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Abstract

We present two subdivision schemes for the fair discretization of the spherical mo-
tion group. The first one is based on the subdivision of the 600-cell according to
the tetrahedral/octahedral subdivision scheme of Schaefer, Hakenberg and Warren
[Smooth Subdivision of Tetrahedral Meshes. Eurographics Symposium on Geome-
try Processing (R. Scopigno, D. Zorin, eds.), 151-158, 2004]. The second presented
subdivision scheme is based on the spherical kinematic mapping. In the first step we
discretize an elliptic linear congruence by the icosahedral discretization of the unit
sphere. Then the resulting lines of the elliptic three-space are discretized such that
the difference between the maximal and minimal elliptic distance between neigh-
boring grid points becomes minimal.

Key words: spherical motion group, discretization, spherical kinematic mapping,
600-cell, elliptic linear congruence, ...

1 Introduction

Computational mathematics heavily relies on the concept of discretization. It
would lead too far to provide a survey of the main application areas of space
discretizations. Whereas the discretization of Euclidean spaces is very well un-
derstood, the task becomes harder and much less explored if we turn to curved
spaces. Recently, a lot of research has been performed on the discretization of
two-dimensional surfaces, often in connection with applications in Computer
Graphics and Geometric Modeling. However, there appears to be almost no
work when we turn to higher dimensional manifolds, especially to the very
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important group SE3 of Euclidean motions in 3-space. The nasty part here
concerns the object orientations, i.e., the discretization of the spherical motion
group SO3. This is the topic of the present contribution. We are focussing on
fair discretizations where fairness means regularity. We would like to have a
discrete set of positions (elements of SO3) which are as equally distributed as
possible. Thus, we are aiming at a small difference between the largest and
the smallest occurring distance of neighboring positions.

We expect that the discretization of the motion group has many applications,
e.g. in mechanical simulation tasks or in robotics. Let us sketch here just two
application scenarios.

The original motivation for the present paper is the computation of distance
fields in the group of rigid body motions with respect to the object-oriented
metric introduced by Hofer et al. [5] which takes the mass distribution of the
moving body into consideration. Rigid body displacements can be mapped
onto points of a 6-dimensional manifold M6 in the 12-dimensional space of
affine mappings. Because the computation of a distance field on M6 can be
decomposed into a translational and a rotational part (see [4]) we are interested
in a fair discretization of the spherical motion group. Such distance fields in
the group of rigid body motions are of interest for any application, which
requires a fast and frequent computation of the distance between a moving
object (arbitrary pose) and a given fixed pose. An example for this is the
computation of the generalized penetration depth of two overlapping bodies
(see [10,15,16]).

Another important application is the fair discretization of a n-dof parallel
robots workspace (n > 2) with 3 rotational degrees of freedom. A description
of the workspace of such a parallel robot can be based on the resulting graph.
Nodes are deleted if they do not correspond to reachable configurations. More-
over one has to check if the configurations corresponding to points on the line
segments connecting neighboring nodes are singularity-free and self-collision
free. If this is not the case then the connection is deleted. Based on the result-
ing graph a classical motion planner can be used for path planning. According
to Merlet [7] the major difficulty is that this description may be quite large,
thus the calculation of a trajectory is a time consuming task. Therefore it is
important to have an efficient data structure for improving the computation
time. Such a data structure for the translational part is trivially obtained by
a cubic grid. We will present a fair discretization of SO3 with nice geometric
properties providing such an efficient data structure for the rotational part
too. Moreover this scheme can easily be implemented e.g. in Matlab.

Previous work and outline of the present paper
To the best of our knowledge there is no prior work on subdivision schemes
for the fair discretization of the spherical motion group. Some related works
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are cited and reviewed throughout the paper, which is organized as follows:
In Section 2 we repeat fundamentals like unit quaternions and the spherical
kinematic mapping. In Section 3 we present a fair discretization of SO3 based
on the subdivision of the 600-cell according to the tetrahedral/octahedral sub-
division scheme of Schaefer et al. [13]. At the beginning of section 4 we repeat
Clifford parallelity and the concept of the left and right image point of an
oriented line. Then we outline a subdivision scheme to generate a fair dis-
cretization of an elliptic linear congruence in elliptic three-space E3 based on
the icosahedral discretization of the right unit sphere S2

− according to Baum-
gardner and Frederickson [1] 1 . In the next step we discretize the lines of this
elliptic linear congruence such that we get a fair discretization of E3 and there-
fore of SO3. We close the paper by comparing and illustrating the presented
subdivision schemes in Section 5.

2 Fundamentals

A rotation about the origin (rigid body transformation) in R3 is represented
with help of an orthogonal matrix R as x′ = R·x. The orthogonality condition
R·RT = I3 is a nonlinear constraint on R, which is not suitable for our task.
Therefore we use quaternions to describe the spherical motion group, which
leads to a parametrization of the set of orthogonal matrices.

A quaternion A = a0 + a1i + a2j + a3k = (a0, a) with a = (a1, a2, a3) and
a0, . . . , a3 ∈ R can be considered as the extension of a complex number to
four parameters. The imaginary units i, j, k fulfill the following multiplication
rules

i2 = j2 = k2 = −1

ij = −ji = k, jk = −kj = i, ki = −ik = j
(1)

The set H = R4 of all quaternions with addition (componentwise) and multi-
plication

A ◦B = (a0b0 − a·b, a0b + b0a + a× b) (2)

according to the multiplication rules (1) form a skew field. If A = (a0,−a)
denotes the conjugate quaternion to A = (a0, a), the Norm N(A) of A and
the multiplicative inverse A−1 is given by:

N(A) =
√

a2
0 + a2

1 + a2
2 + a2

3 =
√

A ◦A and A−1 := N(A)−1A. (3)

A quaternion E with a norm of one, i.e. N(E) = 1, is called unit quaternion
which can be written as E = (cos(ϕ), sin(ϕ)d), where d is a unit vector. It is

1 It should be noted that this discretization of the sphere was firstly presented by
the architect Buckminster Fuller [2] for the construction of geodesic domes.

3



well known (see e.g. [8,11,12]), that the mapping σE : x 7→ x′ = E ◦x ◦E
with the unit quaternion E = (cos(ϕ), sin(ϕ)·d) and x ∈ R3 (x = x1i + x2j +
x3k) is a rotation about d with the angle 2ϕ. The corresponding rotation
matrix R of x′ = Rx equals

R =


e2
0 + e2

1 − e2
2 − e2

3 2(e1e2 + e0e3) 2(e1e3 − e0e2)

2(e1e2 − e0e3) e2
0 − e2

1 + e2
2 − e2

3 2(e2e3 + e0e1)

2(e1e3 + e0e2) 2(e2e3 − e0e1) e2
0 − e2

1 − e2
2 + e2

3

 . (4)

The correspondence between unit quaternions and spherical motions is two-
to-one and onto, because the two unit quaternions E and−E correspond to the
same spherical motion σE. The components of one of the two unit quaternions
±E are called Euler parameters.

