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Abstract

We consider the problem of fitting B-spline curves and surfaces to point clouds in the
presence of obstacles constraining this approximation at the same time. Therefore,
we describe the fitting problem as optimization problem and employ an iterative
procedure to solve it — the presence of obstacles poses constraints on this mini-
mization process. We examine two families of obstacles: first, the point cloud itself
is interpreted as obstacle, e.g. to reconstruct any apparant boundaries of the data
set. Second, we define arbitrary regions the fitting must not penetrate. We discuss
several numerical aspects of this constrained optimization and present experimental
results for B-spline curve and surface fittings in the presence of obstacles.

Key words: Curve fitting, Surface fitting, Obstacles, Constrained optimization,
Surface trimming

1 Introduction

The wide spread use of 3D laser scanning technology offers various possibil-
ities to digitize real world objects and further process their virtual models
on computers. One of the most common representation methods for the ac-
quired measurement data stores a high number of surface sample coordinates,
often denoted to as the point cloud. Data processing knows an ever increasing
number of ways to deal with such a discrete point set: noise removal, mesh
generation or registration to name only a few. A topic of special interest is
to reduce the amount of information represented by the numerous elements
of such a data set and smooth the point cloud at the same time. For this
purpose, a curve or surface is fitted to the point set and used to represent the
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Preprint submitted to Elsevier Science 25 April 2008



measurement data henceforth. Less surprisingly, both curve and surface fit-
ting are closely related and build upon the same basic considerations. Due to
their universality, free-form curves and surfaces are a popular choice as fitting
entities and we focus on fittings with B-spline curves and surfaces below.

Conventional approaches in curve and surface fitting aim for an approximation
of the shape represented by the point cloud. Often, this process is exposed to
constraints of abstract nature to ensure mathematical properties of the final
solution. In our work, we let real world obstacles influence the fitting by means
of restricting the solution space for the final result. Within this context we are
able to address several challenging tasks: boundary reconstruction of point
clouds, computation of fittings avoiding certain forbidden regions, computa-
tion of hulls for moving objects and surface trimming to name only a few. In
achieving these goals, the main contributions of this work comprise the for-
mulation of linear constraints induced by real world obstacles that integrate
well with existing fitting algorithms. In detail, we consider the point cloud
itself as obstacle and subsets of the plane or space the final fitting must avoid.
Moreover, we discuss numerical issues of the arising constrained optimization
problem (suitable classes of algorithms and primal vs. dual solution).

The remaining parts of our paper are organized as follows. After a review of
related literature we describe the general fitting problem and develop con-
straints once for a boundary approximation of the point set and second for
more general obstacles. Subsequent to a short excursion to relevant topics of
constrained optimization theory, several examples show applications of the
proposed algorithm and discuss a handful of numerical properties.

1.1 Related Work

Piecewise parametric functions have been used in curve fitting of point clouds
for a long time. In one of the first works on this topic, (Cox, 1971) employs a
least-squares method, an error metric still popular today, to fit scattered data.
A major challenge in curve fitting, if compared to a univariate function ap-
proximation, is to define those samples on the fitting entity the approximation
error is measured in. If the data points are ordered, the chordal length method
or the centripetal method (see e.g. (Hoschek and Lasser, 1993)) could be used
for parametrization. (Hoschek, 1988) tackles the problem of unordered target
data with an iterative method of intrinsic parametrization and approximates
the foot point computation by a first order term. Approximations of higher
order (Saux and Daniel, 2003; Hu and Wallner, 2005) or an accurate foot point
computation (Hoschek and Lasser, 1993) in each step are subject of discussion
as well. Once these foot points have been obtained, the distance function to the
curve is approximated. The most popular technique computes the squared dis-
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tance from the data points to the foot points (Plass and Stone, 1983; Hoschek,
1988; Goshtasby, 2000). (Blake and Isard, 1998) improve these approaches by
means of convergence properties and utilizes the squared distance from the
data point to the tangent plane in the foot point as error term. Recently,
(Wang et al., 2006) give an thorough overview of existing curve fitting meth-
ods and describe an algorithm based on a second order approximation of the
squared distance function to solve the curve fitting problem.

