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Figure 1: Reconstruction from raw scans using 4-points congruent sets. Reconstruction results from nine input scans of a shinny water jug.
Neighboring scans have 40% overlap or less, and required an average of 16 seconds for fully automatic alignment starting from arbitrary
initial poses. Pairwise alignment results are robust even with low overlap. Typical pairwise alignments are shown in (a) and (b), where for
visualization we roughly mark the overlap regions in blue. The final alignment result, (c) and (d), is obtained without any data smoothing,
outlier removal, local ICP refinement, global error distribution, or any assumption about starting alignment.

Abstract
We introduce 4PCS, a fast and robust alignment scheme for 3D
point sets that uses wide bases, which are known to be resilient to
noise and outliers. The algorithm allows registering raw noisy data,
possibly contaminated with outliers, without pre-filtering or denois-
ing the data. Further, the method significantly reduces the number
of trials required to establish a reliable registration between the un-
derlying surfaces in the presence of noise, without any assumptions
about starting alignment. Our method is based on a novel tech-
nique to extract all coplanar 4-points sets from a 3D point set that
are approximately congruent, under rigid transformation, to a given
set of coplanar 4-points. This extraction procedure runs in roughly
O(n2 + k) time, where n is the number of candidate points and
k is the number of reported 4-points sets. In practice, when noise
level is low and there is sufficient overlap, using local descriptors
the time complexity reduces to O(n + k). We also propose an ex-
tension to handle similarity and affine transforms. Our technique
achieves an order of magnitude asymptotic acceleration compared
to common randomized alignment techniques. We demonstrate the
robustness of our algorithm on several sets of multiple range scans
with varying degree of noise, outliers, and extent of overlap.

Keywords: computational geometry, pairwise surface registration,
scan alignment, partial shape matching, largest common pointset
(LCP) measure, affine invariant ratio

1 Introduction
Surface registration is the process of identifying and matching cor-
responding regions across multiple scans given in arbitrary initial
positions, and estimating the corresponding rigid transforms that
best align the scans to each other. In recent years, advances in
geometry scanning technology have lead to a growing interest in
surface acquisition techniques where multiple scans are required to
be registered into a coherent coordinate frame using rigid transfor-
mations [Callieri et al. 2004, Gelfand et al. 2005, Li and Guskov
2005], or using non-rigid alignment [Pauly et al. 2005, Brown and
Rusinkiewicz 2007]. The registration problem is an instance of
partial matching of 3D point sets, a larger and more general funda-
mental problem in computational geometry and computer vision.

One popular philosophy behind registration techniques is to use
robust local shape descriptors [Li and Guskov 2005] to define an
approximate transformation, followed by an Iterated Closest Point
(ICP) method [Besl and McKay 1992,Chen and Medioni 1992] to
refine the solution. Rigid transformations, being low dimensional
entities, can be uniquely recovered if the correct correspondence is
known between just three point-pairs. Local descriptors, invariant
under rigid transforms, are commonly used to extract such a small
set of points with good candidate correspondences. We refer to such
a set of points as a base.

Given two parts P and Q in arbitrary initial poses, matching
pairs of bases, one from P and one from Q, generates a set of can-
didates aligning transformations between P andQ. A popular tech-
nique called geometric hashing can be used to pick a good aligning
transformation [Wolfson and Rigoutsos 1997] from such a candi-
date set. Randomized algorithms, like RANSAC (RANdom SAm-
ple Consensus) [Fischler and Bolles 1981], repeat the voting pro-
cess for a number of base candidates enough times to ensure that it
finds, with high probability, a good solution. Improvements of this
basic paradigm have been proposed by Chen and co-authors [1999]
with tradeoff between speed and robustness to noise.

Global quantities like object centroids and Principal Component
Analysis (PCA) are often used to roughly align objects to trans-
formed copies of the same. However, in case of partial overlap, such



Figure 2: Stability of wide-bases. Alignment with wide-base (top) is more stable than alignment using narrow-base (bottom). The gray
and the golden curves were generated from a common curve, but were perturbed using noise. For robustness we prefer the widest possible
base [Goodrich et al. 1994], where the maximum width is limited by the extent of overlap between the shapes.

methods quickly break down. Local descriptors [Johnson 1997, Li
and Guskov 2005], computed from local surface geometry and in-
variant to rigid transforms, have been used as an efficient tool for
fast partial matching. Although under noisy conditions it is possible
to robustly compute such local descriptors [Pottmann et al. 2007],
in presence of significant noise and outliers, defining a reliable lo-
cal descriptor still remains a challenging task. In such scenarios,
instead of using local descriptors, an effective alternative is to rely
on the principle of large numbers. This approach requires solving
the Largest Common Pointset (LCP) problem: Given two point sets
P andQ, LCP under δ-congruence solves for a subset P ′ of P , hav-
ing the largest possible cardinality, such that the distance between
T (P ′) and Q is less than δ under an appropriate distance measure,
T being a rigid transform.