A spherical motion σE has a well-defined axis and an angle between 0 and π.
This angle can also be interpreted as the distance of a given spherical motion
to the identity transformation. The angle ^(σE, σF) enclosed by two spherical
motions σE and σF is defined as the angle of the rotation σC given by:

^(σE, σF)

2
= arccos

(
C + C

2

)
with C = E ◦ F (5)

due to C ◦
[
E ◦ x ◦ E

]
◦C = F ◦ x ◦ F.

The main contribution of this paper is based on the spherical kinematic map-
ping, which is defined as follows:

Definition 1 ER are the homogeneous coordinates of points in P 3, where E
is a unit quaternion. The mapping ER 7→ σE of P 3 into the spherical motion
group SO3 is called the spherical kinematic mapping.

The correspondence between ER and spherical motions σE is one-to-one and
onto (see [9] and [14]). The distance of points ER and FR of P 3 is defined as
the angle of the corresponding one-dimensional subspaces, i.e.

d(ER,FR) = ^(ER,FR) ∈
[
0,

π

2

]
with (6)

cos ^(ER,FR) = ETF = e0f0 + e1f1 + e2f2 + e3f3 =
E ◦ F + F ◦ E

2
. (7)

P 3 endowed with this elliptic metric is an elliptic three-space E3. Points
ER and FR of E3 are called orthogonal (resp. orthogonal quaternions) if
d(ER,FR) = π

2
holds. Due to (5) the angle ^(σE, σF) is twice the elliptic

distance of the points ER and FR of elliptic three-space E3.
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3 Discretization of SO3 based on the subdivision of the 600-Cell

Our first approach for the discretization of SO3 is based on the fact, that any
unit quaternion can be seen as a point on S3 in R4. Therefore a fair subdivision
scheme for discretizing SO3 can be based on those for S3. First of all we review
the well-known lowerdimensional case, namely the icosahedral discretization
of S2 ∈ R3 (see [1] and [2]).

Icosahedral discretization of S2

We start with an icosahedron and refine the triangulation by projecting the
midpoints of the three edges onto S2. Then we connect the resulting points by
line segments which yields four smaller triangles (see Fig. 1). This procedure
can be repeated to generate a mesh of any desired resolution with almost
uniformly distributed vertices.

(a) (b) (c)

Fig. 1. Icosahedral discretization of S2. (a) Ikosahedron (b) 1st subdivision step
(c) 2nd subdivision step

The number of vertices and the minimal spherical distance s−i (x, y) as well as
the maximal spherical distance s+

i (x, y) between neighboring vertices x and y
of the ith subdivision step are given in table 1.

Table 1 # vertices s−i (x, y) s+
i (x, y) s+

i − s−i

i=1 42 31.7175◦ 36◦ 4.2825◦

i=2 162 15.8587◦ 18.6994◦ 2.8407◦

i=3 642 7.9294◦ 9.4443◦ 1.5149◦

i=4 2.562 3.9647◦ 4.7342◦ 0.7695◦

i=5 10.242 1.9823◦ 2.3686◦ 0.3863◦

i=6 40.962 0.9912◦ 1.1845◦ 0.1933◦

The 600-cell
The 4-dimensional analogon of the icosahedron is the 600-cell. The bound-
ary of this Platonic solid is composed of 600 regular tetrahedral cells with 20
meeting at each vertex. Together they form 1200 triangular faces, 720 edges,
and 120 vertices. The 600-cell centered at the origin of the unit 4-space has
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edges of length ϕ−1, where ϕ := 1+
√

5
2

is the golden ratio. The coordinates of
the 120 vertices can be given as follows: The coordinates of 16 vertices are
of the form (±1

2
,±1

2
,±1

2
,±1

2
) and the coordinates of 8 vertices correspond to

the vertices of the 16-cell, which are obtained from (±1, 0, 0, 0) by permuta-
tion. The remaining 96 vertices are obtained by taking even permutations of
1
2
(±1,±ϕ,±ϕ−1, 0) (see [3]).

Subdivision scheme for tetrahedra
Because the 600-cell consists of tetrahedral cells we need a subdivision scheme
for tetrahedra. The following scheme was suggested by Schaefer et al. [13]: For
each tetrahedron we insert new vertices at the midpoints of each edge and
connect the vertices together to form four new tetrahedra at the corners of
the original one. If we chop these four tetrahedra we get an octahedron (see
Fig. 2 (a)).

In the next subdivision step we are faced with two kinds of geometric objects,
namely tetrahedra and octahedra. Therefore Schaefer et al. defined the follow-
ing refinement rule for octahedra: We insert vertices at the midpoints of each
edge and at the centroid of the octahedron (see Fig. 2 (b)). Then we connect
the vertices together to form six new octahedra and eight new tetrahedra. The
so called tetrahedral/octahedral subdivision scheme is illustrated in Fig. 2.

(a) (b)

Fig. 2. The tetrahedral/octahedral subdivision scheme: (a) A tetrahedron is split
into 4 tetrahedra and one octahedron. (b) An octahedron is split into 6 octahedra
and 8 tetrahedra.

3.1 Algorithm for the 600-cell based discretization of S3

Now we can discretize S3 by applying the tetrahedral/octahedral subdivision
scheme to the tetrahedra of the 600-cell. This can be done as follows:
Our starting configuration is the 600-cell. In each subdivision step we project
the midpoint of each edge as well as the centroid of each octahedron onto
S3. Then we connect the resulting points by line segments as outlined in
the tetrahedral/octahedral subdivision scheme. This procedure can again be

6



repeated to generate a mesh of any desired resolution.