The problem of surface fitting has been addressed for years as well (see e.g.
(Hayes and Halliday, 1974)) and has drawn a certain amount of attention in
recent years. (Dierckx, 1993) give a comprehensive overview of curve and sur-
face fitting techniques (scattered data fitting, mesh fitting and data smooth-
ing) and is a good starting point for references to the older literature. (Dietz,
1995) extend the existing least-squares approximations and discuss the use of
additional smoothing and regularization terms. (Greiner and Hormann, 1996)
consider the surface reconstruction with hierarchical tensor product B-spline
surfaces and (Diebel et al., 2006) apply a Bayesian method for probable sur-
face reconstruction. The literature on this topic is extensive and we want to
round up the review and refer to two recent publications (Weiss et al., 2002;
Wang et al., 2006) and the references therein.

Constrained curve and surface design is a widely investigated topic in com-
puter aided geometric design. Given a set of data points, side conditions have
been imposed on interpolation methods with cubic splines and rational cu-
bics to handle obstacles (Opfer and Oberle, 1988; Meek et al., 2003). The
constrained approximation of point sets with Bezier or B-spline curves (cf.
(Rogers, 1989; Bercovier and Jacobi, 1994)) may have various aims in mind,
such as increasing the quality of the final fitting, simplifying it or ensur-
ing certain geometric properties of the solution. Especially the latter task
is addressed in detail in (Hoschek and Kaklis, 1996) where properties such
as convexity and monotony of a final approximation are discussed. Certain
shape preserving criterias or restrictions on the class of surfaces employed
for approximation pose constraints to fitting problems as well, e.g. in recon-
structions of developable surfaces (Pottmann and Wallner (1999)). In Reverse
Engineering, it is of special interest to reconstruct geometric primitives from
measured data. In (Benkó et al., 2002), various constraints are considered for
multiple fittings of geometric objects, which are handled in a modified Newton
iteration. Further constrained methods in Reverse Engineering are surveyed
in (Várady and Martin, 2002) and (Fisher, 2004). Besides these theoretical
constraints, our special focus is on side conditions derived from real world ob-
stacles. (Myles and Peters, 2005) construct splines of prescribed smoothness
obliged to stay in a channel with piecewise linear boundaries. In (Liu et al.,
2005), a combination of surface fitting and registration based on a squared dis-
tance minimization algorithm is discussed and applied to constrained reverse
engineering of CAD models. Especially for registration, (Huang et al., 2006)
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describe the local, simultaneous, penetration free alignment of multiple data
sets as constrained optimization problem. (Lin and Wang, 2002) tightly bor-
der planar point clouds resembling curves by B-spline interpolation of their
boundary points. In (Flöry and Hofer, 2008), curve fittings are constrained
to happen on a smooth parametric surface. This main constraint is extended
by curve boundary approximations that represent simplified cases of what we
will discuss in the following. Furthermore, it is a common problem in motion
planning to deal with obstacles, see (Latombe, 1991).

2 Constrained curve and surface fitting

Let P = {pk ∈ Rd : k = 1, . . . , n} denote a set of unordered points in the plane
(d = 2) or Euclidean three space (d = 3). Fitting a curve in the plane and
fitting a surface in space to such a point cloud are closely related topics. For
the ease of discussion, we will concentrate on the curve case in the following
and point out differences to the surface case where necessary.

2.1 General curve fitting

We choose to carry out the fitting (or approximation) of P with a parametric
curve x : R → R2, u → x(u). For now, we assume that x is closed and
does not exhibit any self-intersections (we are going to show ways to deal with
more general approximating curves in Sec. 2.2 and 4). Furthermore, let d(x,p)
denote the signed distance of a point p ∈ R2 to x. Then, the curve x is said
to fit P in a least-squares sense if it minimizes the sum of squared distances
from each element pk ∈ P to x,

n∑
k=1

d2(x,pk) + ω · r. (1)

Here, r resembles a regularization term weighted by a factor ω, on which
we will give motivation and details later on (see Sec. 4). Please note that
by minimizing the squared distance function we avoid any handling of the
distance function’s sign.

