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Abstract

Each normal rational curve I' in PG(n, F') admits a group PT'L(T") of
automorphic collineations. It is well known that for characteristic zero
only the empty and the entire subspace are PI'L(T")-invariant. In case
of characteristic p > 0 there may be further invariant subspaces. For
#F > n+ 2, we give a construction of all PT'L(I")-invariant subspaces. It
turns out that the corresponding lattice is totally ordered in special cases
only.

1 Introduction

If the (commutative) ground field F' of a projective space PG(n, F') has char-
acteristic zero, then only the trivial subspaces are fixed by the group PT'L(I")
of automorphic collineations of a normal rational curve I'. However, in case of
non-zero characteristic there may be further PI'L(I")—invariant subspaces. A well
known example is the intersecting point of the tangents of a conic, the so-called
nucleus, in a projective plane of characteristic two.

In the present paper we show that every non—trivial PI'L(I")-invariant subspace is
included in the nucleus of a normal rational curve, which is the intersection of all
osculating hyperplanes. Our results are valid, if the ground field has sufficiently
many elements (#F > n+2). However, in case of a small ground field the problem
is more complicated, since PI'L(I") needs not be isomorphic to PT'L(2, F).

Note, that normal rational curves are just specific examples of Veronese varieties.
In case of non-zero characteristic all Veronese varieties with empty nucleus have
been determined independently by H. TIMMERMANN [9], [10], A. HERZER 6],
and H. KARzEL [8]. In [10] and [4] one can find an explicit formula for the
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dimension of the nucleus of a normal rational curve; in [3] this is generalized to
arbitrary Veronese varieties. The term nucleus can be extended in the following
way [4]: Define the intersection over all k—dimensional osculating subspaces of
the curve I' to be a k—nucleus. Obviously, these subspaces are further examples
of PI'L(I")—invariant subspaces.

In the present paper we give a construction of all PI'L(I")-invariant subspaces of
a normal rational curve I' with the usual parametric representation

D= {F(1,t,....t") |t € FU{oo0}}. (1)

Note that oo yields the point F(0,...,0,1). We show that in case of #F >
n + 2 each PT'L(I")-invariant subspace U is spanned by points Py (A € A) of the
standard basis. In Theorem 2 we characterize those index sets A C {0,1,...,n}
which yield invariant subspaces in terms of two closure operators.

In Section 3 we give examples of non-trivial index sets A = A(ly,...,I1;i,b). It
turns out that their construction is closely related to Pascal’s triangle modulo
char F' = p and, on the other hand, to the representation of the integer b : = n+1
in base p.

The lattice of all PI'L(I")-invariant subspaces is investigated in Section 4. We
show that the invariant subspaces constructed in Section 3 are exactly the irre-
ducible elements of the lattice.

2 Necessary and sufficient conditions

Let PG(n, F) be the n—dimensional projective space on F"*! where n > 2 and
F is a (commutative) field with #F > n + 2. In this section the characteristic
(char F') of the ground field is arbitrary.

We put PT'L(T") for the group of all collineations fixing the normal rational curve
(1) as a set and PGL(T") for the subgroup of all projective collineations in PI'L(T").
Due to #F > n+2, PGL(I") and PGL(2, F') are isomorphic transformation groups
on I' and PG(1, F'), respectively; cf. [5] and [7, 307-308].

The collineations induced by matrices of the form

(o) (To) (i 1)

where a € F'\ {0},t € F, generate the group PGL(2, F), cf. [1, 320-321]. So the
projective collineations induced by matrices of the form

A, = diag(l,a,...,a") (2)



00 ... 10
B = (3)
01 ...00
10 ...00
©) 0 0 0
Wt ) 0 0
Go= 1 @ Ot () 0 (4)

generate PGL(T).

The automorphic collineations arising from (2) form a subgroup G4 of PT'L(I).
In an analogous manner the subgroup G is the set of all collineations induced
by matrices (4).

THEOREM 1 Let ' be the normal rational curve (1) in PG(n, F) and #F >
n+ 2. A subspace U is G a—invariant if and only if U is spanned by points Py
(A € A) of the standard basis.