Theorem 1 The number of tetrahedra (= Ti), octahedra (= Oi), edges (= Ei)
and vertices (= Vi) of the ith subdivision step of the 600-cell based discretiza-
tion of S3 can be computed according to the following recursive formulae:

Vi = Vi−1 + Ei−1 + Oi−1 V0 = 120 (8)

Ei = 2·Ei−1 + 6·Ti−1 + 24·Oi−1 E0 = 720 (9)

Ti = 4·Ti−1 + 8·Oi−1 T0 = 600 (10)

Oi = Ti−1 + 6·Oi−1 O0 = 0 (11)

Proof: The validity of (8), (10) and (11) follows trivially from the tetrahe-
dral/octahedral subdivision scheme. Equation (9) holds for the following rea-
son: Due to the insertion of vertices at the midpoints of each edge of the
(i − 1)th step we get the summand 2·Ei−1. If we subdivide a tetrahedron we
insert at each of its faces 3 new edges. Under the consideration that the re-
sulting 12 edges must be covered twice we get the summand 6 ·Ti−1. If we
subdivide a octahedron we get 12 new edges through the newly inserted cen-
troid. Moreover, we insert 3 edges in each of its 8 faces which overall results
in (12 + 3·8

2
)·Oi−1 = 24·Oi−1. �

Table 2 Ti Oi Ei Vi

i=1 2.400 600 5.040 840

i=2 14.400 6.000 38.880 6.480

i=3 105.600 50.400 308.160 51.360

i=4 825.600 408.000 2.459.520 409.920

i=5 6.566.400 3.273.600 19.664.640 3.277.440

i=6 52.454.400 26.208.000 157.294.080 26.215.680

Theorem 2 Each vertex V (N(V) = 1) of the 600-cell based discretization
of S3 has 12 neighbors, where the neighborhood of a vertex V is given by the
set of all vertices which share a common edge with V. This holds for each step
of the presented subdivision scheme which results in the formula

Ei = 6·Vi for i ∈ N+
0 . (12)

Proof: This statement is valid for the 120 vertices of the 600-cell. Moreover,
the number of edges through a vertex V trivially remains unchanged under
the subdivision scheme. Therefore we only have to prove, that each newly
inserted point has 12 neighbors. If the newly inserted point is the centroid of
an octahedron, then this follows immediately from the considerations given in
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the proof of Theorem 1. If the newly inserted point is not a centroid, then it
can only be the midpoint of an edge. To complete our proof we have to show
that any edge is shared either by (i) 5 tetrahedra or (ii) 2 tetrahedra and 2
octahedra.
ad (i) Assume the line segment connecting the vertex U and W is the common
edge of t tetrahedra and o octahedra of the ith subdivision step. If we project
the midpoint of the common edge of U and W up to S3 we get the point
V. Then the line segment connecting V and U resp. V and W is still the
common edge of t tetrahedra and o octahedra of the (i+1)th subdivision step,
due to the proposed subdivision scheme (see Fig. 2). This is the reason for the
existence of case (i), because our subdivision scheme is based on the 600-cell.
ad (ii) In the last step we consider the newly inserted edges in the faces of the
tetrahedra resp. octahedra. Such a face can only be shared by 2 octahedra, 2
tetrahedra or 1 octahedron and 1 tetrahedron, respectively. In each of these
three cases the newly inserted edges in the faces share 2 tetrahedra and 2
octahedra according to Fig. 2. �

We implemented the outlined subdivision scheme for the discretization of the
spherical motion group in Matlab. The maximal elliptic distance d+

i (XR,YR)
as well as the minimal elliptic distance d−i (XR,YR) of neighboring point pairs
X and Y of the ith subdivision step are given in table 3 for i = 1, . . . , 6.

Table 3 d−i d+
i d+

i − d−i d−i d+
i d+

i − d−i

i=1 18◦ 18.6994◦ 0.6994◦ i=4 2.25◦ 2.3773◦ 0.1273◦

i=2 9◦ 9.4767◦ 0.4767◦ i=5 1.125◦ 1.1888◦ 0.0638◦

i=3 4.5◦ 4.7505◦ 0.2505◦ i=6 0.5625◦ 0.5949◦ 0.0324◦

4 Elliptic linear congruence based discretization of SO3

Beside the fairness of the discretization of SO3, the implementation of such
subdivision schemes as well as the data processing of the resulting grid points
are further important aspects for application. In practice one deals with a
large amount of data, e.g. fair discretization of a n-dof workspace (see Section
1), and therefore an efficient data structure providing fast access is of interest.
This can be achieved by the following subdivision scheme for discretizing SO3.
First of all we outline a subdivision scheme to generate a fair discretization
of an elliptic linear congruence in E3 based on the icosahedral discretization
of S2. In the next step we discretize the lines of this elliptic linear congruence
such that we get a fair discretization of E3 and therefore of SO3.
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4.1 Left and Right Image Point of an Oriented Line and Clifford Parallelity

If an oriented line
−→
L ∈ E3 is spanned by orthogonal points ER and FR

with N(E) = N(F) = 1, then the Plücker coordinates (l, l̂) of
−→
L with ljk =

ejfk − ekfj are normalized, i.e. l2 + l̂2 = 1. With the help of the orthogonal

unit quaternions E and F the oriented line
−→
L can be parametrized as L(ϕ)R,

where the unit quaternion L(ϕ) is given by:

L(ϕ) = cos(ϕ)E− sin(ϕ)F with ϕ ∈ [0, π] . (13)

Assume a point XR /∈
−→
L with N(X) = 1 is given and

−→
L is parametrized as

in (13). Then the closest point CR to XR on
−→
L with respect to the elliptic

metric (6) is uniquely determined by

ϕC := − arctan

(
XTF

XTE

)
. (14)

Definition 2 If
−→
L ∈ P 3 is an oriented line with normalized Plücker coor-

dinates (l, l̂), e.i. l2 + l̂2 = 1, then the left and right image points of
−→
L are

defined as:

µ+ : (l, l̂) 7→ l+ := l + l̂ . . . . . . left image point of
−→
L

µ− : (l, l̂) 7→ l− := l− l̂ . . . . . . right image point of
−→
L

(15)

l+ and l− are unit vectors because (l, l̂) is normalized. Therefore µ+ resp. µ−

maps the space of oriented lines onto the so called left resp. right unit sphere,
which is denoted by S2

+ resp. S2
−.

Remark: It can be shown that if
−→
L ∈ P 3 is incident with a point ER, then

the spherical motion σE takes
−→
L ’s left image point to its right image point:

σE(l+) = l−. Conversely, the points of P 3 which correspond to the spherical

motions transforming x ∈ S2 to y ∈ S2, comprise a line
−→
L := (x + y,x− y).

For details see [11].

Definition 3 Two oriented lines
−→
G and

−→
L of P 3 are called left resp. right

Clifford parallel if g+× l+ = o resp. g−× l− = o holds.

It follows immediately from the intersection condition of Sommerville (g · l̂ +
ĝ ·l = 0) which can be written as g+ ·l+−g− ·l− = 0 that Clifford parallel lines
have never a common point. Moreover, it can be shown (e.g. see [11]) that the

minimum distance of any point on
−→
L to its (left or right) Clifford parallel

−→
G

is the same for all points. Therefore Clifford parallels are equidistant. This
result leads to the following definition:
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Definition 4 The distance d(
−→
L ,
−→
G ) between the Clifford parallel lines

−→
L and

−→
G is defined as the minimum elliptic distance of any point on

−→
L to

−→
G .