Common approaches tackle the optimization problem of Equ. (1) in an itera-
tive way. For the current location of the fitting curve x, the squared distance
function d2 from x is described approximately. Usually, this is done for each
data point (or the corresponding closest point on x); an updated position of
x is obtained by minimizing the sum over all these approximated distance
functions. Details on approximations of the squared distance function are dis-

4



Fig. 1. (Left) A classical least-squares curve fitting results in a balance of residues.
(Middle) A point cloud resembling a self-intersecting shape is — due to its dis-
crete nature — interpreted as not self-intersecting but with several interior regions.
(Right) Open curve shape approximation.

cussed in the literature, for example (Wang et al., 2006) gave a thourough
overview recently.

So far, the fitting problem and its roughly outlined solution have been de-
scribed for any general parametric curve. However, we want to get more spe-
cific about the employed curve type. As stated in the introduction we will
use B-spline curves as fitting curves. Assuming that knots and degree of such
a B-spline curve are fixed, we write x(u) =

∑m
i=1Ni(u)di, where Ni(u) are

the B-spline basis functions and di ∈ R2 describe the curve’s control points.
Accordingly, we denote by xc(u) =

∑m
i=1Ni(u)(di + ci) any updated position

of x. For convenience, we will summarize the displacements ci into a single
displacement vector c. With this notation in mind, we are able to describe a
general fitting algorithm.

(1) Assign each data point pk a parameter value uk such that x(uk) is the
closest point of pk on x(u).

(2) Describe the current fitting error of x w.r.t. P . Therefore, approximate
the squared distance function of x to P in the foot points x(uk).

(3) Compute the displacements c of the fitting curve’s control points by min-
imizing this approximation error. If the fitting is of satisfactory quality,
stop, or continue at step 1, otherwise.

Commonly used stopping criterias ask for the number of iterations exceeding
a pre-defined value or demand for the averaged squared distances from P to
x to fall below a user-defined threshold.

2.2 Boundary approximation

Considering the point cloud P , a fitting as outlined above will yield a final
approximation following the shape of the point cloud by means of a balance
in residues. Loosely speaking, if we assume that the point cloud exhibits some
width, the curve will pass through the middle of the point cloud stripe, such
that there are points to both sides of x (see Fig. 1, left). In the following, we
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are interested in achieving an opposite effect and aim at approximating any
apparant boundaries of the point cloud.

Let x be a closed parametric curve (in the plane) or a surface (in 3D) without
self intersections and d(x,p) the signed distance function to x defined in such
a way that d(x,p) < 0 holds for all points p ∈ D, whereas D denotes the
domain bounded by x. By considering the sign of the distance function, we
are able to define a boundary reconstruction of a point cloud: x approximates
the outer or inner boundary of P if x minimizes Equ. (1) and d(x,pk) < 0 or
d(x,pk) > 0 holds for all pk ∈ P .

In the following we will explicitely exclude fittings with self intersecting curves
or surfaces. This doesn’t pose any limitations to our succeeding considerations
if we consider that the notion of a self intersecting point cloud is hard to grab.
Given that a point cloud is a discrete set of data points, such a point cloud
may be seen as a non self-intersecting point set at the same time, exhibiting a
well defined outer boundary and an inner boundary consisting of several non
connected components (see Fig. 1, middle). Please note, that for some point
clouds, there might be no meaningful inner boundary at all (see Fig. 1, right,
and Fig. 8, bottom right).

For fittings of point clouds resembling an open curve shape, the above defini-
tion doesn’t make sense as for an open fitting curve no inner or outer region
can be defined. Nevertheless, such an open shape might be seen as special
case of a point cloud with no inner boundary. Thus, we approximate the outer
boundary of such a point cloud with an artificially closed approximation curve
and restrict the parameter space of the final fitting curve x to those parts of
the boundary we wanted to approximate (see Fig. 1, right).

We have seen that the problem of curve fitting can be turned into an opti-
mization problem that is solved with an iterative procedure. Approximating
the boundary of a point cloud imposes constraints on this optimization prob-
lem, e.g. the outer boundary of a point set is reconstructed by that curve
minimizing the constrained optimization problem,

minimize
n∑

k=1

d2(x,pk) + ω · r

subject to d(x,pk) < 0 ∀pk ∈ P.
(2)

For a solution of the unconstrained minimization problem we approximated
the squared distance function by quadratic functions. Following the same idea,
we will now derive suitable approximative side conditions from the definition
of boundaries introduced above. For an approximation of the outer boundary,
d(x,pk) < 0 must hold for all pk ∈ P . d(x,pk) describes the signed distance
from pk to x, which defines a foot point x(uk) such that |d(x,pk)| = ‖x(uk)−
pk‖. By computing the first order Taylor approximation of d in that foot point
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x(uk), we obtain

dk(x,p) ≈ d(x(uk)) +∇pd(x(uk))T · (p− x(uk)).

