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Abstract

Most approaches to least squares fitting of a B-spline surface to measurement data
require a parametrization of the data point set and the choice of suitable knot
vectors. We propose to use uniform knots in connection with a feature sensitive
parametrization. This parametrization allocates more parameter space to highly
curved feature regions and thus automatically provides more control points where
they are needed.
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1 Introduction

In data fitting with B-spline surfaces, both parametrization and the choice
of the knot vectors are difficult and also closely related problems [23]. The
number of knot lines in some part of the parameter domain is in direct relation
to the number of control points in the corresponding part of the surface.
Moreover, more control points are needed in feature regions such as sharp
edges, smoothed edges, ridges, valleys and prongs.

The present short paper presents a solution to this problem by suggesting to
use a feature sensitive (fs) parametrization for surface fitting. A uniform choice
of knots over a parameter domain which results from a fs parametrization
automatically provides more control points for feature areas, since it allocates
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Fig. 1. Isolines of the distance from given points computed with respect to the
feature sensitive metric.

more parameter space for feature regions. We will show how to compute such
a fs parametrization and illustrate its effect at hand of examples.

1.1 Previous work

Since parametrization and the choice of the knots are essential for most B-
spline curve and surface fitting methods, there is a relatively large body of
literature on it. For curve parametrization and knot placement methods, we
refer to [9,14,13]. The state of the art on surface approximation from the
CAD perspective is found in [25]. Let us also mention that there are fitting
techniques which do not require a parametrization [17,16]; they need, however,
an initial guess for the optimization, which may be obtained with the methods
presented in this paper (for an example, see Section 3).

Parametrization is not only important for least squares fitting. It is a key
step in a number of geometry processing techniques and thus received a lot
of attention in recent years. For a survey, we refer to [7]. For many applica-
tions, such a parametrization should be near-isometric (exact isometry being
achievable only for developable surfaces). Practical parametrization methods
may achieve conformality (angle-preservation), area-preservation or a tradeoff
between those two [4].

Since the present paper deals with a feature sensitive method, we also give a
few references on feature sensitive geometry processing. Feature extraction is
either performed by estimating differential quantities via local or global surface
fitting (see [15] and the references therein) or based on appropriate integral
invariants such as moments of local neighborhoods [3]. Feature sensitivity
mostly has been investigated in connection with specific applications, e.g., fs
surface extraction from volume data [12], fs sampling for remeshing [2], fs
remeshing based on curvature estimation [24,1], fs geometry images [21,22], fs
piecewise planar approximation [5] or a PDE approach to fs surface editing
[3]. For fitting of measurement data, work on fs filtering and smoothing [8,10]
is certainly of interest.
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2 The feature sensitive metric

Our approach is based on a feature sensitive metric which has so far been used
for fs morphology on surfaces [18] and for the design of curves on surfaces which
are well aligned with the surface features [16].

Roughly speaking, features are characterized by the way in which the unit
surface normal varies along the surface Φ. It is therefore natural to consider
the field of unit normal vectors n(x) attached to the surface points x ∈ Φ as
a vector-valued image defined on the surface. Borrowing the idea of an image
manifold from Image Processing [11], one can now map each surface point x to
a point xf = (x, wn) in R6. Here, w denotes a non-negative constant, whose
magnitude regulates the amount of feature sensitivity and the scale on which
one wants to respect features (see Section 2.1). In this way, Φ is associated
with a 2-dimensional surface Φf ⊂ R6. By measuring distances of points and
lengths of curves on Φf instead of Φ, we introduce a feature-sensitive metric
on the surface [18]. As shown in Fig. 1, distances across features are much
larger in the fs metric than with respect to the ordinary Euclidean one.

The key for our application is the computation of a parametrization of a
surface Φ (which may be a triangulated set of measurement points) with help
of a parametrization of its image manifold Φf . Thus, in the remainder of this
section we deal with the computation of Φf .