Given 3D point sets P and Q with respective cardinality m and
n, a naive alignment scheme has a time complexity of O(m3n3):
For each triplet of points or base from P , take a set of three points
from Q, solve for the unique aligning rigid transformation using
this correspondence, and evaluate the quality of the current corre-
spondence by aligning all other points using the computed trans-
form. A randomized version of this algorithm tries an appropri-
ate number of random bases from P , thus reducing the complex-
ity down to O(mn3 logn) time [Irani and Raghavan 1996]. This
complexity can be further reduced to O(n3 logn) using random-
ized verification. However, for large point sets this is still overly
expensive.

Contributions and Overview. In this paper, we introduce an align-
ment scheme for 3D point sets to automatically register a pair of
surfaces even with rather small overlap. The method makes no as-
sumption about their starting positions, and brings the two pieces
into a good alignment, which can further be refined using ICP algo-
rithm (cf. [Rusinkiewicz and Levoy 2001]). Our method is based
on a novel technique to extract all sets of coplanar 4-points from a
3D point set that are approximately congruent i.e., related by rigid
transforms, to a given planar 4-points in roughly O(n2 + k) time,
where n is the number of points in Q and k is the number of re-
ported 4-points sets. The algorithm uses the following fact: Cer-
tain ratios defined on a planar congruent set remain invariant under
affine transformations, and hence under rigid motion. Additionally,
when simple reliable local descriptors can be computed, the align-
ment procedure runs in O(n + k). We also show how to handle
similarity and affine transformations using an extension of our al-
gorithm.

A key point of our approach is to use a wide-base invariant to
quickly and reliably determine rigid transformation in 3D, as shown
in Figure 2. Constructed using well spaced samples, wide-bases as
opposed to local ones, are in general more stable, and hence desir-
able. Specifically Goodrich and colleagues [1994] provide bounds
on approximation level in term of the diameters of the point sets

undergoing rigid transformations in the plane. However, for partial
matching, the width of the base is restricted by the extent of overlap.

The combination of a wide-base and the LCP measure make our
registration method resilient to noise and outliers, thus allowing di-
rect pairwise registration of raw scanned data. This is advantageous
since the reconstruction process accounts for all the sampled data
avoiding any early removal, filtering, or other mollification of the
scanned data (see Figure 3). Our algorithm makes no assumption
about the initial alignment of the given point sets, works directly on
data corrupted with noise and outliers, and successfully aligns point

Figure 3: Advantage of directly registering raw noisy data.
(Left) Denoising the original scans before registration can be harm-
ful: Given two scans P and Q, we pre-smooth them, use the
smoothed versions to compute local descriptors to establish cor-
respondence [Gelfand et al. 2005] and compute an aligning trans-
form. We use this transform to align the original dataset Q to P ,
and finally smooth the combined models. (Right) Directly align-
ing the noisy data using 4PCS, and then smoothing the result yields
a higher quality surface. In both cases, the same MLS operator is
used for surface smoothing. Further reduction of noise from the left
column models results in significant loss of high frequency features.



sets even with small overlap (see Figure 1). Experiments on real
scans indicate that our method outperforms state-of-the-art algo-
rithms for pairwise registration of surfaces in the presence of noise
and outliers.

After reviewing previous work and background in Section 2, we
describe the concept of approximate congruent 4-points in Section
3. In Section 4, we present the registration algorithm. We tested the
proposed method on a wide variety of range scans obtained using
different acquisition devices. In Section 5, we report the algorithm’s
running time and its resiliency to noise, outliers, and varying extent
of overlap.

2 Background
Partial matching is a fundamental task for registration and recogni-
tion of 3D objects [Frome et al. 2004]. Typically, the alignment
of parts is based on matching local descriptors, such as spin im-
ages [Johnson 1997], shape context [Mori et al. 2005], or integral
invariants [Pottmann et al. 2007]. Such methods have been adapted
to accelerate the registration of 3D scans acquired by range scan-
ners [Li and Guskov 2005].

In the computer vision community, there has been extensive
work on pattern matching to seek resemblance between point sets
in 2D. Famous algorithms for this problem include Hough trans-
form [Ballard 1987], RANSAC [Fischler and Bolles 1981], image
based alignment [Huttenlocher and Ullman 1990], and geomet-
ric hashing [Wolfson and Rigoutsos 1997]. These methods are
based on the principle of generate and test. Hashing based ap-
proaches have also been used for shape registration and retrieval
from large collection of models [Germain et al. 1997, Gal and
Cohen-Or 2006, Mitra et al. 2006].

In this paradigm, one picks a base from P where the number of
points in the base is the minimum number required to uniquely de-
fine a transformation. Now for each random choice of base from
Q, the corresponding aligning transform is verified [Fischler and
Bolles 1981,Huttenlocher and Ullman 1990], or voted for in a suit-
able transformation space [Ballard 1987]. We now briefly describe
the basic RANSAC algorithm and related randomized alignment
techniques, since our method is motivated by similar principles.

First, let us define the problem: Given two point sets P and Q in
arbitrary initial positions, find the best transformation from a pre-
scribed family of transformations, typically rigid transformations,
that best aligns regions of P and Q. By best fit, we refer to the
transformation that brings the maximum number of points from P
to within some δ-distance of points inQ (see Figure 10). In the case
of rigid motion, a base size of three points is sufficient to uniquely
determine the aligning transform.