As d(x(uk)) = 0 holds and ∇pd coincides with the outward normal vector
n(uk) in x(uk), we approximate the constraint d(x,pk) < 0 for a data point
pk by

(pk − x(uk))T · n(uk) < 0, (3)

which basically means that we replace x by its tangent in the foot point and
require pk to be located on the opposite side of the tangent the normal points
to.

In the course of optimization, x will get displaced to better approximate the
point cloud. Thus, the foot point x(uk) and the normal n(uk) will change as
they depend on the current shape of the fitting curve, given by the current
control points (summarized in a single vector d). Precisely speaking, for our
choice of B-splines as approximating curves, x(uk) and n(uk), and thus the
whole left hand side of Equ. (3),

l(d) = (pk − x(uk(d),d))T · n(uk(d),d),

depends on the control points in a highly non-linear way. We are going to
consider two ways to deal with this dependancy. Our first approach will simply
regard the foot points as fixed and thus ignore this relation at all,

(pk − xc(u
0
k))T · n(u0

k) < 0. (4)

Here, superscript index 0 labels values at the beginning of the current iteration.

Another way to deal with this dependancy is to linearize l(d),

l(d) ≈ l(d0) +∇dl(d
0)T · (d− d0).

For the computation of the gradient∇dl, partial derivation of l(d) with respect
to di yields

∂l

∂di

(d) = −Ni(uk(d)) · n +
∂n

∂di

· (pk − x).

Here, Ni describe the B-spline basis function again. Let J denotes the rotation
by π/2 turning ẋ(uk) into the outward oriented normal vector. Then, ∂n

∂di
=

J ẍ ·
(

∂uk

∂di

)T
+Ni ·1 with 1 ∈ R2×2. The partial derivatives of uk(d) are defined

in an implicit way by the condition that in a closest point x(uk) the tangent
ẋ(uk) is perpendicular to the connecting vector from x(uk) to pk,

ẋ(uk)T · (x(uk)− pk) = 0.
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Fig. 2. (Left) At the end of an iteration, the data points lie on the opposite side of
the tangent the normal points to. (Right) For smooth bounded general obstacles,
all curve samples sk within a certain distance (denoted by the dashed line) to an
obstacle’s boundary are constrained to be located outside any forbidden region.

Derivation of this expression with respect to di yields

∂uk

∂di

(d) = − Ṅi · (x− pk) +Ni · ẋ
ẍT · (x− pk) + ẋT · ẋ

.

By requiring the linear approximation of l(d) to be negative (compare Equ. (3)),
we obtain for c = d− d0 the linear constraints of the second type,

∇l(d0)T · c < −(pk − x(u0
k))T · n(u0

k). (5)

These considerations are generalized to the three dimensional surface case
straight forward. For a B-spline surface x(u, v) =

∑m′

i=1N
′
i(u, v)di, the normal

vector in a foot point x(uk, vk) may be computed by the cross product of the
derivatives along the parameter lines, n(uk, vk) = xu(uk, vk) × xv(uk, vk). As
before, the derivatives of u(d) and v(d) with respect to dj for the partial
derivatives of l(d) are defined implicitely by the conditions for a foot point of
the shortest distance between a sample pk and a surface x, which read in the
surface case as

xT
u (uk, vk) · (pk − x(uk, vk)) = 0 and xT

v (uk, vk) · (pk − x(uk, vk)) = 0.

For the ease of reading, we omit the final expression for ∂l
∂di

and ∂n
∂di

which are
obtained similar to the curve case.

2.3 General obstacles

Going beyond the boundary approximation of point clouds, we might consider
subsets {Oj} ⊆ R2 the final approximating curve x of a point cloud P is
obliged to avoid. Given that each region Oj is bounded by a smooth curve
oj, a feasable fitting in the presence of such obstacles can be defined in a
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way closely related to the previous section on boundary reconstruction. If
we assume that the distance function to oj is negative for points inside an
obstacle, a curve x does not penetrate any Oj if d(oj, s) > 0 holds for all
s ∈ x. Contrary to the previous considerations for boundary approximation,
this definition naturally holds for closed and open curves, with and without
self intersections.

