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ABSTRACT

Sulcal fundi are 3D curves that lie in the depths of the cere-

bral cortex and are often used as landmarks for downstream

computations in brain imaging. We present a sequence of

geometric algorithms which automatically extract the sulcal

fundi from magnetic resonance images and represent them as

smooth polygons lying on the cortical surface. First we com-

pute a geometric depth measure for each point on the cortical

surface, and based on this information we extract sulcal re-

gions by checking the connectivity above a depth threshold.

We then extract the endpoints of each fundus and delineate

the fundus by thinning each connected region keeping the

endpoints fixed. The curves thus defined are smoothed us-

ing weighted splines on the gray-matter surface to yield high-

quality representations of the sulcal fundi.

1. INTRODUCTION

When viewed from the outside a human brain appears as a

volume with a highly wrinkled surface having numerous long

crevices. The term sulci (plural of sulcus) is associated with

these crevice regions and the term gyri (plural of gyrus) desig-

nates the regions between the sulci. In the computational neu-

roanatomical literature, ’sulcus’ is used to describe the area

of the pial surface within the sulcal depression and/or the vol-

ume of CSF contained therein. Accordingly, sulci have been

represented as connected regions of the sulcal surface and as

connected voxels lying within the sulcal depression. Infor-

mally, the fundus of a sulcus is the curve of maximal aver-

age ”depth” that spans the length of the sulcus. The concepts

of sulcal depth and fundus can be made precise in different

ways; we introduce novel methods of defining sulcal depth

and sulcal fundi below.

The importance of curvilinear representations of sulcal

fundi lies in their use as landmarks for creating deformation

fields for warping the cortical surfaces of different brains onto
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each other. The surface-to-surface warping approach has been

used for longitudinal and cross-sectional studies of brain struc-

ture and function, cortical thickness, and gray-matter density

[4]. The sulci and gyri form the highly convoluted cortex of

the human brain. They serve as anatomical landmarks, and

”segment” the cortex into functionally distinct regions. Al-

though experts agree on the nomenclature for the major sulci,

e.g., the central sulcus and Sylvian fissure, secondary and ter-

tiary sulcal patterns vary greatly from individual to individual,

and the nomenclature used by different anatomists is inconsis-

tent. Sulcal endpoints and branchings are rarely defined, even

for the major sulci.

Methods for extracting the cortical surface from MRI brain

volumes have facilitated studies of intersubject gyral and sul-

cal variability. Traditionally cortical sulci and sulcal fundi

have been manually defined by labeling voxels in an MRI

brain volume using a GUI which displays three orthogonal 2D

brain slices. This process is extremely tedious and time con-

suming and, not surprisingly, prone to human error. Thomp-

son et al. [4] manually drew 38 sulcal curves on MRI brain

volumes acquired from a large number of normal subjects and

patients with Alzheimer’s disease and schizophrenia in order

to identify characteristic patterns of brain structure and func-

tion. Given the large number of high-resolution MRI datasets

currently available for analysis, automatic and objective ex-

traction and labeling of cortical sulci becomes a necessity.

Our primary motivation for the present work is the need

for curves that accurately represent the sulcal fundi and can be

used as input to brain-surface warping algorithms [16]. Ad-

ditionally, we believe that automating sulcal extraction can

improve the quality and reproducibility of the process as well

as yielding considerable time savings.

1.1. Previous Work

Previous work on automatically extracting curvilinear repre-

sentations of sulcal fundi can be roughly divided into two

approaches: those based on curvature and those based on

distance functions. Curvature based approaches define sul-
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Fig. 1. Left. Pial surface S of the left hemisphere and outer hull H for the right hemisphere. The black line indicates the

position of the cutting plane π for the (middle) image. Middle. Side view of part of the right hemisphere (marked with a dotted

box in left image). The two thumbnails illustrate the intersection curves of π with the hull and the pial surface, respectively.

Right. Fully automatic extracted sulcal fundi represented as thick 3D curves. Colors in the middle and right-hand images

indicate computed geodesic depth, from ”shallow” (blue) to ”deep” (red). (All figures of the paper are in color.)

cal fundi as curves lying within areas of the extremal mean

or principal surface curvature, whereas distance based ap-

proaches define them as curves whose distance to a hull bound-

ing the cortical surface is locally maximal. Curvature based

approaches are often semi-automatic: the two end points of

a sulcus are manually defined, and a curve connecting these

points is then computed using e.g. dynamic programming [8],

weighted geodesics computed by fast marching methods on

triangular meshes [1], or fast marching methods on implicit

surfaces [11]. Subvoxel tracking in volumetric data in the di-

rection of the principal curvature has also been proposed [12].