Proof. For all cases of char F' we are able to find an element o« € F' with the
powers o, !, ... a" being mutually different. If char F = 0, the element o = 2
is appropriate. For char F' = p > 0 we have to distinguish three possibilities.

1) For a finite field F' = GF'(q) the multiplicative group is cyclic with a generating
element . As #F > n + 2, the powers o, a!, ..., a" are mutually different.

2) If #F = 0o and GF(q) C F for ¢ > n + 2, the same argument holds.

3) Now let #F = oo and ¢ < n + 1 maximal, so that GF(¢q) C F. Each a €

F\ GF(q) is transcendental over F', because otherwise the field F'(«) would have

finite degree over I’ and ¢ would not be maximal. Again, the powers o, al, ..., a"
are mutually different.
Now we investigate the collineation given by the matrix A, = diag (1,a!,...,a").

As the eigenvalues are mutually different, exactly the points of the standard basis
are fixed by the induced collineation. So, if I/ is spanned by base points, we
certainly get G4(U) =U.

On the other hand, let the subspace U be G —invariant. If dimi € {—1,0,n},
the assertion is either already shown or trivial. So, consider a k—dimensional



(1 <k <n—1) invariant subspace U and choose two hyperplanes H; and Ha,
spanned by points of the standard basis, such that

U =UNH AUNHy =Uy, dimU; =Fk—1.

As G4(U) = U and G4(H;) = H;, also the subspaces U; (i = 1,2) are G4—
invariant. However, by the induction hypothesis, each U; is spanned by points of
the standard basis and, by U = U, V U, so is U. d

REMARK 1 From now on we know that in case of #F > n + 2 an invariant
subspace can be written astf = [{ P, | A € A}], so that finding invariant subspaces
means characterizing the appropriate sets A C {0,...,n}.

Before we are able to characterize the subspaces U which are also Go—invariant,
we need some preparations.

DEFINITION 1 Given char F' and a non-negative integer n, then define for
jeN:={0,1,...}:

QF)={meN|0<m<n, (7) #0 (mod char F')}. (5)

Moreover, put Q(J) := |J Q(j) for every subset J C {0,...,n} .
jeJ

Note, that Q(0) = 0. As the sets Q(j) are crucial for the rest of the paper, they
have to be investigated thoroughly. If char F' = 0, we get Q(j) = {m e N | j <
m < n}. In case of characteristic p > 0, the following lemma of Lucas, cf. [2,

364], is very helpful: -
G)=11(5)

o=0 Jo

Here j, and m, are the digits of the representations of 7 and m in base p. Now,
(T]”) % 0 modulo p, if and only if j, < m, for all o.

This gives rise to a half order < on N. We have
ji=gm &  j,<m, forall 0 € N. (7)
LEMMA 1 For fized n and given char ' the following antitonicity holds:
i1 S lg < Qi) D Qiz) (8)

Here <r is the above mentioned half order for char F' = p, and the canonical half
order “ <7 in case of characteristic zero.



Proof. The case of char F' = 0 is trivial, whereas the assertion in case of char F' =
p is a consequence of (5) and (7). O

The mapping €2 is a closure operator on the set {0, 1,...,n}, because for arbitrary
elements A and B of the power set of {0,1,...,n} the following three conditions
hold:

A C Q4
Q(Q4)) = Q(4)
ACB = QA) CQ(B)

Now we characterize those G s—invariant subspaces that are also Go—invariant.

LEMMA 2 A subspace U = [{Py | A € A}] is Go—invariant if and only if the
following condition holds:
jeAN=Q() CA

Proof. 1f j € A, we investigate the j—th column of a matrix (4) in the general
case (t # 0). As U is spanned by base points, it is Go—invariant if and only if the
condition

(T;L) #Z0 (modcharF) = meA
holds. However, (T]”) #Z0 (mod char F') & m € Q(j). O

If U is PGL(I")-invariant, it has to be invariant under the collineation B in (3),
which leads us to the next lemma.

LEMMA 3 A subspace U = [{P\ | A € A}] is invariant under the collineation
B if and only if the following symmetry—condition holds:

JEN & jf=n—jeAN Vje{0,1,...,n} (9)
Proof. This condition is an immediate consequence of the structure of the matrix
B in (3). O
In analogy to the operator {2 we may define another closure operator ¥, also
called “the symmetry operator”, on the power set of {0, 1,...,n}:
£(4) == [J{a, a7} (10)
acA

Now we are able to formulate the main theorem for invariant subspaces.