For applications, we will weaken this condition. We discretize the curve x in
dense samples S = {sk} and ask for d(sk) > 0 for all sk ∈ S. Then, a curve
fitting in the presence of general obstacles yields constraints of the same type
as for the boundary case,

(fO
k − sk))T · nO

k > 0, (6)

where fO
k is the foot point of the shortest distance from a sample point sk to

the closest obstacle Ok and nO
k the normal in that foot point. In an adapted

sense, the same considerations for the dependancy of any samples, foot points
and normals to the current location of x apply.

3 Constrained Optimization

So far, we described an iterative solution for the curve fitting problem along
with approximative linear constraints induced by specific real world obstacles.
In this section, we are going to restate the boundary approximation problem
of Equ. (7) with above results and show ways to solve it. As noted in Sec. 2.1,
the sum of squared distances in the objective function can be approximated as
sum over quadratic terms Qk(c). Then, by making use of the approximative
side conditions of Sec.2.2, we may write our constrained optimization problem
in the form,

minimize
n∑

k=1

Qk(c) + ω · r(c)

subject to Equ. (4) or Equ. (5).

(7)

This minimization problem is solved at each iteration of the algorithm de-
scribed in Sec. 2.1 to obtain an updated position of the approximating curve
x. As we are going to choose a regularization term r(c) quadratic in the
unknown displacments c (see Sec. 4), the objective function of Equ. (7) is
quadratic in c. If there were no constraints, a minimum would be found by
solving a system of linear equations. However, we face constraints linear in c.

There are basically two families of algorithms solving quadratic programming
problems with linear constraints (see e.g. (Nocedal and Wright, 1999)). Active
set methods have been the most important technique for a long time. They
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deal with the constraints by estimating and continuously updating a set of
currently active side conditions. The generalization of Interior point methods
to quadratic programs, which in contrast avoid the boundary of the feasible
region, provided a second powerful method for the solution of quadratic pro-
grams. While Active set methods are, in general, better suited for smaller
scaled problems, Interior point methods are widely used for larger scaled op-
timization tasks.

Considering that the dimension of c in Equ. (7) is only two or three times
the number of control points of x this optimization problem is rather small
scaled from the viewpoint of optimization. However, the number of constraints
may equal the possibly big number of elements in the point cloud. Therefore
it might be favorable to solve the dual problem as it reduces the complexity
of the constraints while increasing the dimension of the problem at the same
time.

If we write the primal quadratic program of Equ. (7) in a more general form,

minimize 1
2
cTHc + tT c H ∈ R3m×3m, c, t ∈ R3m

subject to Ac− b ≤ 0 A ∈ Rn×3m, b ∈ Rn,
(8)

its Lagrange function is given by

L(c, λ) = 1
2
cTHc + tT c + λT (Ac− b) λ ∈ Rn.

The dual problem is then defined as finding the maximum of the dual function

q(λ) := inf
c∈R3m

L(x, λ) = −1
2
λTQλ− qTλ− 1

2
tTH−1t,

where we write in short Q = AH−1AT and q = AH−1t + b. Therefore, the
dual problem of the primal one in Equ. (8) is yet another quadratic program,

maximize − 1
2
λTQλ− qTλ

subject to λ ≥ 0.
(9)

The solution of the primal problem is given as the minimal argument of L(x, λ)
for λ fixed, thus c = −H−1(t+ATλ). As for our optimization task strong du-
ality holds, it could be favorable to focus on the dual problem. In the following
section, we will examine experimentally which method shows best performance
for our task of curve and surface fittings in the presence of obstacles.

4 Experiments and results

Now, as we have set up a theoretical framework for curve and surface fit-
tings in the presence of obstacles, we want to apply these considerations to
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Fig. 3. Reconstruction of a point cloud’s boundary: initial setup (left) and final
approximation after 10 iterations (right).

a handful of examples. We describe various experiments showing the method
in use — in particular, we will address any remaining open questions such
as in how far the two proposed constraints of Equ. (4) and Equ. (5) show
different performance and what is the best optimization technique to tackle
the emerging constrained optimization problems. As basic fitting algorithm,
we employ the method of Squared Distance Minimization, which builds upon
second order Taylor approximation of the squared distance function in the
foot points x(uk) of the shortest distances from the elements of P to x (for a
detailed description of this method, see (Wang et al., 2006)).