Distance-based approaches often compute medial sulcal

surfaces (”sulcal ribbons”) from volumetric data and define

the fundi as the inferior margins of these surfaces [3, 10] or

as the projection of these margins onto a triangle mesh rep-

resenting the cortical surface [2]. Previous work that com-

bines curvature- and distance-based computations are semi-

automatic algorithms that compute fundal curves using a mod-

ified fast-marching algorithm on triangular meshes [14] or on

a flat map of the cortical surface [15].

2. METHODS

A fully automated method for the extraction of sulcal fundi

from MRI brain images combines an automated method for

extracting a 3D triangular mesh representation of the brains

cortical surface with an automated method for defining fundal

curves that lie on the mesh surface. In this paper we do not

introduce a new approach to cortical surface extraction; rather

we describe a method for definining sulcal depth and sulcal

fundi given a mesh representation of the gray-matter (GM)

surface as an algorithmic input. Han et al. [5] provides an

overview and discussion of methods that have been proposed

to extract the cortical surface in implicit, parametric, or mesh

representations. Other publicly available surface extraction

software methods include FreeSurfer1 and SurfRelax2.

2.1. Segmentation and Surface Extraction

The T1-weighted MRI human brain volume used in this study

(1 mm isotropic voxels) was acquired at the Montreal Neuro-

logic Institute and provided by Dr. Alan C. Evans. A topolog-

ically correct triangular mesh representing the pial (GM-CSF)

surface of the cerebral cortex was extracted by FreeSurfer af-

ter skull stripping using BET3. Our approach to the definition

of sulcal depth is based on a level set technique. In order to

apply it the parametric and mesh representations are trans-

formed into implicit form by computing the signed distance

function to the surface on a grid using, for example, a fast

sweeping algorithm [7]. In implicit form the pial surface is

the zero level set Φ = 0 of an implicit function Φ.

2.2. Outer Hull Surface Extraction

An outer hull surface H, which warps the pial surface S tighter

than the convex hull would, is computed using a morpholog-

ical closing operation applied to the level set function. The

resulting outer hull is shown in Fig. 1 (left). For morphologi-

cal closing we move the surface outward by a time parameter

T and then move the surface inward by the same amount of

time. The governing equation is Φt + V (t)|∇Φ| = 0 where

Φ(x, 0) = Φ and V (t) = 1 for t ≤ T and V (t) = −1 for

1FreeSurfer, see http://surfer.nmr.mgh.harvard.edu/
2SurfRelax, see http://www.cns.nyu.edu/∼jonas/software.html
3Brain Extraction Tool (BET), see http://www.fmrib.ox.ac.uk/fsl/bet/
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Fig. 2. Left. A 2D illustration motivating the depth compu-

tation (see text). Right. Remaining pial surface after removal

of those segments with a geodesic ”depth” less than 2.5 mm.

T < t ≤ 2T . In our algorithm we choose T = 10 (mm/unit

time). This is related to the width of sulcal regions. We want

to choose the parameter T to be large enough to close the sul-

cal regions and small enough to keep the overall shape of the

brain.

2.3. Geodesic Depth Computation

After we obtain the outer hull surface we calculate the geodesic

depth (distance) for any given point on the pial surface to the

outer hull surface, see Fig. 1 (middle) for the result. The par-

ticular geodesics that we want correspond to the shortest paths

from each pial surface location to the outer hull which do not

cross the surface. This can be efficiently computed by ap-

plying the fast sweeping method [7] to the restricted (CSF)

region between the outer hull and the pial surface. The cal-

culation is performed on a rectangular grid. Trilinear inter-

polation is used to propagate the depth information onto the

triangular-mesh surface.