THEOREM 2 (main theorem) If F' has at least n + 2 elements, then the
PI'L(T")~invariant subspaces can be characterized in the following way:
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1. The subspace U = [{Py | A € A} with A C {0,1,...,n} is spanned by base
points of the standard frame of reference.

2. The symmetry—condition X(A) C A holds.

3. The set A has the closure property Q(A) C A.

Proof. Note, that PGL(T") is generated by the 3 types of collineations induced by
(2),(3), and (4). Due to #F > n + 2, we may apply Theorem 1, Lemma 2, and
Lemma 3 to find out that the above theorem characterizes the PGL(I")-invariant
subspaces. However, PGL(I") is a subgroup of PT'L(I") and each collineation
k € PTL(T") can be written as a product k = k; 0 k; here k1 € PGL(T") and &, is
fixing each point of the standard frame of reference. Thus each PGL(I")-invariant
subspace is also ko-invariant and therefore PI'L(I")-invariant. a

REMARK 2 The trivial subspaces U = () and U = P are certainly PI'L(T")-
invariant and the corresponding trivial index sets are A = ) and A = {0,1,...,n}.
We easily show that in case of char F' = 0 these subspaces are the only ones:

FjeA2neqi)20eA20Q0)={0,...,n} CA.

Thus we are going to concentrate on the case char F' > 0 for the rest of the paper.
The main theorem enables us to decide for given dimension n, whether a given
index set A represents a PI'L(I")-invariant subspace, or not. However, we aim
at a construction of all appropriate sets A, which we are going to give in the
following section.

3 Examples of invariant subspaces

Throughout this section the projective space PG(n, F') has fixed dimension n and
prime-number characteristic p = char F. For j € {0,1,...,n} the symmetric
index n — j is written as j*. The representation of a non—negative integer b € N
in base p has the form

b= byp” =t (o). (11)

We are going to construct index sets A, for which the last two conditions of the
main theorem hold. As 2 and ¥ are both closure operators, suitable sets A can
be created in the following way:

The starting point is a set Jy := {jo}. Now compute Q(Jp) and J; := 3(Q(Jp)).
If Jo = J; we have found a suitable set A := J;. Otherwise, repeat the two oper-
ations from above to get Jo and so on. As (2 and ¥ are closure operators acting



on a finite set, there exists an index «, so that J,.; = J, and the construction is
successful. We are going to follow up this idea later on; cf. Theorem 6.

Right now, our starting point are sets of the form A = J, (o) with the property
Y(A) = A. Later on we are able to show that these sets A are exactly those that
we get by the above mentioned method.

Right at the beginning we have to give some definitions and notations:
DEFINITION 2 Given an expansion of the form (11) we define the function

V' (i,b) as follows:
V(@,b): NxN — N

(1,b) +— Z_Zlb(,p" (12)

From now on, the second argument b := n + 1 of the function V is constant.
Note, that for variable i the values V (i,b) are not necessarily different, but we
need a consistent description of these values. Let N1 < Ny < ... < Ny be the
positions of the non—zero digits of b in base p. Then we have

V(i,b)=0 if i<N (13)
V(i,b)=b=n+1 if i>Ng+1 (14)

and for all & € {1,2,...,d — 1} the relation
V(Ng+1,0) = V(Ny+2,0) = ... =V (Nys1,b) < V(Nuy1 + 1,0).

REMARK 3 Observe that (13) and (14) describe the trivial index sets 2(0) =
{0,1,...,n} and Q(n+1) = ), in which we are no longer interested, cf. Remark 2.

With the settings from above, the different values of V'(i,) besides 0 and n + 1
are denoted by V(Ng,b),...,V(Ng,b). Each V(i,b) will lead us to a PT'L(I")—-

invariant subspace.
THEOREM 3 The sets of the form A = Q(V (i,b)) are symmetric.