Another issue that needs to be addressed are details on the regularization
term in Equ. (7). As an optimal solution in a mathematical sense does not
necessarily mean a visually appealing solution (e.g. strong oscillations might
occur), a simplified measure for the bending energy,

r(c) =
∫
‖ẍc(u)‖2du,

is added to the problem’s objective function. Please note that this expression
is quadratic in c. Details on the weighting factor ω (which is halved after
each iteration step) can be found along with other relevant key figures of the
following examples in Tab. 1. The algorithms for curve fittings were imple-
mented in a Matlab environment whereas the surface fitting code was written
in C/C++. All results were obtained on a AMD Sempron Processor 3100+
computer.

Example 1 The first example is a simple application of the described algo-
rithm and approximates the boundaries of a set of data points in the plane.
The point cloud in this experiment was, as those of several succeeding ex-
amples, artifically created. For this purpose, an auxilary B-spline curve was
sampled in a user specified number of points which were then displaced in nor-
mal direction by distances drawn from a Gaussian distribution. In Example 1,
the approximating B-spline curve was cubic and counted 13 control points. By
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Fig. 4. Fitting a cubic B-spline curve to a point cloud in the presence of four gen-
eral obstacles. For three different initial setups (top row), the corresponding final
approximations after 25 iterations (bottom row) are shown.

using the second type linear constraints of Equ. (5), the inner and the outer
boundary of the point cloud were approximated with an Active set method;
both results were summarized in a single plot in Fig. 3 (right).

Example 2 The second example exhibits a curve fitting constrained by four
smooth bounded forbidden regions. In a preprocessing step, an approximated
distance field from the obstacles’ boundaries was computed (applying the
sweeping algorithm described in Tsai (2002)), which took 15.6 seconds on a
[0, 1]×[0, 1] grid with a resolution of 0.01. At each iteration, the distance values
of this discretization were used to determine those sample points sk ∈ xc(u)
close to a forbidden region (minj d(sk, Oj) < 0.04). For these samples, linear
constraints of the second type were added to the optimization problem. Fig. 4
shows three approximations of the same setup (with respect to point cloud
and obstacles) but with distinct differing initial positions of the approximating
B-spline curve. As the results indicate, are the fittings barely influenced by
the starting configuration.

For most of the experiments presented here, the linear constraints have been
deactivated in the first 3 to 5 iterations (the exact number is given in brack-
ets in the column holding the number of iterations in Tab. 1). This way, the
fitting curve first approximates the point cloud before taking any obstacles
into account - a strategy improving the stability of the method significantly.
Please note, that the final solution of an approximation avoiding certain re-
gions depends on the actual location of the fitting curve in the moment when
the constraints are actived for the first time and is thus not unique. Obsta-
cles inside the domain bounded by a closed approximating curve will remain

12



Fig. 5. (Left column) A boundary approximation with constraints obtained by lin-
earizing any dependancy on the foot points. (Top row) If applying solely constrained
iterations, this method (solid line) performs better than that ignoring any relation
(dashed line). (Bottom row) Unconstrained iterations in the beginning cancel any
advantage.

inside, the same applies to obstacles outside.

Example 3 In Sec. 2.2 we derived two types of linear constraints for a point
cloud’s boundary approximation. If the side conditions are active from the
very beginning, the constraints of the second type obtained by linearization
let us expect faster convergence as the curve doesn’t fit the point set’s shape
well and thus causes relevant changes of the foot points. In contrast, if we first
fit the point cloud with some unconstrained iterations roughly, using the more
sophisticated constraints may not pay off as most of the curve’s displacement
happens in normal direction and thus leads to only minimal changes in the
foot points. In Fig. 5, we compare both types of constraints in the course of
an outer boundary approximation of a point cloud. The inital setup was the
same for all optimizations, as well as the final fittings were of similar quality.
If the side conditions are active from the beginning, the linearized constraints
(solid line) outperfrom the constant constraints (dashed line), both in terms
of decrease of points in the forbidden region and in terms of the average
approximation error,

εavg =
1

n

n∑
i=1

‖x(uk)− pk‖.