4.2 Fair Discretization of the elliptic linear congruence

Without loss of generality, we assume l+ = (0, 0, 1) and l− = (a, b, c) with

‖l−‖ = 1. The lines
−→
L with Plücker coordinates l = (a, b, 1 + c) and l̂ =

(−a,−b, 1− c) are contained in two linear line complexes given by

l01 + l23 = 0 and l02 + l31 = 0.

The pencil of linear line complexes spanned by (c1, ĉ1) = (1, 0, 0, 1, 0, 0)R and
(c2, ĉ2) = (0, 1, 0, 0, 1, 0)R intersect the Plücker quadric, which is given by
l01l23 + l02l31 + l03l12 = 0, in two complex conjugate points (1, i, 0, 1, i, 0)C
and (1,−i, 0, 1,−i, 0)C. These points correspond to the skew pair of complex
conjugate focal lines of the elliptic linear congruence. Therefore the fibers of
µ+ (Def. 2) are an elliptic linear congruence. Moreover for l+ = (0, 0, 1) the
fibers of µ+ are also the fibers of the Hopf mapping (see [6] and [11]).

As a consequence the discretization of the elliptic linear congruence can be

done by discretizing the right unit sphere S2
−. Therefore the set of lines

−→
L j :=

(l+j , l−j ) of the ith subdivision step of the elliptic linear congruence discretiza-
tion can be given as follows:
Without loss of generality we set l+j := (0, 0, 1) for all j. The unit vector l−j
are the position vectors of the vertices of the ith subdivision step of the S2

−
discretization according to Baumgardner and Frederickson [1]. Therefore the
number of lines j of the ith step of the elliptic linear congruence discretization
equals the number of vertices of the ith step of the icosahedral discretization

of S2, which is given in table 1 for i = 1, . . . , 6. The neighborhood of a line
−→
L

of the elliptic linear congruence discretization is induced by the icosahedral
discretization of S2

− as follows:

Definition 5 The line
−→
L corresponds to a vertex l of the discretization of the

right unit sphere S2
−. Each line which corresponds to a vertex of the icosahedral

discretization of S2
− sharing a common edge with l is a neighboring line of

−→
L .

Remark: The distance d(
−→
L ,
−→
G ) between two lines

−→
L and

−→
G of the elliptic

linear congruence discretization is half the spherical distance s(l, g) of the

corresponding vertices l and g of
−→
L and

−→
G of the discretized right unit sphere

S2
−. Moreover it should be noted that only the lines which correspond to the

12 vertices of the icosahedron have 5 neighboring lines. All other lines of the
discretized elliptic linear congruence have six neighboring lines.
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4.3 Starting configuration and line discretization

In the starting configuration of our algorithm the right unit sphere S2
− is dis-

cretized by the icosahedron. Therefore the 0th step of the discretized elliptic

linear congruence consists of 12 lines
−→
L i (i = 1, . . . , 12). It is possible to

discretize each line
−→
L i by 5 Points P1

i R, . . . ,P5
i R such that the resulting con-

figuration (60 Points P1
1R, . . . ,P5

12R) corresponds to the 120 vertices of the
600-cell. This can easily be done as follows:

We discretize the line
−→
L 1 by 5 points P1

1R, . . . ,P5
1R with d(Pj

1R,Pj+1
1 R) =

d(P1
1R,P5

1R) = π
5

for j = 1, . . . , 4. Then we compute for each neighboring line
−→
L n of

−→
L 1 the two points P1

nR and P2
nR with d(P1

1R,P1
nR) = d(P1

1R,P2
nR) =

π
5
. Moreover the elliptic distance between P1

nR and P2
nR is also π

5
. Then we

discretize the lines
−→
L n analogously to the line

−→
L 1 and iterate this procedure

until all 12 lines are discretized. Therefore each point of the resulting configu-
ration has 12 neighbors (closest points) at the elliptic distance of π

5
. Trivially

the 120 points ±P1
1, . . . ,±P5

12 with N(±P1
1) = . . . = N(±P5

12) = 1 correspond
to the 120 vertices of the 600-cell.

Based on this starting configuration we give a subdivision scheme for generat-
ing a fair discretization of E3. Due to the outlined discretization of the elliptic
linear congruence it is clear how to insert new lines in each subdivision step.
But how should these lines be discretized? In order to come up with an answer
we have to make the following considerations.

Definition 6 The discretized version L :=
{
P1, . . . ,Pk

}
of the line

−→
L ∈ E3

is called regular if

d(Pu,Pu+1) = d(Pk,P1) =
π

k
with u = 1, . . . , k − 1 and k ≥ 2 holds.

It should be noted that the 12 lines of our starting configuration are regular
discretized lines. In the next step we define the distance between two regular
discretized Clifford parallel lines analogously to the smooth case (see Def. 4).

Definition 7 The distance d(Li,Lj) of regular discretized Clifford parallel

lines Li := {P1
i , . . . ,P

m
i } and Lj :=

{
P1

j , . . . ,P
n
j

}
is defined as

d(Li,Lj) := min
l∈{1,...,n}

(
d(Pa

i R,Pl
jR)

)
with a ∈ {1, . . . ,m} . (16)
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Lemma 1 The distance of Def. 7 is symmetric (e.i. d(Li,Lj) = d(Lj,Li))
and independent of the selected point Pa

i R ∈ Li if and only if:

General case: m = n

Special case A: 2m = n ∧ d(Li,Lj) = arccos
(
cos
(
d(
−→
L i,

−→
L j)
)

cos
( π

2n

))
Special case B: m = 2n ∧ d(Li,Lj) = arccos

(
cos
(
d(
−→
L i,

−→
L j)
)

cos
( π

2m

))

Li
Lj

d(L
i,
L j)

(a)

Li

Lj

d(Li,Lj)

(b)

Li
Lj

d(
L i,
L j

)

(c)

Fig. 3. (a) General case (b) Special case A (c) Special case B

Proof: The validity of this Lemma is trivial and it can immediately be seen
from Fig. 3, where the general case and the special cases are illustrated. �

Moreover it should be noted that the distance between two regular discretized
Clifford parallel lines Li and Lj of the general case is bounded by:

d(Li,Lj) ∈
[
d(
−→
L i,

−→
L j), arccos

(
cos

(
d(
−→
L i,

−→
L j)

)
cos

(
π

2n

))]
(17)

The natural claim
Assume the regular discretized lines Li and Lj with n := #Li = #Lj which
correspond to neighboring vertices li and lj of the icosahedron are given. If
we project the midpoint of li and lj onto S2

− we get the point li,j , which

corresponds to the line
−→
L i,j of E3. Due to d(

−→
L i,

−→
L i,j) = d(

−→
L j,

−→
L i,j) we claim

that d(Li,Li,j) equals d(Lj,Li,j).