Proof. We have to investigate, if 7* € A for each index 5 € A. The digits of j in
base p satisfy:

joz € {07177p_1} OSO{SNl—l
jN1 > an

Jg = mng Ni+1<p<i—1
Ji € {0,1,...,])—1}



For the symmetric index j* = n — j we get digits:

Jao = MNa—Ja 0<a< N -1
jj*\/vl > an
Jg = ng N <p<i—1
With these inequalities the assertion j* € Q(V(7,b)) is shown. O

Note, that n, = p — 1 in case of 0 < a < N; — 1 and that for Ny < g <i—1
there is always a “carry” in the p-adic addition jz + j3.

The following example illustrates the general situation:
With p =5 and n = 1424 = (2,1,1,4,4) we get n+ 1 = b = 1425 = (2,1, 2,0, 0).
The interesting values V' (7,b) are

V(3,b) = (2,0,0)
V(4,b) = (1,2,0,0)

We get Q(V(47b)) = {] = <j47j3aj27j17j0> | ] < naj? > 27j3 > 1} The dlglts of
the symmetric index j* are:

no—Jjo=4—Jo = Jo

m—jh=4—5n = jik
J2=2 & s
J2=3 & j;=3
J2=4 & 3=
js=1 & j3=4
Js=2 & j3=3
Js=3 & j3=2
Js=4 & j3=1

However, the values V (i,b) are just the starting points for the construction of all
invariant subspaces, and that is why further values V (I, ..., I1;i,b) are defined.

DEFINITION 3 Given a set {0,1,...,i} we consider for o = 1,2,..., L sub-
sets of the form 1, := {iy, i, + 1,...,i, + ko }. With the conditions

iv ks € N o=1,... L (15)
ivtky < ig—2 o=1,...L—1 (16)
iptk < 1—=2 (17)

bi,, > 0 o=1,...,L (18)
biipors < p—1 o=1,....L (19)



we define

L ks L
V(Lo Iy b) = V(i) = > 0 by P4 Y pletRer (20
o=1

o=1 p=0
For each I, we have a system 7 (I,,) of subsets:
T(1,) =A{Ts, = {iv,ic +1,... i, +ts} | to =—1,0,.... ks } (21)

The value ¢, = —1 describes the empty set and 7 (I; x ... x Ir) is a shorthand
for the product 7 (I1) x ... x T (I).

Now we check, if we can apply Definition 3 to (T3,...,7) € T([; x ... x Ip)
to obtain a number V (77, ...,Ty;i,b). Of course, this is only possible, if all the
conditions in Definition 3 are fulfilled, in other words ¢, > 0 and b;_ ¢, +1 <p—1
for all o € {1,2,...,L}. This means that all sets 7, have to be non—empty.
However, we want to get

V( .. 7Ta—17Ta7Ta+17 ce ,Z,b) = V( .. ;Ta—laTa+17 ce ,Z,b),

if a set T, is empty, and so Definition 3 has to be modified in the following sense:
“Take an L-tuple (T4,...,Ty) € T(I; X ... x I). If there are empty sets T,,
then ignore these sets and apply Definition 3 to the remaining tuple with only
non—empty sets.”

Again, a short example for illustration: We consider p = 2 and b = 372 =
(1,0,1,1,1,0,1,0,0). Taking V(8,b) = (0,1,1,1,0, 1,0, 0) as a starting point, it is
not possible to generate a value V' (I, I, I3; 8,b): As the conditions in Definition 3
imply 4y > 41 + 2, i3 > iy + 2 and b;, > 0, the only permissible triple (i3, 43,11)
and (ks, ko, k1) are (6,4,2) and (0,0,0). However, we are not allowed to define
V({2},{4},{6};8,b) due to by, 1p,01 =bs=p—1=1.