S1 S2

a c

bd

e

a′

c′
b′

d′ e′

Figure 4: Affine invariant ratio for congruent 4-points. Given points
from a surface S1, let points a,b, c,d be coplanar, and the lines
ab and cd meet at point e. The ratios r1 = ‖a− e‖/‖a− b‖ and
r2 = ‖c−e‖/‖c−d‖ are preserved under any affine transform. If
S2 is another surface which (partially) matches S1 and the 4-points
coplanar base lies in the overlap region, then the set of correspond-
ing points from S2 are coplanar, and satisfy the following relations:
‖a′ − e′‖/‖a′ − b′‖ = r1 and ‖c′ − e′‖/‖c′ − d′‖ = r2.

RANSAC. The RANSAC algorithm [Fischler and Bolles 1981] is
a widely used general technique for robust fitting of models to data
corrupted with noise and outliers. The RANSAC based alignment
procedure is simple: Randomly select three different points from P
and three from Q to form a pair of bases in correspondence, com-
pute the candidate transformation Ti that aligns the base pairs, and
then count the number of points ki from P that within δ-distance
from points in Q. If ki is sufficiently large, accept Ti as a good
solution. Otherwise, the process is repeated by randomly selecting
another triplet of points thus deriving different candidate transfor-
mations that may improve the current best fit.

The process of selecting base-points randomly from P and Q is
repeated L times, and the best solution i.e., the solution with the
highest ki is selected. Depending on the percentage of the data
that belongs to the structure being fit (assuming there is only one
structure to fit), and the desired success probability,L can be chosen
accordingly [Fischler and Bolles 1981].

Randomized Alignment. Irani and Raghavan [1996] proposed a
variant of the RANSAC algorithm to define a randomized version
of alignment in 2D under similarity transformations. The proce-
dure randomly picks a base from P , computes transformations that
align the base to all possible bases from Q, and verifies the result-
ing registration. As in RANSAC, to achieve a certain probability of
success this procedure is repeated for L different choices of bases
from P . Further, the verification stage is also randomized: First
only a constant number of random points in P are verified, and
only if a significant fraction of this subset is well matched, the re-
maining points are tested. Unlike basic RANSAC, we pick base
points randomly from P , and look for corresponding points in Q
using some registration algorithm – we propose 4PCS for this step.

Let pg be the probability that a randomly selected point fromP is
also present in Q (i.e., is in the overlap region), the size of the base
is N , and pf be the probability that the algorithm exits after L tries
failing to find a good fit that exists. Since we choose points from P
at random, simple reasoning gives us the relation pf = (1− pN

g )L.
Thus for a success probability more than ps we need,

L > log(1− ps)/log(1− pN
g ) (1)

iterations. For rigid transforms, it is sufficient to have N = 3.
Our algorithm builds on this randomized alignment approach.

However, instead of exhaustively testing all possible bases from Q
which quickly becomes infeasible in 3D, we introduce the idea of
planar congruent sets to select only a small set of bases fromQ that
can potentially match a given base from P . Next we explain how
this is made possible by a special ratio property that is preserved for
planar congruent 4-points sets under affine transformations.

3 Approximate Congruent 4-Points
To align two point sets P and Q in arbitrary initial positions, we
follow the general alignment approach described in the previous
section. For different choices of base pairs from P and Q, we com-
pute the corresponding rigid transformations, evaluate their quality,
and choose the best transformation. A pair of triplets, one from P
and one from Q, is enough to uniquely define a rigid transforma-
tion. For a base from P , randomly select a 3-points base from Q.
Naively, there are O(n3) such candidate triplets from Q, where n
is the number of points in Q.

Surprisingly the problem becomes easier if we look for special
4-points bases, instead of 3-points ones. Our approach is to use a
set of 4 coplanar points from P as base B, and to quickly find all
subsets of 4-points from Q that are approximately congruent to B.
Later we elaborate how to efficiently extract such a set B from P .
By approximate congruence, we mean that the two 4-points sets
can be aligned, up to some allowed tolerance δ, using rigid trans-
formation. We will detail how to extract all such congruent subsets
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Figure 5: Extracting affine invariant congruent 4-points. (Left) Given a base B ≡ {a,b, c,d} consisting of four (approximately) coplanar
points, we extract the two ratios r1 and r2. (Middle) For any point-pair {q1,q2}, there can be two assignments corresponding to {a,b},
and another two assignments corresponding to {c,d} leading to 4 possible intermediate points. These points are computed as e1 = q1 +
r1(q2−q1) and e2 = q1 + r2(q2−q1). (Right) Now, given a set of coplanar pointsQ, we want to extract a 4-points set which is congruent
to the given base B up to affine transforms. For each pair of points {q1,q2} ∈ Q, we compute four intermediate points as described. For
simplicity, we just indicate two points per point-pair in the figure. A set of 4 points is approximately congruent to given B, if e1 ≈ e2. In
this example, {a,b, c,d} is approximately congruent to {q5,q3,q4,q1}.

of Q in roughly O(n2 + k) runtime, k being the number of such
congruent sets in Q. In practice k is small, leading to a signifi-
cant acceleration with respect to a naive alignment technique which
requires O(n3) time, or one of the best known algorithms [Indyk
et al. 1999] which requires O(n2.25

√
D), D being the diameter

of the base from P . Chen and colleagues [1999] also presented a
strategy for selecting good candidates for Q.