Now the question arises if there exists always a regular discretization of
−→
L i,j

such that the above condition is fulfilled and if yes, would it be unique. As a
consequence of the special cases in Lemma 1 we have to distinguish between
the following three cases:

12



Case A: d(Li,Lj) 6= d(
−→
L i,

−→
L j), d(Li,Lj) 6= arccos

(
cos
(
d(
−→
L i,

−→
L j)
)

cos
(

π
2n

))
In this case there always exist two schemes for the regular discretization of−→
L i,j, which are called minimal distance line discretization and maximal dis-
tance line discretization (see Fig. 4). The discretization can be done as follows:
Take any point PiR ∈ Li and its uniquely determined closest point PjR ∈ Lj.

For both point PiR,PjR compute the closest point CiR and CjR on
−→
L i,j

according to (14). Then there exist two orthogonal points M1R and M2R on
−→
L i,j with d(MuR,CiR) = d(MuR,CjR) (u = 1, 2). Without loss of generality
we assume d(M1R,CiR) < d(M2R,CiR) and N(M1) = N(M2) = 1. Due to
the assumptions of case A the case d(M1R,CiR) = d(M2R,CjR) does not

exist. According to (13) the line
−→
L i,j can be regularly discretized as follows:

• Minimal distance line discretization:

L−i,j :=
{

cos
(

iπ

n

)
M1 − sin

(
iπ

n

)
M2

∣∣ i = 0, . . . , n− 1
}

(18)

• Maximal distance line discretization:

L+
i,j :=

{
cos
(

(2i + 1)π
2n

)
M1 − sin

(
(2i + 1)π

2n

)
M2

∣∣ i = 0, . . . , n− 1
}

(19)

Moreover it should be noted that both schemes are independent of the choice
of the point PiR ∈ Li. Trivially the following relation holds:

d(Li,L−
i,j) = d(Lj,L−

i,j) < d(Li,L+
i,j) = d(Lj,L+

i,j).

Li

Lj

L−i,j

PiR

PjR

CiR

CjR
M1R

(a)

Li

Lj

L+
i,j

PiR

PjR

CiR

CjR

M1R

(b)

Fig. 4. Line discretization schemes of case A: (a) Minimal distance line discretization
L−i,j (b) Maximal distance line discretization L+

i,j
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Case B: d(Li,Lj) = d(
−→
L i,

−→
L j)

The same considerations as in case A lead to CiR = CjR = M1R and we can
apply the minimal line discretization scheme L−

i,j of (18) (see Fig. 5 (a)) and

the maximal line discretization scheme L+
i,j of (19) (see Fig. 5 (b)), respec-

tively. But now we get two more fair discretizations of
−→
L i,j if n is even and

n ≥ 4 (see Fig. 6):

• Special case 1:

LS1
i,j :=

{
cos
(

(2i + 1)π
n

)
M1 − sin

(
(2i + 1)π

n

)
M2

∣∣ i = 0, . . . ,
n

2
− 1
}

(20)

• Special case 2:

LS2
i,j :=

{
cos
(

(2i− 1)π
n

)
M1 − sin

(
(2i− 1)π

n

)
M2

∣∣ i = 0, . . . ,
n

2
− 1
}

(21)

These two definitions depend on the choice of the point PiR ∈ Li which is
clear from LS1

i,j ∪ LS2
i,j = L+

i,j. Moreover we get

d(Li,L−
i,j) < d(Li,L+

i,j) = d(Li,LS1
i,j) = d(Li,LS2

i,j).

Li

Lj

L−i,j

PiR
PjR

M1R

(a)

Li

Lj

L+
i,j

PiR
PjR

M1R

(b)

Fig. 5. Line discretization schemes of case B: (a) Minimal distance line discretization
L−i,j (b) Maximal distance line discretization L+

i,j
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Li

Lj

LS1
i,j

PiR
PjR

M1R

(a)

Li

Lj

LS2
i,j

PiR
PjR

M1R

(b)

Fig. 6. Line discretization schemes of case B: (a) Special case 1 (b) Special case 2

Case C: d(Li,Lj) = arccos
(
cos
(
d(
−→
L i,

−→
L j)
)

cos
(

π
2n

))
In this case any point PiR ∈ Li has two closest points Pa

j R and Pb
jR on Lj.

In dependency of Pa
j R and Pb

jR we get the orthogonal point pairs Ma
1R,Ma

2R
and Mb

1R,Mb
2R on

−→
L i,j. Only if n = 2 the point Mx

1R is not determined
uniquely due to d(Mx

1R,CiR) = d(Mx
2R,CiR) with x ∈ {a, b}. Then there

are the following three possibilities for the discretization of
−→
L i,j:

La
i,j := {Ma

1R,Ma
2R} , Lb

i,j :=
{
Mb

1R,Mb
2R
}

, LS
i,j := La

i,j ∪ Lb
i,j.

For n > 2 we can apply to both pairs the minimal and maximal line discretiza-
tion scheme of (18) and (19), which leads to L−a

i,j ,L+a
i,j and L−b

i,j ,L
+b
i,j (see Fig. 7).

Due to d(Ma
1R,Mb

1R) = π
2n

we get L±
i,j := L+a

i,j = L−b
i,j and L∓

i,j := L−a
i,j = L+b

i,j .
Therefore we cannot distinguish between these two line discretization schemes
in this case. Moreover there is a third possibility for a regular discretization

of
−→
L i,j namely LS

i,j := L±
i,j ∪ L∓

i,j (see Fig. 7). However the following relation
holds

d(Li,L±
i,j) = d(Li,L∓

i,j) = d(Li,LS
i,j).