In an analogous manner we are restricted to i; = 2 in defining a value V' (11, I5; 8,b).
For 75 we may choose 75 = 4, but then again have to decide on ky = 2 due to
(19). We get V({2},{4,5,6};8,b) = (1,0,0,0,1,0,0,0). The subsets (T1,T) €
T (I, x Iy), for which we are able to define V (T1, Ty;8,b) are ({2},0), (0,{4,5,6})
and (0, 0):

V({2};8,0) = (0,1,1,1,1,0,0,0)
V({4,5,6};8,6) = (1,0,0,0,0,1,0,0)
V(8,b) = (0,1,1,1,0,1,0,0)

After all these preparations, the indices V' (Iy,...,Ir;7,b) will lead us to further
non-trivial PI'L(I")-invariant subspaces.
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THEOREM 4 Foreach (Ty,...,Ty) € T(Iyx...x1Iy), such that V(Ty,...,Ty;i,b)
is defined, there exists a number j € Q(V (Iy,...,15;i,b)), with

i€ QV(Th,...,Tui,b) but
¢ Q(V(S,...,S:i,b))  for all (Si,...,S.) €
T(Il X oo, X]L)\(Tl,...,TL)

Proof. With T, := T, for all p € {1,2,...,L}, we are going to choose j €
QV(L,...,I;4,b)), such that j* = V(11,...,T;4,b). Define j in terms of its
digits in base p:

ja :na:p_l OSOCSNl—l
3 = — << —
iff?:1>N1 {jﬁ p 1 Nl_ﬂ_h 1
T L = o1
iﬂil—:]\fl jil = Ny
Jy = Ny h+tl<y<u+t
Js = p—1 W+t +1<0<ip,—1
in = n’iz_l
j’y = TNy Z2+1§7§22+t2
j5 = p—l i2+t2+1§(5§i3—1
jiL - niL_l
Jy = Ny i +1<vy<ip+1g
js = p—1 ip+tp+1<0<i-1
Ji = ny—1
Jy = Ny 1+ 1<~v< N
In case of t, = —1 we simply omit the line j;, = n;, — 1, respectively j;, = n;, (if

tl = —1 and il = Nl)
For the symmetric index j* we get:

ji =0 0<a<N —1

o v, = nn +1
if i, > Ny { i o= ny N +1<p8<i;—1

10



Jiy = 0

g, =0 n+tl<y<u+t
jlikl+t1+1 = ni1+t1+1 + 1

=0 19 <y < g+t
Jigttar1 = Migttay1 1

Js = mns o+t +2<9<izg—1

iz =0 ip <y <+t
j;L-‘rtL—‘rl = niL+tL+1 + 1

J3 = ns i+t +2<0<i—1

It is obvious that we have j* = V(Ty,...,T1;i,b) € Q(V(Th,...,Ty;i,b)).

It remains to show that V(71,...,Tp;i,b) € Q(V(Sy,...,SL;4,b)) if and only if
(S1,...,50) = (Th,...,Tr): So we assume that there exists Y with Sy # Ty and
V(Ty,...,Tr;i,b) € Q(V(Sy,...,SL;1,b)). There are two possibilities, i) sy < ty
and ii) sy > ty.

i) If sy = —1, we have h;, > b, > 0 for all h € Q(V(Sy,...,S5L;i,b)), whereas
V(Ty,...,TL;i,b);, = 0. Otherwise (sy > 0) we have h;, s, 41 > biy 4541, DUt
V(Th, ..., T5;1,0)iy+sy4+1 = 0 < biy 15,41, Which is always a contradiction.

ii) Similarly hiyysy+1 > bipasyt1, but V(Th, . 0 1034, 0)ip4sy+1 = biypysy+1, if
ty = —1; and otherwise hiy,is,41 > biyisyt1, but V(T .o T0i0,0) iy 45y 11 =
biy+sy+1, which is again a contradiction. ]

Theorem 4 tells us that starting with Q(V' (I3, ..., I1;i,b)), the smallest set which
might pass the conditions of the main theorem is

Ay, . Iginb) = V(T T d,b)), (22)

taking the union over all L-tuples (71,...,7r) € T(I; x ... x I). In fact, these
sets A(Iy,...,11;i,b) meet the symmetry—condition of the main theorem. This
will be proved by the help of the following two lemmas.