Our approach is different from that of previous work of

[10] and [13] which either consider the Euclidean distance

to the outer hull or the geodesic distance on the triangular

mesh. Figure 2 illustrates why we prefer the geodesic distance

within the restricted region. In [10], point C and point D are

approximately the same Euclidean distance from the curve

h, and in [13], point A and point B are approximately the

same geodesic distance to the hull h along the curve s. In our

approach the order of the depth is d(C) > d(B) > d(A) ∼=
d(D) which is more anatomically correct. The geodesic depth

calculation is done in 3D.

2.4. Sulcal Fundus Extraction

The algorithmic steps described above result in the associa-

tion of a sulcal depth estimate with each mesh triangle. Next,

we use a depth threshold D to define the sulcal regions of S
as those with a depth d > D, see Fig. 2 (right). In the liter-

ature D is usually considered to be 2 − 3 mm. Here we use

p1
p2

p3

p4

Ci

p1

Bi

Ti

p1

Np1

Fig. 3. Endpoints p1, . . . , p4 of boundary Bi of component

Ci. The thin curve-like point set Ti is computed using MLS.

Endpoints pj are those points of Ti that have in a local neigh-

borhood only neighbors Npj
in one direction.

D = 2.5 mm. Within these sulcal regions we find the con-

nected components Ci by a connected components labeling

algorithm, and for each component Ci we compute the strip

Bi of boundary triangles. The next stage of our algorithm

identifies a small subset of each Bi which constitutes the end-

points of the sulcus (a non-branching sulcus has exactly two

endpoints; a branching sulcus is illustrated in Fig. 3). The

algorithm for identifying endpoints is based on the follow-

ing concept: for each p in a given Bi, we associate a principal

component direction with the set of points Np in a local neigh-

borhood around p, and we identify as endpoints those points

p which are extremal according to the principal component

direction in their local neighborhood Np. We use a moving

least squares (MLS) algorithm [9] to compute the local prin-

cipal component directions. Next we run a surface thinning

algorithm that can be summarized as follows. Take those tri-

angles of Bi that correspond to the computed endpoints pj

and add them to an initial skeleton list Si. Then repeat the

following two steps until all triangles of the component Ci

have been processed:

1. Find the triangle ∆ of Bi with the least depth.

2. If ∆ is not connected to any interior triangles of Ci,

then we add it to the skeleton list Si. If ∆ is connected

to interior triangles of Ci, then remove it from Bi, and

add its neighbors to Bi.

The result of the thinning algorithm is the skeleton Si of

each connected component, which is made up of connected

strips of triangles. We then use a minimum spanning tree

algorithm to construct the tree structure of Si. The longest

non-branching path within the tree can be calculated by itera-

tively discarding the shortest branch leaving each vertex that

has degree greater than two until only vertices of degree one

and two remain.
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Fig. 4. Top left. Comparison of all sulcal fundi extracted by

our algorithm (thick gray curves) to six major fundi delineated

manually by an expert anatomist (black points). Top right.

Two views of this comparison for the superior frontal sulcus

SF . Bottom. Comparison for the central sulcus C.

2.5. Sulcal Fundi Smoothing

The extracted sulcal fundi are represented as polygons that

are further smoothed by an algorithm that minimizes a coun-

terpart to the cubic spline energy for curves on surfaces. We

extend the algorithm of [6] to weighted splines in manifolds

x(u) minimizing
∫ un

u1
w(x(u))‖ẍ(u)‖2du. The weight w is a

function depending on the mean curvature of the surface and

the computed geodesic depth. If we want the curve to stay

in the sulcal fundi then we have to choose a small weight w
for these regions. The basic form of the algorithm involves

interleaving the steps of numerically minimizing the energy

of a fully 3D parametric representation of a spline curve and

projection of the curve to lie along the mesh surface.

3. DISCUSSION

Figure 1 (right) shows automatically extracted sulcal fundi in

projection as thick 3D curves. The fundal curves automat-

ically extracted by our algorithm (Fig. 4) are similar to the

”gold-standard” fundal outlines defined manually by an ex-

pert anatomist. The symbols X , Y , and Z in Fig. 4 indicate

where the two results diverge. Aside from potential shortcom-

ings in our definition of sulcal depth and fundal location there

are several possible reasons for this divergence including er-

rors in the underlying extracted mesh surface and errors in

the manual labeling. All automatically extracted sulcal fundi

are compared with 12 hand-labeled fundi (six in each hemi-

sphere). Detailed views of the superior frontal sulcus reflect

the accuracy of the automatically extracted fundi.
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