The last preparatory work which must be done is the definition of the neigh-
borhood of a grid point. Such a definition should be based on the definition
of neighboring lines (see Def. 5) and it should induce the same neighborhood
for a grid point of the starting configuration as it is done by the edges of
the 600-cell. If we take this into consideration we end up with the following
definition:
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Li Lj

L±i,j

PiR

Pa
j R

Pb
jR

CiR

Ca
j R

Cb
jR

Ma
1R

Mb
1R

(a)

Li Lj

L∓i,j

PiR

Pa
j R

Pb
jR

CiR

Ca
j R

Cb
jR

Ma
1R

Mb
1R

(b)

Li Lj

LS
i,j

PiR

Pa
j R

Pb
jR

CiR

Ca
j R

Cb
jR

Ma
1R

Mb
1R

(c)

Fig. 7. Line discretization schemes of case C: (a) L±i,j := L+a
i,j = L−b

i,j (b)
L∓i,j := L−a

i,j = L+b
i,j (c) LS

i,j := L±i,j ∪ L
∓
i,j

Definition 8 Lj :=
{
P1

i R, . . . ,Pki
i R

}
for i = 1, . . . , n are the regular dis-

cretized neighboring lines of the regular discretized line L0 :=
{
P1

0R, . . . ,Pk0
0 R

}
according to Def. 5. Then the set Nj of neighboring points on Lj with respect
to Pi

0 is defined as

Nj :=

{
Pk

j R
∣∣∣ d(Pi

0R,Pk
j R) = min

k∈{1,...,ki}

(
d(Pi

0R,Pk
j R)

)}
.

Then the neighborhood NPi
0

of Pi
0R is given by NPi

0
:=

n⋃
j=0

Nj where

N0 :=

{
Pk

0R
∣∣∣ d(Pi

0R,Pk
0R) = min

k∈{1,...,k0}\i

(
d(Pi

0R,Pk
0R)

)}

are the neighbors of Pi
0 on its carrier line.

Remark It should be noted that the set N0 always consists of two elements if
k0 is greater than 2. The set Nj for j = 1, . . . , n only consists of 2 elements if

k0 = kj and d(L0,Lj) = arccos
(
cos

(
d(
−→
L i,

−→
L j)

)
cos

(
π

2k0

))
or if 2k0 = kj and

d(L0,Lj) = arccos
(
cos

(
d(
−→
L i,

−→
L j)

)
cos

(
π

2kj

))
.

4.4 Algorithm for the elliptic linear congruence based discretization of SO3

Now we can give the complete algorithm for the discretization of the spherical
motion group based on the discretization of the elliptic linear congruence.
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0. Compute the 60 points of the starting configuration.

1. Double the number of points on each regular discretized line Li of
the ith step such that it is still regular. Moreover the resulting point
set Li+1 should contain Li.

2. Insert the new lines according to the subdivision scheme for the
discretization of the elliptic linear congruence (see section 4.2).

3. Discretize each of the new lines according to one of the possible line
discretization schemes of case A, B and C. Then compute the dif-
ference between the maximal and minimal distance between neigh-
boring grid points of the (i + 1)th step of all possible combinato-
rial cases induced by the different line discretization schemes. The
combination which cause the minimal difference is our new starting
configuration.

In the next step we show that we can neglect the special cases, which reduces
the number of combinatorial cases of step 3. We will show this only up to the
6th subdivision step because the corresponding grid has a resolution of more
than 13 millions points, which is more than sufficient for any computation.

Theorem 3 The combinatorial cases in which the line discretization schemes
LS1

i,j , LS2
i,j or LS

i,j are applied to the newly inserted lines of the ith subdivision
step, cannot minimize the difference between the maximal and minimal dis-
tance between neighboring grid points of the resulting grid. (i = 1, . . . , 6)

Proof: If we exclude the line discretization schemes LS1
i,j , LS2

i,j and LS
i,j each

regular discretized line Li of the ith subdivision step carries the same number
of grid points, namely 5 · 2i. Due to (17) we can give easily the upper bound
b+
i and the lower bound b−i of the distance between neighboring grid points of

the ith subdivision step as follows:

b−i := min

(
s−i
2

,
π

5 · 2i

)
, b+

i := max

(
arccos

(
cos
(

s+
i

2

)
cos
( π

5 · 2i+1

))
,

π

5 · 2i

)
with s+

i and s−i according to table 1 for i = 1, . . . , 6. If we would apply the

line discretization scheme LS1
i,j or LS2

i,j to one of the newly inserted lines
−→
L i,j of

the ith subdivision step the set of all distances between two neighboring grid
points contains the value π

5·2i−1 , which is the distance between two neighboring
points on Li,j. For the line discretization scheme LS

i,j this set contains the
value π

5·2i+1 . Moreover this set contains the value π
5·2i , which corresponds to the

distance between neighboring points on the lines of the starting configuration.
As outlined in table 4 the inequalities π

5·2i−1 − π
5·2i = π

5·2i > b+
i − b−i and

π
5·2i − π

5·2i+1 = π
5·2i+1 > b+

i − b−i are valid for i = 1, . . . , 6 and therefore the
theorem is proven. �
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Table 4 b−i b+
i b+

i − b−i
π

5·2i+1
π

5·2i−1

i=1 15.8587◦ 20.0577◦ 4.1990◦ 9◦ 18◦

i=2 7.9294◦ 10.3676◦ 2.4382◦ 4.5◦ 9◦

i=3 3.9647◦ 5.2297◦ 1.2650◦ 2.25◦ 4.5◦

i=4 1.9823◦ 2.6207◦ 0.6384◦ 1.125◦ 2.25◦

i=5 0.9912◦ 1.3111◦ 0.3199◦ 0.5625◦ 1.125◦

i=6 0.4956◦ 0.6556◦ 0.1600◦ 0.28125◦ 0.5625◦

Moreover this result guarantees that for two neighboring lines Li,j and Li,k

the distance d(Li,j,Li,k) is well defined due to the fact that each line carries
the same number of grid points. Therefore we can already compute the num-
ber of grid points Di · Pi of the ith subdivision step, where Di denotes the
number of regular discretized lines and Pi the number of points per line. The
corresponding values are given in table 5 for i = 1, . . . , 6.

Table 5 Di Pi Di · Pi Di Pi Di · Pi

i=1 42 10 420 i=4 2562 80 204.960

i=2 162 20 3.240 i=5 10242 160 1.638.720

i=3 642 40 25.680 i=6 40962 320 13.107.840

Remark: It is surprising that the total number Vi

2
of spherical motions of

the ith discretization step of SO3 based on the subdivision of the 600-cell (see
table 2) equals the number of spherical motions of the ith discretization step
of SO3 based on the elliptic linear congruence (see table 5). As a consequence
we can easily compare the two discretization schemes by the difference of the
maximal and minimal elliptic distance of neighboring grid points.

Extended natural claim
In order to reduce the number of combinatorial cases we expand the natural
claim to the whole discretized elliptic linear congruence. Assume that the

neighboring pairs
−→
L i,

−→
L j and

−→
L k,

−→
L l with d(

−→
L i,

−→
L j) = d(

−→
L k,

−→
L l) are given.

Then the discretized lines should fulfill the condition d(Li,Lj) = d(Lk,Ll),
which is true for the starting configuration.