LEMMA 4 Let j be an element of A(Iy,...,I1;i,b). Then we have
j ¢ Q(V(T177TL7Z7b))

for all
(Th,...,T) € (T(Iy x ... x 1)\ (I1,...,1I1))

if and only if
vy = max{a € {0,1,...,k.} | jista < bista}t (23)
exists for all p € {1,2,..., L} and
min{f € {v, +1,... .k, + 1} | jiy4p > biprs} = ku+ 1 (24)
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Proof. Assume j € A(1y,...,Ip;i,b) and 5 ¢ Q(V(T1,...,Ty;i,b)) for all
(Ty,....,Tp) € (T(Iy x ... x Ip)\ (I1,...,1r)). If there were Y € {1,2,..., L}
with Jiy+a > biy4q for o = 0,1,..., ky, then we would get the contradiction
Jj € QV(IL,...,Iy_1,0,Iy41,...,I1;i,b)). So the maximum v, exists for all
indices. Now assume, that for Y € {1,2,..., L} we have

min{ﬁE{Vy—Fl,...,ky—l-l} |jiy+g>biy+g} =ty +1<ky+1.

However, this results in j € Q(V(I1,...,Iy_1,Ty, Iy41,...,I1;1,b)) with (Ty #
Iy), which is also a contradiction.

Now let us have j € A(ly,...,Ir;i,b) with conditions (23) and (24). Assume
to the contrary that j € Q(V(T4,...,Tr;i,b)) with (Ty,...,T.) # (I1,...,1L).
So there exists Y € {1,2,...,L} with Ty # Iy. Note that an element h €
QV(Ty,...,Tr;i,0)) fulfills:

iy ty 41 > biytty 41
hiera Z biy+a tY + 2 S o S kY + 1

However, the inequality j;, +., < biy, 4., in the case vy > ty 4 1, respectively the
identity Jiy +ty+1 = biy 41,41 in case of vy < ty +1 < ky +1 leads to an absurdity.
O

LEMMA 5 Letj € A(Iy,...,I5;i,b) and
j ¢ Q(V<T1’7TLvl7b))

for all
(Th,...,T0) € (T(Iy x ... x Ip)\ (I1,...,11)).

Then the symmetric index j* has the same properties.

Proof. As the index j meets the conditions of the lemma, we have:

ja € {07177p_1} OSOCSNl—l
e - IN, > np
Mo >N { js > ng N +1<8<i—1

Jirdki+1 > M4k 41
Js ns W+ ki +2<8<iy—1

v

ji2+k2+1 > Miytkg+1
sz ns 22—|—]€2+2§(5§23—1

v

Jip+kp+1 > M4k +1
Js ng ip+k+2<8<i—1

v

12



As a result we get j2 =nq —Jjo =p — 1 — jo with 0 < a < Ny — 1, and for the
other digits of j* the same inequalities are valid, as above. This gives

FeQV(L,... 10, b)) C A1y, ..., I, b).

With the notations in Lemma 4 and fixed p € {1,2,..., L} there are two possi-
bilities: Either there is a “carry” in the addition

ji‘u.‘i‘l/p—l + j’z;+l/p‘71 = niu“l‘l/p—l’
or there is not. It turns out, that in both cases we get

v, = max{a €{0,1,... .k} | j} 10 <Niyra} =V
ku+1 = min{B e{v, +1,....k,+ 1} [ 15> ni,+p}

and with Lemma 4 we obtain the assertion. O

With the aid of these two lemmas we are now able to formulate

THEOREM 5 The subspaces U = [{Py | A € A(Iy,...,I1;i,b)} are invariant
under the group PTL(T) of automorphic collineations.

Proof. As A(Iy,...,11;1,b) is a union of sets Q(V(x,b)), we just have to investi-
gate, if the symmetry—condition of Theorem 2 holds. Given j € A([y, ..., I1;i,b),
there exists one and only one L-tuple (71, ...,7y) with

L
jeQV(Th,...,Ty:i,b)) and > #T, — minimum.

p=1

i) If this minimum equals 0 or, in other words, 7 € Q(V(i,b)), then we get
j* € Q(V(i,b)) by Theorem 3.

ii) For a positive value of this minimum, we only write down non—empty sets and
get an H-tuple (T;,,...,T;,) with H < Land T;, # 0 (n=1,2,..., H). Now we
apply Lemma 5 to the set (7}, x ... x T;,,), which completes the proof. O

4 The lattice of the invariant subspaces

If we want to determine the lattice of all PI'L(I")-invariant subspaces, it is suf-
ficient to characterize those “irreducible” elements, which cannot be written as
a non—trivial sum of invariant subspaces. As the lattice has only finitely many
elements, each “non-irreducible” subspace can be constructed as a sum of “irre-
ducible” ones.
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THEOREM 6 The subspaces of the form
U = [{P/\ | A € A(Il,,IL,Z,b)}]
are exactly the non—trivial irreducible invariant subspaces.