3.1 Overview

Affine transformations exhibit the following property: Given three
collinear points {a,b, c}, the ratio ‖a− b‖/‖a− c‖ is preserved.
Huttenlocher [1991] used this invariant to extract all sets of 2D
affine invariants of 4-points in the plane that are equivalent un-
der affine transforms. We take a similar approach in R3. Given a
coplanar 4-points base set, we look for other (approximately) affine
equivalent 4-points sets in the given point cloud data. The set of
all affine-invariant 4-points is a superset of the 4-points congruent
points in R3. Subsequently we verify whether such 4-points sets are
(approximately) congruent to the chosen base set. In practice, using
a distance constraint for rigid transforms this superset can be made
quite conservative. First we briefly describe the 2D method of ex-
tracting affine invariant 4-points set, and then detail the extraction
procedure in 3D.

3.2 Affine Invariants of 4-Points Sets

Huttenlocher [1991] introduced a method to extract the set of 4-
points which are affine-invariant in 2D. The strength of the method
is that it only requires to examine all pairs of points, leading to
a O(n2) method, excluding the time to report the sets. A set of
coplanar points X ≡ {a,b, c,d}, not all collinear, defines two
independent ratios of three collinear points. Let ab and cd be the
two lines that intersect at an intermediate point e. Note that it is
always possible to choose the pairs such that the lines intersect.
The two ratios,

r1 = ‖a− e‖/‖a− b‖
r2 = ‖c− e‖/‖c− d‖ (2)

are invariant under affine transformation, and uniquely define 4-
points up to affine transformations (see Figure 4). Now given a
set Q of n points, and two affine invariant ratios r1 and r2, we
can efficiently extract all 4-points sets that are defined by these two
invariants in O(n2 + k) time, where k is the number of reported 4-
points sets, as follows: For each pair of points q1,q2 ∈ Q, compute
two intermediate points:

e1 = q1 + r1(q2 − q1)

e2 = q1 + r2(q2 − q1). (3)

Any two pairs of points whose intermediate points, one resulting
from r1 and one from r2, are coincident, probably correspond to a
4-points set that is an affine transformed copy of X (see Figure 5).
Since the points e1-s and e2-s are all in the same coordinate sys-
tem, it is possible to quickly search for coincident points using a
neighborhood search structure.

In practice, due to noise intermediate points instead of being ex-
actly coincident end up being nearby points. To allow quick range
queries of proximity points we use a standard data structure in R3.
We use an approximate range tree [Arya et al. 1998], which can be
built in O(n logn) for a point set of size n, and supports querying
of all points inside any rectangle in O(logn+ k) time, k being the
number of points to be reported. Once all the intermediate points
are inserted into the range tree, we query for all points associated
with r1 that are in the δ-neighborhood of points associated with r2.
Calculating all the intermediate points takes O(n2) time, building
and querying the neighbors takes O(n2 logn + k), where k is the
total number of points reported. Later we further improve this com-
plexity.

3.3 Extracting Congruent 4-points in 3D
Given a 4-points base B of (approximately) coplanar points se-
lected from a point set P and another point set Q ∈ R3, our goal
is to extract the set of all 4-points from Q that are approximately
congruent to B, up to an approximation level δ. First given B we
compute its two affine invariants ratios over this plane, as described
previously. Then from the points Q, we extract all point sets that
can be related toB by affine transforms, using the method described



Algorithm 1 (4PCS) Given two point sets P andQ in arbitrary ini-
tial positions, with high probability, compute the best rigid align-
ment according to the LCP (Largest Common Pointset) measure
within an approximation level δ > 0.

h← 0
for i = 1 to L do . RANSAC loop

B ← SELECTCOPLANARBASE (P )
U ← FINDCONGRUENT (B, Q, δ)
for all 4-points coplanar sets Ui ∈ U do

Ti ← best rigid transform that aligns B to Ui in the least
square sense [Horn 1987].