Then the number of combinatorial cases of the ith subdivision step equals:

step 0
21

−→ step 1
22

−→ step 2
25

−→ step 3
215

−→ step 4
251

−→ step 5
2187

−→ step 6

Under this reasonable claim we can prove the following theorem. We will
do this again up to the 6th subdivision step due to the more than sufficient
resolution of the resulting grid.
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Theorem 4 It is possible to apply to each newly inserted line
−→
L i,j the maxi-

mum distance line discretization scheme L+
i,j. The resulting maximum distance

subdivision scheme minimizes the difference between the maximal and minimal
distance between the grid points of the ith subdivision step with respect to the
extended natural claim. (i = 1, . . . , 6)

Proof: (i) First we have to check if in each iteration step the maximal distance
line discretization is possible or if the indistinguishable schemes L±

i,j and L∓
i,j

must be applied. After we doubled the number of points of the discretized
lines of the (i−1)th step we only have to check if case C occurs. Fortunately it
turns out by computation that this is not the case up to the 6th step. Thus we
can apply the unique determined maximal distance line discretization scheme
to each newly inserted line up to the 6th step. Therefore the maximal distance
subdivision scheme trivially fulfills our extended natural claim.

(ii) Perhaps the proof of the second part of this theorem can also be done
explicitly up to the 3rd or 4th step by computing all possible combinatorial
cases and comparing the difference between the maximal and minimal distance
between the resulting grid points. But for the 5th and 6th subdivision step these
does not make sense due to the enormous number of combinatorial cases.
Therefore we will give the following elegant proof:

Proof for i = 1: All 30 newly inserted lines can be discretized according
to the maximal or minimal distance line discretization scheme. Computation
yields that the difference between maximal and minimal distance of neighbor-
ing grid points of the maximal distance subdivision scheme is 0.4860◦. For the
other combinatorial case we get the value 2.6273◦. It should be noted that the
minimal distance d−1 = 18◦ between grid points of the maximal distance sub-
division scheme occurs between neighboring points of the same carrier line.

Proof for i = 2, . . . , 5: First of all we compute the maximal distance d+
i

and the minimal distance d−i between neighboring grid points of the ith sub-
division step of the maximal distance subdivision scheme. Due to the validity
of d−i < π

5·2i < d+
i (see table 7) the maximal and minimal distance occurs

between points of neighboring lines. It turns out that the discretized lines
L+

i,a,L+
i,b,L+

i,c,L+
i,d causing the maximal and minimal distance lie in a similar

configuration for i = 2, . . . , 5. This configuration is illustrated via the corre-
sponding points on the right unit sphere S2

− in Fig. 8 and Fig. 9.

Now we apply to the lines of the configuration all other combinatorial cases
induced by the maximal and minimal line discretization scheme. We have to
differentiate between the following three cases:

(a)L−
i,a,L+

i,b,L−
i,c,L+

i,d (b)L+
i,a,L−

i,b,L+
i,c,L−

i,d (c)L−
i,a,L−

i,b,L−
i,c,L−

i,d (22)
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L+
2,a L+

2,c

L+
3,a L+

3,c

L+
4,a L+

4,c

L+
2,b L+

2,dL+
3,b L+

3,dL+
4,b L+

4,dLi

Fig. 8. The corresponding points on S2
− of the configuration L+

i,a,L
+
i,b,L

+
i,c,L

+
i,d for

i = 1, . . . , 4. Blue edges indicate the minimal distance and red edges the maximal
distance. The edges of the initial icosahedral face are colored green.

All other cases can be excluded because the extended natural claim implies
that the maximal and minimal line discretization schemes have to operate on
the corresponding points of S2

− with respect to the extended icosahedral group
determined by the icosahedron of step 0. As a consequence we cannot improve
the maximal distance d+

i := d(L+
i,a,L+

i,c) due to d(L+
i,a,L+

i,c) = d(L−
i,a,L−

i,c).
Therefore the above three cases can only improve the minimal distance d−i :=
d(L+

i,a,L+
i,b) = d(L+

i,c,L+
i,d). But for the combinatorial case (a) the inequality

d(L−
i,a,L+

i,b) < d−i holds for i = 2, . . . , 5 (see table 6). For the combinatorial
cases (b) and (c) the inequality d(L−

i,b,Li) < d−i holds for i = 2, . . . , 5 (see
table 6) and therefore this part is proven.

Table 6 d−i d(L−i,a,L
+
i,b) d(L−i,b,Li)

i=2 8.8864◦ 8.2763◦ 7.9294◦

i=3 4.3816◦ 4.2147◦ 3.9647◦

i=4 2.1741◦ 2.1252◦ 1.9823◦

i=5 1.0827◦ 1.0669◦ 0.9912◦

i=6 0.5402◦ 0.5345◦ 0.4956◦
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Proof for i = 6:
Similar considerations as in the
above case lead us to the configu-
ration L+

6,a,L+
6,b,L+

6,c,L+
6,d,L+

6,e,L+
6,f

(Fig. 9) with d+
6 := d(L+

6,e,L+
6,f ) and

d−6 := d(L+
6,a,L+

6,b) = d(L+
6,c,L+

6,d).
Due to the extended natural claim
we have to check the same three
cases as in (22) for i = 6. Again
we cannot improve d+

i . Moreover for
the cases (b) and (c) the inequal-
ity d(L−

6,b,L6) < d−6 holds. Case
(a) also cannot improve d−i due to
d(L−

6,a,L+
6,b) < d−6 (see table 6). �

L+
5,a L+

5,c

L+
5,b L+

5,d

L+
4,a L+

4,c

L+
6,a L+

6,c

L+
4,b L+

4,dL+
6,b L+

6,dLi

L+
6,e L+

6,f

Fig. 9. The corresponding points on S2
− of

the configuration L+
i,a, L

+
i,b, L

+
i,c, L

+
i,d, L

+
6,e,

L+
6,f for i = 4, . . . , 6. Blue edges indicate

the minimal distance and red edges the
maximal distance.

Table 7 d−i d+
i d+

i − d−i d−i d+
i d+

i − d−i

i=1 18◦ 18.4860◦ 0.4860◦ i=4 2.1741◦ 2.6074◦ 0.4333◦

i=2 8.8864◦ 9.9594◦ 1.0730◦ i=5 1.0827◦ 1.3064◦ 0.2237◦

i=3 4.3816◦ 5.1396◦ 0.7580◦ i=6 0.5402◦ 0.6544◦ 0.1142◦

The maximal and minimal elliptic distance of neighboring grid points gener-
ated by the maximal distance subdivision scheme are outlined in table 7.