Proof. We are going to follow up the idea explained at the beginning of Section 3.
For every index j in the set {0,1,...,n} we construct the minimal index set A
with Q(A) = A and (A) = A. If (") # 0 (mod p), we get

J
FEASneQU) 2 0eA2Q0) ={0,...,n} CA, (25)

the entire space, a trivial irreducible invariant subspace.

Now take j with (?) = 0 (mod p) and define:

ifijl STLNl le = N1
iff jn, > np, iy = min{fa € {N1+1,...,Ng} | ja < Na}
i1+ ki +1 = min{Be{i1+1,...,Ng} | jg > ns}
ip = min{y € {i1+k +2,...,Na} | Jjy <ny}
o+ ko +1 = min{5€{i2+1,...,Nd}|j5>n5}
i=dpy = min{w € {ip +kr+2,...,Na} | jo < nu}

The index j" with

Jr=mna=p—1 0<a<N —1
g < B <i_
iff i, > Ny ‘.],ﬁ . p‘ _1 M _ﬁ_ll 1
]’il nzl 1
iﬁille ‘];1 = N4y
3= ny hW+1<y<i+k
Js = p—1 Wtk +1<6<i;—1
jz{g = niQ_l
7= ny o+ 1<y <+ ky

j5 = p—l i2+k2+1§5§i3—1

jl{L = n;, —1

j,ly = Ny iL+1§7§iL+kL
jé = p—l ’ZL+]€L+1§5§’Z—1
3= ny i+1<~v< N
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has the properties

J e Q)
i* = V(... Ip;ib).

So we get A = A(Ly,...,I1;i,b), and due to Theorem 4 and Theorem 5 the
corresponding subspace is PT'L(T")—invariant and irreducible. Note, that for each
V(Ii,...,Ip;1,b), which can be defined by (20), we find an appropriate j, so that
the above construction is possible. O

Having determined all irreducible invariant subspaces in the ambient space of a
normal rational curve, it is a natural question to ask, in which cases the accom-
panying lattice is totally ordered.

THEOREM 7 Let the positions of the non-zero digits of b :=n+1 in base p be
denoted by Ny, Na, ..., Ng. Then the lattice of the PTL(T)—invariant subspaces is
totally ordered if and only if one of the following cases occurs:

1. de{1,2}.
2. dZB,Nd—led—l, CL’n,dNQI...:Nd,1 :p—l

Proof. We are going to discuss all the cases of d > 1:

1) If d = 1, the representation of n in base p has the form (ny,p—1,...,p—1).
Only if by, =1 we get Y = N; — 1, in all other cases Y equals NV;. By formula
(6) we get (?) # 0 (mod p) for all j € {0,1,...,n}. With (25) merely the
trivial subspaces are PI'L(I')-invariant. If d = 2, the only index sets A that
can be constructed according to Definition 3 and formula (22) are of the form
A(I; Noyb) with I} = {Ny,...,i1 + k1}. As iy = N is constant, the lattice is
totally ordered.

2) d > 3: 1) Assume Ng; > Ny +d—1or Ny = Ny +d — 1 and that there is an
a € {2,3,...,d — 1} with by, < p— 1. In both cases there exists an index Y,
with Ny <Y < Ny and by < p— 1. Now put [; := {Ny,...,Y — 1}, to get

§ AL Ny, b).

ii) In the case Ng— Ny =d—1and Ny = ... = Ny_; = p—1, the only non-trivial
index sets we may construct are

A(Ng,b) € A(N3,b) C ... C A(Ng,b),

which completes the proof. O

A<N27 b)

In conclusion we give according to char F' = p the minimal dimension n, so that
the lattice of PI'L(I")—-invariant subspaces is not totally ordered:

1. p=2: b=(1,0,1,1) = 11, which means n = p> + p = p(p> + 1).
2.p>3:b=(1,1,1),son=pp+1).

15
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