Find Si ⊆ P , such that d(Ti(Si), Q) ≤ δ
end for
k ← arg max

i
{|Si|}

if |Sk| > h then
h← |Sk|
Topt ← Tk

end if
end for

return Topt

procedure FINDCONGRUENT (B ≡ {b1,b2,b3,b4}, Q, δ)

d1 ← ‖b1 − b2‖
d2 ← ‖b3 − b4‖
ComputeR1 ≡ {(pi,pj) | pi,pj ∈ Q}, such that ‖pi−pj‖ ∈
[d1 − δ, d1 + δ].
ComputeR2 ≡ {(pi,pj) | pi,pj ∈ Q}, such that ‖pi−pj‖ ∈
[d2 − δ, d2 + δ].
for all pair r1i ∈ R1 do

Compute the 4 points, {e1
1i, e

2
1i, e

3
1i, e

4
1i} related to the in-

variants r1 and r2 (see Figure 5). Let Π denote the originating
point-pair for such intermediate points i.e., Π(ej

1i) = r1i.
end for
Build an approximate range tree structure (RS) in R3 for the point
set {ej

1i} [Arya et al. 1998].
for all pair r2i ∈ R2 do

Compute the 4 points, {e1
2i, e

2
2i, e

3
2i, e

4
2i} related to the in-

variants r1 and r2. Again Π(ej
2i) = r2i.

end for
U ′ ← ∅.
for all ej

2i do
Using RS, retrieve all points in δ-neighborhood of query

point ej
2i. For each such point q, create candidate 4-points sets

corresponding to B as U ′ ← {U ′, (Π(q),Π(ej
2i))}.

end for
U ← all 4-points sets in U ′ that are approximately congruent to
B in R3.

return R̃

in Section 3.2. Though this method generates a superset of the de-
sired 4-points, for rigid transforms we get only a limited number of
spurious matches.

In order to remove the non-congruent bases, we look at their
original positions in R3, and verify whether the corresponding sets
agree within some threshold to the base set B, up to rigid trans-
formations. Then using base B and each of the potential bases
from Q, we compute the best aligning rigid transformation in the
least square sense using a closed form solution as proposed by
Horn [1987]. For a wide base the typical number of such reported
subsets is O(n) with a small constant, since the distance between
the base points is close to the diameter of Q. In such a scenario, we

can extract all the congruent 4-points sets from point sets of size n
in O(n2). However, with no approximation (δ = 0), the number of
reported subsets is upper bounded byO(n5/3) [Agarwal and Sharir
2002]. Later we extend our algorithm to handle affine transforma-
tions. In Section 5, we report the performance of our technique on
a variety of range scans.

The above procedure requires computation and storing ofO(n2)
intermediate points, which is prohibitive for large point sets. How-
ever, when looking for a rigid alignment, a conservative sub-
set of size O(n) is sufficient because of the following: Rigid
transforms preserve inter-point Euclidean distance. Given a base
B ≡ {a,b, c,d}, we first compute distances d1 = ‖a − b‖ and
d2 = ‖c − d‖. Now we only consider point pairs from Q which
are d1 or d2 apart, up to a tolerance δ. For point sets which have
roughly uniform sampling, we only need to insert O(n) pairs into
our range data structure. Hence the full algorithm runs in O(n2)
including the time for range tree construction. Considering only a
linear number of such pairs, instead of a quadratic number of them,
leads to significant speedup and a manageable space, enabling rigid
alignment even for large point sets.

4 The 4PCS Algorithm
We are given two point sets P and Q, some uncertainty measure
(δ > 0) for the positional accuracy of the points, and an estimate
of the fraction f of the points in P that can be matched to Q. Our
goal is to find a rigid transform that brings maximum number of
points from P to distance less than δ from some point in Q. We
propose an output sensitive algorithm (see Algorithm 1) whose run-
time depends on the maximum number of matching points between
the given point sets, and being randomized, discovers the correct
solution with high probability.

We first select a base B ⊆ P consisting of 4-coplanar points.
In practice, we allow some non-planarity since it is unlikely that
there exists 4-coplanar points. We pick three points at random, and
select the remaining point such that the four points together form a
wide base which is (approximately) coplanar. A wide base created
by selecting points that are far from each other results in more sta-
ble alignments [Goodrich et al. 1994]. However, if we choose the
points too far apart, the selected points may not all lie in the overlap
area (for partial matching), and hence the desired solution may be
missed. We use the overlap fraction f to estimate this maximum
distance. If an estimate of f is not provided, we run the algorithm
with decreasing guesses as f = 1, 0.5, 0.25, . . . until we achieve
the desired error tolerance. For applications where additional infor-
mation is available about possible regions of overlap, such knowl-
edge can be used to make a more informed choice of base B. We
first select a set of wide three points that are likely to be in the over-
lap region, and then choose the fourth one as described before.

For a planar base B obtained from the SELECTCOPLANARBASE
stage of our algorithm, we can define affine invariant ratios using
the base points. However, for approximately planar base, we use
the closest points between the lines joining suitable point pairs for
defining invariant ratios. Now, we apply the method described in
Section 3.3 to extract the set U ≡ {U1, U2, .., Us} of all subsets
of 4-points from Q that are potentially congruent to B up to an
approximation level δ. For each Ui, using the correspondence in-
formation between B and Ui, we compute the best aligning rigid
transform Ti that brings B close to Ui in a least square sense [Horn
1987]. To verify Ti, we compute Ti(P ) and find how many points
in Ti(P ) are closer than δ to some point in Q. This verification is
performed in a randomization fashion. For efficiency, we use ANN
(Approximate Nearest Neighbor) [Arya et al. 1998] for neighbor-
hood query in R3. We first select a constant number of points from
P , transform the points using Ti, and for each such point query for
close neighbors in Q. If enough points are matched, we perform
similar tests for the remaining points in P , and assign a score for Ti
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Figure 6: Partial matching with varying overlap. We align scan pairs of the Coati model over varying amount of overlap, from 80% down to
40%. Overlap is being measured with respect to surface area of the smaller input model. The results are shown without any ICP refinement
to demonstrate how the algorithm degrades (see Figure 8 for corresponding estimation error). These results when refined by a couple ICP
iterations, all lead to near perfect alignment. For visualization, we show the overlapping regions in blue, while gray and golden, respectively,
denote the remaining parts of the input models. Overlap regions were identified by manually aligning the models followed by ICP refinement.