5 Comparison of the presented subdivision schemes

The elliptic linear congruence based grid of step 1 is fairer than the one ob-
tained by the subdivision of the 600-cell and the grids of step 2 to 6 are less
fair than those based on the subdivision of the 600-cell (compare table 3 and
table 7). Recall that fairness is meant in the sense of regularity. A further
difference between the grids generated by these two methods is the number
of neighboring grid points. Due to Theorem 2 each grid point of the 600-cell
based discretization of SO3 has 12 neighbors. The neighborhood of a grid
point of the elliptic linear congruence based discretization of SO3 depends on
the carrier line of this point, because all points of one line have exactly the
same neighborhood. Due to the formula given in the remark of section 4.3 the
number of neighbors can easily be determined. It turns out by computation
that the following holds up to the 6th subdivision step:
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• Grid points on the 12 lines of our starting configuration have 12
neighbors. It should be noted that this is true for any step of the
maximal distance subdivision scheme and not only up to step 6.

• Grid points on lines which correspond to points on S2
− placed on

geodesics between neighboring vertices of the starting icosahedron
have 10 neighbors.

• All other grid points have 8 neighbors.

5.1 Data structure

Clearly, the 600-cell based subdivision scheme implies a hierarchical data struc-
ture. Due to this structure the neighboring grid points to an arbitrary given
spherical motion X with N(X) = 1 can easily be determined as follows: First
one has to check in which of the 600 cells X is located. Then one has to test
within which geometric object of the next subdivision step X lies. Depending
on the resolution of the grid this procedure must be repeated until one ends up
with the information that X is located in the tetrahedron T or the octahedron
O of the ith subdivision step. In the general case the four vertices of T or the
six vertices of O are the searched neighboring grid points of X. It should be
noted that this hierarchical data structure can not be implemented so easily
(e.g. in Matlab), because an efficient implementation must consider that the
spherical motion group is covered twice by the resulting grid.

In the contrary the elliptic linear congruence based discretization of SO3 im-
plies the following nice matrix data structure: The unit quaternions of the
obtained grid points of the ith subdivision step can be stored in a Di× Pi× 4
array, where Di is the number of regular discretized lines and Pi the number
of points per line. Beside the information of neighboring lines which can be
stored in a 12×5 and a (Di−12)×6 array, one only needs to save the neighbors
of one point per line because the neighborhood of all other points of the same
line are given by the geometric properties of the grid. This results in a very
compact and efficient data structure which is suited for implementation e.g. in
Matlab and provides fast access (computation time). Moreover the additional
information of the hierarchical data structure of the icosahedral discretization
of S2

− also provides a fast computation of the neighboring grid points to an
arbitrary given spherical motion XR. First one has to compute the uniquely

determined line
−→
X of the elliptic linear congruence through XR. Then the (in

general three) closest regular discretized grid lines to
−→
X can easily be obtained

by
−→
X ’s right image point and the hierarchical data structure of the icosahe-

dral discretization of S2
−. In the last step one only has to find the closest grid

points on these lines to XR.
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Summarizing, we can say that both schemes have their advantages, thus the
choice of the right one depends on the respective application.

5.2 Visualization

We apply the spherical motions which correspond to the grid points of the
presented subdivision schemes to an oriented line segment tangential to the
unit sphere. The chosen projection direction of all the following images equals
l+j = (0, 0, 1). Therefore the rotational symmetry of the elliptic linear congru-
ence based subdivision scheme can be seen immediately.

In Fig. 10 the 60 poses of the line segment corresponding to the vertices of
the 600-cell (=starting configuration) are illustrated.

(a) (b)

Fig. 10. Starting configuration: (a) Neighborhood of the green line segment: The
yellow ones correspond to the grid points of N0 (see Def. 8). All other neighbors are
colored red. (b) The grid points which correspond to the green (red) line segments
belong to a regular discretized line of the starting configuration.

In Fig. 11 the poses of the oriented line segment which correspond to the grid
points of the 1st step of the presented schemes are illustrated. The red ones
(with green arrowheads) correspond to the newly inserted grid points and the
blue ones (with yellow arrowheads) to the points of the starting configuration.

The grid points of the 2nd step of the presented schemes are illustrated via the
corresponding poses of the oriented line segment in Fig. 12. Blue ones belong
to the starting configuration, green ones to the newly inserted grid points of
the 1st step and yellow ones (with red arrowheads) to the newly inserted grid
points of the 2nd step.
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It should be noted that illustrating higher steps of the subdivision schemes
does not make sense from the graphical point of view. Even in Fig. 12 it is
difficult to differentiate visually between the displayed line segments.

6 Conclusion

We presented a fair discretization of SO3 based on the subdivision of the 600-
cell according to the tetrahedral/octahedral subdivision scheme of Schaefer et
al. [13]. We proved that each grid point has 12 neighbors in any subdivision
step and computed the difference between the maximal and minimal elliptic
distance of neighboring grid points.

The main contribution of this paper is based on the spherical kinematic map-
ping. We presented a subdivision scheme to generate a fair discretization of
an elliptic linear congruence in the elliptic three-space. This discretization is
done by the icosahedral discretization of the right unit sphere. Under consid-
eration of the extended natural claim postulated in section 4.4, we discretized
the lines of the discretized elliptic linear congruence such that the difference
between the maximal and minimal elliptic distance of neighboring grid points
becomes minimal. Moreover we proved that the maximal distance subdivision
scheme is the fairest one up to the 6th subdivision step fulfilling this claim.

Although these two presented discretizations are totally different they result
in the same number of spherical motions in each subdivision step. Therefore
we can compare the two schemes by the difference of the maximal and mini-
mal elliptic distance of neighboring grid points. It turns out that the elliptic
linear congruence based grid of step 1 is fairer than the one obtained by the
subdivision of the 600-cell. The grids of step 2 to 6 are less fair than those
based on the subdivision of the 600-cell. A further difference between the grids
obtained by these two methods is the number of neighboring grid points, be-
cause a point of the elliptic linear congruence based grid can have 12, 10 or 8
neighbors.

Beside the fairness of the discretization of SO3, the implementation of such
subdivision schemes as well as the data processing of the resulting grid points
are further important aspects for application. Contrary to the 600-cell based
subdivision scheme implying a hierarchical data structure the elliptic linear
congruence based grid provides a compact and efficient matrix data structure.
Both structures have their advantages, thus the choice of the right subdivision
scheme depends on the respective application.

24



(a) 600-cell based subdivision scheme.

(b) Elliptic linear congruence based subdivision scheme.

Fig. 11. 1st step of the presented subdivision schemes.
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(a) 600-cell based subdivision scheme.

(b) Elliptic linear congruence based subdivision scheme.

Fig. 12. 2nd step of the presented subdivision schemes.
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