However, if we apply 10 unconstrained iterations steps first, both approaches
show similar performance, with the constant type performing even slightly
better in the example at hand. Considering that the additional computation
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Fig. 6. (Top) Boundary approximation of a point cloud counting 500 elements by
solving the dual problem. (Bottom left) An Active set method shows faster con-
vergence than an Interior point method. (Bottom right) Solving the dual problem
takes more and more time for a growing number of points.

time for the second type of constraints is minimal, one might favor the second
approach applying a fitting without side conditions first. This is because the
costs of an unconstrained optimization step are considerably lower than that
of a constrained minimization.

The condition that the approximating curve is not self-intersecting proofed
to be important for the theoretical work in Sec. 2. If we choose the initial
position of the curve manually, this requirement can be fulfilled easily. If we
obtain it in an automatic way, such as in parts for this example, we can
avoid self-intersections in the course of optimization by choosing a high initial
regularization weight ω and decrease it carefully.

Example 4 Given the boundary approximation problem of Fig. 6 we dis-
cuss two further numerical aspects of unconstrained optimization. First, as
Active set methods are said to perform better than Interior point methods for
small and medium scaled problems (such as our fitting problems), we want
to examine which one of the two algorithm classes suits our purposes best.
Though we are aware of the fact that a thorough investigation of this task is
out of scope of our work, we compared Matlab’s standard solver for medium
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Fig. 7. Boundary approximation of a point cloud in 3D. A CAD model is sampled,
exposed to simulated shakings (left) and approximated by a B-spline surface closed
in one parameter direction (right).

scaled problems (an Active set method, cf. (Gill et al., 1981)) with a Matlab
implementation of a recently proposed Interior point method (Absil and Tits,
2007). Fig. 6 (bottom, left) visualizes the convergence speed of both algorithms
(with the second type of boundary constraints active from the beginning) over
a period of 15 iterations. This comparison confirms advantages of the Active
set method.

For a second numerical issue we notice that the dimension of the unknown dis-
placement vector c is small, whereas the number of linear constraints grows
with the size of the point cloud. Thus, as outlined in Sec. 3, it may be worth
to address the dual problem which is larger scaled but shows more simple con-
straints that can be tackled with specialized algorithms. In our framework, we
applied a solver for quadratic programs with only bound constraints (Neu-
maier, 1998). However, we couldn’t observe any advantage in addressing the
dual problem. We see two reasons for this: once, the increase in dimension is
quite large when changing from the primal to the dual problem. Second, the
dual problem shows worse condition than its primal counterpart.

Example 5 In another example, we want to illustrate the surface approxi-
mation of a point cloud’s outer boundary. Within this context, we are going
to address a common problem in engineering. Consider the mechanical parts
of an operating machine, thus exposed to vibrations. If we are in need of a hull
for such an object, we have to take into account all possible positions and wrap
them with a surface. For our example, we use the CAD model of a pipe (see
Fig. 7) and sample its surface in approximately 3000 points. Then, we simulate
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Fig. 8. (Top) Initial and final setup of a surface fitting in the presence of general ob-
stacles. (Bottom) Some intermediate results: untrimmed initial surface, untrimmed
final surface and parameter domain boundary approximation for trimming.

the shaking of operation by applying some random translations to this point
cloud, whereas translations in positive direction of two coordinate axis may
be observed more frequently. We summarize the relocated data points into a
single point set and compute an approximation of its outer boundary. The
B-spline surface is closed with respect to one parameter and counted 15× 22
control points. The final result was trimmed such that the parameter domain
ranges from 0 to 1 in the closed parameter direction and was bounded by
straight lines in the other direction. In order to deal with the large number of
points (and thus constraints), only data points within a distance of 0.05 to the
approximating surface entered the optimization. Please note that we employed
this strategy of including only a subset of P for constraining the optimization
only in this example. In all other experiments, each pk ∈ P contributed a side
condition to the minimization.