(cf. [Irani and Raghavan 1996]). Let T denote the transformation
with the best score.

Given a base Bi, we described how to compute the best trans-
formation Ti corresponding to it. Each aligning transform Ti is
assigned a score based on the number of points that are brought
into alignment up to a threshold δ. Using this procedure we now
perform randomized alignment with RANSAC (see Section 2), and
test out L different bases (see Equation 1) depending on the es-
timate of overlap fraction f . Over all such trials, we select the
transform Topt with the best score.

Runtime. Let point sets P and Q have m and n points, respec-
tively. Selecting a random coplanar 4-points base B ⊆ P takes
O(m). In the most expensive phase of the algorithm, all point
pairs from Q with distance d1 or d2 (Section 3.3) are extracted in
O(n2+k1), where k1 is the number of reported pairs. Subsequently
all the matched bases from Q can be extracted in O(k1 + k2), k2

being the number of 4-points sets in Q affine invariant to B. When
the overlap margin is not arbitrarily small, a randomized verifica-
tion takes O(k3) where k3 is the number of actual 4-points bases
from Q that are approximately congruent to B, assuming that P
does not have many copies in Q. Worst case bounds for such ki-s
is a topic of interest in combinatorial geometry, and such bounds
exist for both the exact (δ = 0) and approximate cases [Indyk et al.
1999,Agarwal and Sharir 2002]. However, for point sets with sam-
ples approximately evenly distributed on the scanned surface, all
ki-s are O(n). If the overlap is more than a constant fraction of m,
we need to try only a constant number of random bases B. Hence
the proposed algorithm runs in O(n2) requiring O(n) space.

Next we describe how local descriptors, if they can be reliably
computed, lead to improved efficiency without compromising ac-
curacy of the result.

Further Enhancements. In the context of surface registration,
local descriptors, invariant under rigid transforms, are often used
to reduce the search space for aligning objects in arbitrary ini-
tial poses [Johnson 1997, Gelfand et al. 2005, Li and Guskov
2005,Pottmann et al. 2007]. Similarly, our algorithm benefits from
local descriptors when they can be robustly computed. In the fol-
lowing, we show that even using a simple non-invariant descriptor,
such as surface normal, significant speedup is possible, while still

preserving the accuracy of computed transforms using wide bases.
Given a base B of 4-coplanar points and a set Q ∈ R3, we want
to find all 4-points subsets of Q that are approximately congruent
up to rigid transforms to B, within an approximation level δ. Let
B ≡ {a,b, c,d} be four coplanar points in P (chosen as in Sec-
tion 4), and O ≡ {Na, Nb, Nc, Nd} be their associated normals,
with d1 = ‖a − b‖ and d2 = ‖c − d‖. Let N(x,y) denote the
dihedral angle between the two local normal lines at points x and
y, respectively. Notice we do not require global consistency for
normal orientations.

σ = 0.5 σ = 2.0 σ = 4.0

Figure 7: Partial registration with noisy data. (Top row) Partial
scans of the Coati model under zero-mean additive Gaussian noise
with variance σ2. One unit roughly equals 1% of the bounding
box diagonal. (Bottom row) Alignment results using 4PCS algo-
rithm. All results were obtained without any ICP refinement, or as-
sumptions about starting orientation of the input models. For noisy
data, specially when sampling density is low, it is better to perform
smoothing only after alignment as shown in Figure 3.



0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

10

80 70 60 50 40 30
0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

80 70 60 50 40 30
0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

σ of Gaussian noise fractional overlap (% of bbox diagonal) outliers (% of input points)

σ of Gaussian noise fractional overlap (% of bbox diagonal) outliers (% of input points)

tim
e

(s
ec

)

tim
e

(s
ec

)

tim
e

(s
ec

)

es
tim

at
io

n
er

ro
r

es
tim

at
io

n
er

ro
r

es
tim

at
io

n
er

ro
r

4PCS

LD-RANSAC

4PCS

LD-RANSAC

4PCS

LD-RANSAC

4PCS

LD-RANSAC

4PCS

LD-RANSAC

4PCS

LD-RANSAC

Figure 8: Performance and comparison. We compare the performance of our algorithm with a local descriptor based RANSAC algorithm.
We use a combination of spin-image based descriptor [Li and Guskov 2005] and integral invariants [Pottmann et al. 2007] as robust local
descriptors (LD-RANSAC). Parameters for local descriptors are manually adjusted to achieve good performance. Number of RANSAC steps
for local method are chosen such that the error values (measured respect to ground truth) are comparable to those of our method. We observe
that under low overlap, large noise, or high outliers, our algorithm outperforms LD-RANSAC method even when its parameters are manually
tuned for best results. Corresponding alignments by our algorithm can be seen in Figure 6, 7, and 9, respectively. Estimation error is measured
using standard RMS error between the final surface pairs. Bounding box diagonal length is taken as 100 units.