We would like to point out that the use of Φf ⊂ R6 is mainly for a simple
introduction of the fs metric. As will be seen from the developments given
below, we can still explain everything in R3 via an appropriately combined
processing of points and normals. The geometry of the image manifold in R6

tells us how to combine point and normal information, but it does not result
in any computational overhead over working in 3D.

2.1 Computation of the image manifold

The computation of the image manifold Φf requires surface normals. For a
smooth surface in any representation this is a simple task. However, we need
to be careful with the following issues: the presence of noise, the scale, and
the presence of sharp features. The latter can be edges as intersection curves
of smooth surfaces or corners, which are points, where at least three surface
patches intersect or where the local shape is like the vertex of a cone.

Noise and scale. We assume that we are given an error tolerance δ for points
on the model and a parameter ε (usually small, but much larger than δ); only
features of width > ε shall be handled.
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In the presence of noise or negligible features, we estimate normals from a
neighborhood of size ≈ ε, e.g., with local planar or quadratic fits (see e.g.
[23]) and a fitting error < δ. Even if this does not mean smoothing of the
original data, this approach prevents a dramatic increase of the noise level
in Φf . Moreover, marginal features – in contrast to relevant ones – do not
manifest themselves in larger areas of Φf .

If the model Φ gets scaled by a factor σ, Φf scales with the same factor if the
weight w is also multiplied by σ. Hence, w has to be judged in relation to the
object size. Suitable values of w for certain purposes will therefore be given
under the assumption that the model fits into the unit cube.

Sharp features. In order to carefully represent a sharp feature in a B-spline
surface, it must be a parameter line. If this is not the case, the best we can do
is to approximate it by a smoothed edge with very high curvature across the
edge. Thus, we assume the viewpoint that a sharp feature is a limit case of a
smooth surface. The reader may consider sharp features smoothed with a very
small blending radius. Then, a point p on a sharp edge c ⊂ Φ, with normals
n− and n+ of the adjacent smooth surfaces, corresponds to a circular arc pf

on the image manifold Φf ; this arc has the endpoints (p, wn−) and (p, wn+).
We have a blow-up phenomenon (see Fig. 2): A sharp edge is mapped to a
surface region on Φ. Likewise, at a corner we have a two-dimensional set of
surface normals and a corresponding spherical patch in the image manifold.
This phenomenon is already known from (untrimmed) offsets at a distance µ,
which incidentally can be obtained from Φf via the mapping (x1, . . . , x6) 7→
(x1, x2, x3) + µ

w
(x4, x5, x6).

Because of the wide usability, we focus on surfaces Φ which are given as a
triangle mesh. After normals have been estimated, we can simply map each
vertex to feature space R6 while keeping the connectivity unchanged. Thus,
Φf is represented by a triangle mesh embedded in R6. However, sharp features
and corners with large normal changes require a special treatment in order to
represent the image manifold with sufficient accuracy.

Detection of Sharp Edges and Corners. A mesh representation generally does
not contain explicit information on sharp edges or corners. Thus, at the first
stage of the algorithm, we need to identify those features. This can be done as
follows: (1) For each edge segment e in the mesh, we compute a robust normal
deviation angle ν. For well-shaped adjacent triangles and well-sampled models
without data errors, ν is the angle between the normals of the two adjacent
faces. In critical cases, we intersect the mesh locally with a plane through e’s
midpoint m and orthogonal to e. With robust fits (by a straight line or a low
degree polynomial) of the profile section data on either side of m, the normal
deviation angle ν is estimated. (2) With a user-defined threshold β, an edge
segment e belongs to a sharp edge if ν > β. (3) Corners are detected where
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Fig. 2. The blow-up phenomenon at sharp edges and corners: Top: original mesh
in R3. Bottom left and center: projection of the corresponding mesh in R6. Bottom
right: Parametrization of the corresponding mesh in R6.

three or more sharp edges coincide. A corner v of the cone-vertex type is found
as follows: Let γi denote the angles of the adjacent triangles at v, then the
vertex v is seen as a corner if

∑
i γi/(2π) < cos(β/2).