Example 6 In this example, the point cloud results from digitizing an ob-
ject with a 3D laser scanner. We place three geometric primitives (a sphere,
a cylinder and a cube) close to the data set and ask for a B-spline surface
reconstruction avoiding these objects. For this purpose, we first fit a plane to
the point cloud, define the initial position of the control points on a rectan-
gular grid thereon and distort these in normal direction. In order to prevent a
shrinking of the approximating surface, we let it overlap the data set signifi-
cantly and fix the outer frame of control points in the subsequent optimization.
Then, we employ the algorithm of Sec. 2.3 to compute a surface fitting not
penetrating the obstacles. Contrary to Example 2, we didn’t discretize the
distance to the obstacles on a grid but sampled the obstacles boundary and
added constraints for the foot points of those samples on the approximating

16



Example Nr. points in P Iterations (constr.) ω Time (s)

1 500 10(3) 0.0001 3.0

2 200 25(5) 0.0001 14.5

3 1000 15(0) 0.001 16.4, 16.8

15(10) 0.001 13, 13.2

4 100 . . . 1000 15(0) 0.005 9.8, see also Fig. 6

5 60000 15(5) 0.04 277.3

6 5000 15(5) 0.01 208.5
Table 1
Configuration parameters and runtime information for the examples of Sec. 4.

surface. For a proper visualization, we trim the fitting B-spline surface to the
effective extent of the point cloud. Therefore, we determine the foot points of
the point cloud’s elements on the final surface and consider the correspond-
ing parameters in (u, v)-parameter space. There, the parameters form a point
cloud by themselves; the outer border of this point cloud is a good estimate
for the boundary of the trimmed surface. We approximate the extent of the
parameters with a B-spline curve with the methods of Sec. 2.2 and let the
resulting fitting curve define the boundary of parameters contributing to the
trimmed surface. Fig. 8 visualizes the final result of the constrained, trimmed
surface fitting.

At this point, we want to refer one more time to Tab. 1, in which we summa-
rize information on the examples’ point clouds and their approximations. The
second column holds the number of elements of the point cloud. For Example
4, the visualized boundary approximation and comparison of Active set and
Interior point method was done for 500 data points, while the performance of
both methods for a growing number of points was measured for point clouds
with sizes ranging from 100 to 1000 points. The third column gives the total
number of iterations to obtain the final solution, the numbers in brackets give
the share of any unconstrained iterations steps. For the timing values of Ex-
ample 3, approximations with side conditions ignoring any dependancy on the
foot points come first. In general, if an example comprises more than a single
approximation but Tab. 1 includes only a single value, the measured numbers
were identical (iterations) or very similar (time).

5 Conclusions and future research

We presented an algorithm to fit a curve (in 2D) or a surface (in 3D) to a set
of unordered points in the presence of obstacles. As obstacles, we considered
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once the point cloud itself as constraint. Second, we restricted the approxima-
tion to a subset of the plane or space. By adapting the idea of common fitting
approaches that interpret the fitting problem as optimization problem solved
in an iterative way, we derived constraints to this optimization from the obsta-
cles under consideration. Basically, we presented two types of constraints, both
dealing with the dependancy of the constraints on the changing foot points in
a different way. While the unconstrained fitting problem yields minimization
of a quadratic objective function, the introduced side considitions are linear
in the unknown displacement of the curve. We discussed some questions con-
cerning the solution of such a quadratic program with linear constraints and
illustrated the way the algorithm works in various examples.

We see several directions our work on constrained fittings may be continued.
The fact that we keep knot vector and number of control points of the ap-
proximating B-spline curve or surface fixed poses certain limitations on the
adaptiveness of the method. Thus it is of interest in how far existing solutions
for the unconstrained case (cf. (Yang et al., 2004)) can be integrated into our
constrained approximation framework to increase the flexibility of our algo-
rithm. The error term describing the current approximation error poses further
research challenges we hope to address in the future. Most approaches so far
employ approximations of the squared distance function, thus obtaining so-
lutions in a least-squares sense. Least-squares fitting is known to be sensitive
to outliers, a problem that could be overcome by an approximation in the L1

norm, leading to non-smooth optimization problems.

Today, most point clouds forming the input to fitting problems originate from
3D laser scanners. Such scanners, as every physical measurement device, ex-
hibit distinct noise characteristics that can be determined in experiments and
described in a mathematical way. Knowledge about this noise can enter the ap-
proximation process such that not the curve or surface with smallest distance
to the point cloud is computed but the most probable curve or surface, given
the characteristic noise. We hope to address these issues in future research.
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