Equipped with approximate normals, all point pairs {q1,q2} ∈
Q satisfying either ‖q1 − q2‖ ≈ d1, or ‖q1 − q2‖ ≈ d2 can be
further pruned by the following computation: Select an arbitrary
point q ∈ Q, compute its approximate normal Nq, and then ex-
tract all points qi ∈ Q, such that either N(q,qi) ≈ N(a,b), or
N(q,qi) ≈ N(c,d). Using a neighborhood data structure over
approximate normals (represented as points on the Gauss sphere)
the above computation is done efficiently. Thus instead of storing
all n2 pairs, in practice, such normal and distance based constraints
allow us to work with space linear in the number of input points.

Even using undirected approximate surface normals, which vary
under rigid transforms, we observe a speedup by a factor of two.
Further speedup is achieved when reliable rigid-invariant descrip-
tors are available.

5 Results
We tested our 4PCS algorithm on a variety of input data with vary-
ing amount of noise, outliers, and extent of overlap. We now re-
port performance regarding both the accuracy and robustness. For
comparison, we describe how a local descriptor based RANSAC
algorithm performs on the same inputs.

We aligned scans of the Coati model under various conditions:
Figure 7 shows the robustness of the registration procedure under
various amount of zero-mean Gaussian noise without any ICP re-
finement. In Figure 9 we show the alignment results in presence of
varying amount of outliers without ICP refinement. In a related ex-
periment, we varied the amount of overlap to evaluate performance
degradation (Figure 6). Observe that varying the amount of outliers

or the extent of overlap has similar effects on the run time of 4PCS
since both results in fewer congruent bases between the two objects.

In Figure 8 we list the various performance characteristics of the
algorithm. For comparison we used a RANSAC based algorithm
with state-of-the-art local descriptors. We used a combination of
multi-scale spin images [Li and Guskov 2005], and robust inte-

10% 20% 40%

Figure 9: Partial matching with outliers. Given input scans of the
Coati model in arbitrary initial poses, corrupted with outliers, the
registered scans are shown. The number of outliers as percentage
of the original number of input points are indicated in the corre-
sponding figures. Reliable local descriptors such as spin images
or integral invariants are very challenging to compute on such data
without pre-processing the input scans.



model P model Q affine 4PCS TPS refinement

Figure 10: Affine surface registration using 4-points congruent set. Given two point sets in arbitrary initial poses, we solve for the best
aligning affine transform according to the LCP measure. The alignment produced by the affine version of 4PCS method is refined with a few
steps of a TPS (Thin Plate Spline) based refinement (see [Brown and Rusinkiewicz 2007]) to produce the final alignment. In this example,
the initial models differed by a scale factor of 1.2 and a strong shear component. The final result is irrespective of the starting model poses.

gral invariants [Pottmann et al. 2007] as local descriptors. With
increasing amount of noise and outliers, the RANSAC based ap-
proach slows down as the local descriptors become less reliable,
and finally degenerates into a brute force search. In the local signa-
ture space, we manually selected minimum search radius such that
the estimation error value remains comparable to that of our pro-
posed algorithm. Under extreme conditions, local descriptor based
results were too far for ICP refinement to converge to correct solu-
tion [Mitra et al. 2004], while 4PCS still performed satisfactorily.
To summarize, our algorithm always outperforms LD-RANSAC –
in presence of high amount of outliers, low overlap, or high noise.
In scenarios when local descriptors can be reliably computed, 4PCS
works even faster. Notice that LD and 4PCS address complemen-
tary issues arising during registration.

For noisy scans when local descriptor based methods fail, an
alternate pipeline is as follows: denoise the inputs, align the
smoothed scans, use the computed transform to align and merge the
original noisy inputs, and finally smooth the merged scans. How-
ever, in some cases this turns out to be sub-optimal as crucial infor-
mation gets lost in the process. Our algorithm has the advantage of
working directly on the raw data as shown in Figure 3. This sce-
nario is specially relevant when the sampling density is small, and
the amount of redundancy in data is low.

