ∈ Ω(V (T1, . . . , TL; i, b)) with (T1, . . . , TL) 6= (I1, . . . , IL).
So there exists Y ∈ {1, 2, . . . , L} with TY 6= IY . Note that an element h ∈
Ω(V (T1, . . . , TL; i, b)) fulfills:

hiY +tY +1 > biY +tY +1

hiY +α ≥ biY +α tY + 2 ≤ α ≤ kY + 1

However, the inequality jiY +νY < biY +νY in the case νY ≥ tY + 1, respectively the
identity jiY +tY +1 = biY +tY +1 in case of νY < tY +1 < kY +1 leads to an absurdity.
2

LEMMA 5 Let j ∈ Λ(I1, . . . , IL; i, b) and

j /∈ Ω(V (T1, . . . , TL; i, b))

for all
(T1, . . . , TL) ∈ (T (I1 × . . .× IL) \ (I1, . . . , IL)).

Then the symmetric index j∗ has the same properties.

Proof. As the index j meets the conditions of the lemma, we have:

jα ∈ {0, 1, . . . , p− 1} 0 ≤ α ≤ N1 − 1

iff i1 > N1

{
jN1 > nN1

jβ ≥ nβ N1 + 1 ≤ β ≤ i1 − 1

ji1+k1+1 > ni1+k1+1

jδ ≥ nδ i1 + k1 + 2 ≤ δ ≤ i2 − 1

ji2+k2+1 > ni2+k2+1

jδ ≥ nδ i2 + k2 + 2 ≤ δ ≤ i3 − 1
...

jiL+kL+1 > niL+kL+1

jδ ≥ nδ iL + kL + 2 ≤ δ ≤ i− 1

12



As a result we get j∗α = nα − jα = p − 1 − jα with 0 ≤ α ≤ N1 − 1, and for the
other digits of j∗ the same inequalities are valid, as above. This gives

j∗ ∈ Ω(V (I1, . . . , IL; i, b)) ⊂ Λ(I1, . . . , IL; i, b).

With the notations in Lemma 4 and fixed µ ∈ {1, 2, . . . , L} there are two possi-
bilities: Either there is a “carry” in the addition

jiµ+νµ−1 + j∗iµ+νµ−1 = niµ+νµ−1,

or there is not. It turns out, that in both cases we get

ν∗µ = max{α ∈ {0, 1, . . . , kµ} | j∗iµ+α < niµ+α} ≥ νµ

kµ + 1 = min{β ∈ {ν∗µ + 1, . . . , kµ + 1} | j∗iµ+β > niµ+β},

and with Lemma 4 we obtain the assertion. 2

With the aid of these two lemmas we are now able to formulate

THEOREM 5 The subspaces U = [{Pλ | λ ∈ Λ(I1, . . . , IL; i, b)}] are invariant
under the group PΓL(Γ) of automorphic collineations.

Proof. As Λ(I1, . . . , IL; i, b) is a union of sets Ω(V (∗, b)), we just have to investi-
gate, if the symmetry–condition of Theorem 2 holds. Given j ∈ Λ(I1, . . . , IL; i, b),
there exists one and only one L-tuple (T1, . . . , TL) with

j ∈ Ω(V (T1, . . . , TL; i, b)) and
L∑
µ=1

#Tµ −→ minimum.

i) If this minimum equals 0 or, in other words, j ∈ Ω(V (i, b)), then we get
j∗ ∈ Ω(V (i, b)) by Theorem 3.
ii) For a positive value of this minimum, we only write down non–empty sets and
get an H-tuple (Ti1 , . . . , TiH ) with H ≤ L and Tiµ 6= ∅ (µ = 1, 2, . . . , H). Now we
apply Lemma 5 to the set (Ti1 × . . .× TiH ), which completes the proof. 2

4 The lattice of the invariant subspaces

If we want to determine the lattice of all PΓL(Γ)–invariant subspaces, it is suf-
ficient to characterize those “irreducible” elements, which cannot be written as
a non–trivial sum of invariant subspaces. As the lattice has only finitely many
elements, each “non–irreducible” subspace can be constructed as a sum of “irre-
ducible” ones.

13



THEOREM 6 The subspaces of the form

U := [{Pλ | λ ∈ Λ(I1, . . . , IL; i, b)}]

are exactly the non–trivial irreducible invariant subspaces.

Proof. We are going to follow up the idea explained at the beginning of Section 3.
For every index j in the set {0, 1, . . . , n} we construct the minimal index set Λ
with Ω(Λ) = Λ and Σ(Λ) = Λ. If

(
n
j

)
6≡ 0 (mod p), we get

j ∈ Λ Ω⇒ n ∈ Ω(j) Σ⇒ 0 ∈ Λ Ω⇒ Ω(0) = {0, . . . , n} ⊂ Λ, (25)

the entire space, a trivial irreducible invariant subspace.