In Figure 1, we demonstrate the stability of the algorithm un-
der low extent of overlap. The final reconstruction is from nine
scans. The result is obtained without any outlier removal, denois-
ing, global error distribution, or ICP refinement. In Figures 11 and
12, we show how 4PCS gives near perfect alignment even when the
scans are very flat, featureless, and noisy – a difficult class of align-

model # points 4PCS 4PCS w/normals
(in 1000) (in sec) (in sec)

water jug 450 159.5 78.4
Coati 54 2.3 1.7
mug 146 9 6.4
bust 70 4.1 2.4
Jerusalem 593 6.4 1.1
building facade 400 20.6 15.7

Table 1: Time taken by 4PCS for aligning various input sets, with-
out and with normal information, as measured on a 1.8GHz Pen-
tium M laptop with 1GB RAM. In all the examples, the models
start in arbitrary positions, preprocessing time if any are included,
and the reported times are averages over a few runs of the algorithm.

ment inputs for many local descriptor based methods. For large
dense data sets it is sufficient to use a small fraction of the points,
sampled uniformly, for computing the alignment, and the full data
set is only used for verification. For the case of Jerusalem and build-
ing facade examples we used 0.05 as this fraction. Since we use
LCP measure, our method is resilient to such uniform sampling.
Residual alignment error is easily removed by a few ICP iterations.

In Table 1, we report the performance of 4PCS on various test
datasets. As shown in the comparison to local descriptor methods

scan P scan Q

LCP alignment

L
C

P
L

C
P

+
IC

P

Figure 11: Aligning aerial scans of the old city of Jerusalem. Given
two aerial scans P and Q, in arbitrary initial poses, we align them
using 4PCS algorithm. Use of wide base for alignment results in
stable alignment even for such flat aerial scans (see Figure 2). The
small overlap between the scans makes this a challenging example.
In the zoom-inset, we show the improvement in alignment after
three steps of ICP refinement, a step orthogonal to our algorithm.
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Figure 12: Aligning building facades. Given two building facades in arbitrary starting poses, 4PCS successfully aligns the scans. This is a
challenging case for automatic registration since the scans comprise of noisy data with large flat featureless regions. This example has very
few distinct features that can be reliably detected using any local descriptors. (Middle) The result is without any ICP refinement. (Right) We
color the error in 4PCS alignment when compared to the final position after ICP refinement. In our scale, we set the length of the bounding
box diagonal of the model to unity. Points with error more than 0.01 are marked in blue. Notice that even without ICP refinement our
algorithm aligns the scans very reliably.

(Figure 8), the noise and small overlaps prevent us from achieving
a linear time. We used a high threshold for the normals, whose
estimates are unreliable for noisy data, thus achieving only factor
of two speedup. Precomputation time for normal estimation is also
included in the reported timings.

It is easy to extend our algorithm to undo small shear as shown in
Figure 10. However for such affine transforms between P and Q,
which cannot be uniquely determined using a single 4-points base
in P , we have to construct a pair of 4-points bases with two points
in common: the rest of the algorithm stays the same. Although this
procedure can handle small shears, for general affine transforms

Figure 13: Alignment of slippable scans using 4PCS. The congru-
ent 4-points bases are marked, colors indicating detected correspon-
dences. With slippable bodies, 4PCS gives sub-optimal solution in
the direction of slippage, like along the axis of the mug in this ex-
ample. Here local descriptor based methods [Gelfand et al. 2005]
degenerate to brute force search due to lack of distinctive features.

the algorithm may store intermediate points quadratic in number of
input points, making the procedure impractical.

Limitations. In Figure 13, we observe how 4PCS performs if the
underlying object being scanned is slippable – the resulting align-
ment may be sub-optimal in the direction of slippage (cf. [Gelfand
and Guibas 2004]). Since we operate at a point level, this prob-
lem is unavoidable. However, removal of such ambiguities might
require more semantic information about the objects, and not just
point positions as now being used.

In extreme scenarios of scans with very low overlap, choosing a
4-points wide base might not be possible. In such cases, we have
to compromise stability of registration by selecting narrower bases.
However, any alignment technique faces similar problems on such
inputs.

Although 4PCS performs affine registration (see Figure 10), the
space requirement being no longer linear in the size of point-sets,
it can be impractical for very large point sets. Finally, when the
input data is clean and local-descriptors can be reliably computed,
our algorithm is somewhat redundant since there are simpler ways
to register such scans [Gelfand et al. 2005, Li and Guskov 2005].

6 Conclusions
In this paper, we have presented 4PCS, a wide-based pairwise align-
ment approach. Unlike a local descriptor, a wide base provides
resiliency to noise. Typically, a wide base approach requires exten-
sive number of trials to match congruent sets of points. Introducing
a coplanar 4-points base, rather than the minimum of 3-points base,
allows us to employ a technique that efficiently matches pairs of
affine invariant ratios in 3D.

As we showed in our analysis, the asymptotic behavior of the
approach is an order of magnitude faster than prevalent alignment
techniques. The speedup was further supported by our experiments
on a large variety of data sets and applications.

It is worthwhile to note the distinction between noise and out-
liers. For partial matching, outliers and non-overlapping portions
have similar effects. Although outliers hinder the effectiveness of
the local descriptors, they do not affect the performance of wide
bases. The 4PCS algorithm achieves resiliency to noise and out-
liers by using wide bases and the LCP measure.

It is important to emphasize here that typical range scanners gen-
erate noise that is not additive or Gaussian, and any pre-filtering can
be harmful. Thus, we believe that many reverse engineering appli-
cations will benefit from such a robust fundamental building block
in the reconstruction pipeline.
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