Now take j with
(
n
j

)
≡ 0 (mod p) and define:

iff jN1 ≤ nN1 i1 := N1

iff jN1 > nN1 i1 := min{α ∈ {N1 + 1, . . . , Nd} | jα < nα}
i1 + k1 + 1 := min{β ∈ {i1 + 1, . . . , Nd} | jβ > nβ}

i2 := min{γ ∈ {i1 + k1 + 2, . . . , Nd} | jγ < nγ}
i2 + k2 + 1 := min{δ ∈ {i2 + 1, . . . , Nd} | jδ > nδ}

...
i := iL+1 := min{ω ∈ {iL + kL + 2, . . . , Nd} | jω < nω}

The index j′ with

j′α = nα = p− 1 0 ≤ α ≤ N1 − 1

iff i1 > N1

{
j′β = p− 1 N1 ≤ β ≤ i1 − 1
j′i1 = ni1 − 1

iff i1 = N1 j′i1 = ni1
j′γ = nγ i1 + 1 ≤ γ ≤ i1 + k1

j′δ = p− 1 i1 + k1 + 1 ≤ δ ≤ i2 − 1
j′i2 = ni2 − 1
j′γ = nγ i2 + 1 ≤ γ ≤ i2 + k2

j′δ = p− 1 i2 + k2 + 1 ≤ δ ≤ i3 − 1
...

j′iL = niL − 1
j′γ = nγ iL + 1 ≤ γ ≤ iL + kL
j′δ = p− 1 iL + kL + 1 ≤ δ ≤ i− 1
j′i = ni − 1
j′γ = nγ i+ 1 ≤ γ ≤ Nd

14



has the properties

j′ ∈ Ω(j)
j′∗ = V (I1, . . . , IL; i, b).

So we get Λ = Λ(I1, . . . , IL; i, b), and due to Theorem 4 and Theorem 5 the
corresponding subspace is PΓL(Γ)–invariant and irreducible. Note, that for each
V (I1, . . . , IL; i, b), which can be defined by (20), we find an appropriate j, so that
the above construction is possible. 2

Having determined all irreducible invariant subspaces in the ambient space of a
normal rational curve, it is a natural question to ask, in which cases the accom-
panying lattice is totally ordered.

THEOREM 7 Let the positions of the non-zero digits of b := n+ 1 in base p be
denoted by N1, N2, . . . , Nd. Then the lattice of the PΓL(Γ)–invariant subspaces is
totally ordered if and only if one of the following cases occurs:

1. d ∈ {1, 2}.

2. d ≥ 3, Nd −N1 = d− 1, and N2 = . . . = Nd−1 = p− 1.

Proof. We are going to discuss all the cases of d ≥ 1:
1) If d = 1, the representation of n in base p has the form 〈nY , p− 1, . . . , p− 1〉.
Only if bN1 = 1 we get Y = N1 − 1, in all other cases Y equals N1. By formula
(6) we get

(
n
j

)
6≡ 0 (mod p) for all j ∈ {0, 1, . . . , n}. With (25) merely the

trivial subspaces are PΓL(Γ)–invariant. If d = 2, the only index sets Λ that
can be constructed according to Definition 3 and formula (22) are of the form
Λ(I1;N2, b) with I1 = {N1, . . . , i1 + k1}. As i1 = N1 is constant, the lattice is
totally ordered.
2) d ≥ 3: i) Assume Nd > N1 + d − 1 or Nd = N1 + d − 1 and that there is an
α ∈ {2, 3, . . . , d − 1} with bNα < p − 1. In both cases there exists an index Y ,
with N1 < Y < Nd and bY < p− 1. Now put I1 := {N1, . . . , Y − 1}, to get

Λ(N2, b)
6⊂
6⊃ Λ(I1;Nd, b).

ii) In the case Nd−N1 = d−1 and N2 = . . . = Nd−1 = p−1, the only non–trivial
index sets we may construct are

Λ(N2, b) ⊂ Λ(N3, b) ⊂ . . . ⊂ Λ(Nd, b),

which completes the proof. 2

In conclusion we give according to charF = p the minimal dimension n, so that
the lattice of PΓL(Γ)–invariant subspaces is not totally ordered:

1. p = 2: b = 〈1, 0, 1, 1〉 = 11, which means n = p3 + p = p(p2 + 1).

2. p ≥ 3: b = 〈1, 1, 1〉, so n = p(p+ 1).
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