Edge/Corner Handling. In order to handle sharp edges and corners in a con-
sistent way, we consider five classes of vertices. Sharp edge segments form
connected paths: an interior vertex of the path is called in-path vertex, each
end point is a path-end vertex. A boundary vertex is placed at the boundary of
the mesh. A corner has been explained above. Any other vertex is an ordinary
vertex. An ordinary vertex is not blown up, and neither are boundary and
path-end vertices. An in-path vertex will be split according to the change in
surface normals there. The edges connecting a path-end vertex and an in-path
vertex or two in-path vertices will be blown up to a region in R6 that is trian-
gulated appropriately (see Fig. 2). If a vertex v is a corner, but its neighbors
are not, it is mapped to a submesh Cf in R6 as follows: An average surface
normal at v yields the center of Cf . An edge emanating from v yields one or
more vertices of Cf depending on whether it is sharp or not. Two adjacent
corners (a rare occurrence) are avoided by inserting a further vertex between
them.

3 B-spline surface fitting based on a feature sensitive parametri-
zation

Parameterizing a mesh Φ over a planar domain D requires to set up a bijective
mapping between Φ and D. This is a key step in a number of geometry pro-
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cessing techniques including surface fitting. For several applications, but not
necessarily for surface fitting, such a parametrization should be near-isometric
(exact isometry being achievable only for developable surfaces). Practical pa-
rametrization methods may achieve conformality (angle-preservation), area-
preservation or a tradeoff between those two [4,7]. Let us see what we can
achieve by parameterizing Φ via an appropriate area-preserving parametriza-
tion of Φf : We will see that the resulting fs parametrization assigns rather
more space of the parameter domain D to highly curved regions than it does
to flat ones.

As mentioned, we are especially interested in area preserving mappings Φf 7→
D. In order to give a more precise explanation of their effect, we mention the
following property whose proof is outlined in the Appendix.

Theorem 1 Given a region R ⊂ Φ, the surface area Af of the corresponding
region Rf in the image manifold Φf is expressed via the principal curvatures
κ1, κ2 and Gaussian curvature K = κ1κ2 of Φ as

Af =
∫

R

√
1 + w2(κ2

1 + κ2
2) + w4K2 dA. (1)

Here dA is the area element of Φ.

This has a very useful effect on our parametrization. For large values of w,
the surface area Af is governed by the value of Aw := w2

∫ |K|dA. Therefore,
the main growth Af − A in surface area of corresponding regions on Φf and
Φ happens at places of Φ which have large Gaussian curvature K. We could
also say that the overhead in surface area on Φf is in a direct relation to the
deviation of the corresponding region R ⊂ Φ from a developable surface (a
surface characterized by K = 0). Note that only developable surfaces possess
a distortion free (isometric) parametrization over a planar domain D. If Φ is
a developable surface, one principal curvature vanishes, say κ1 = 0. Since the
other principal curvature κ2 still may exhibit a large variation, it would not
be advisable to use an isometric mapping and uniform knots in a parametri-
zation for fitting such a surface. Our method takes this into account: For a
developable surface and large w, Af is governed by w

∫ |κ2|dA. Thus, regions
with high κ2 on Φ will get enlarged on Φf . This is precisely what we want to
have.

Let us now assume that we have constructed an area preserving parametri-
zation of Φf . Such a parametrization is feature sensitive, since it reserves
parameter space according to the value of Af in (1), which is a kind of total
curvature of Φ. Highly curved regions get more space than others in a sense
discussed above. This effect is also seen in Fig. 3. In Fig. 4, the blow-up ef-
fect is visualized with stretch-related color coding. We are talking here about
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the stretch between the actual model Φ and the image manifold Φf . Since
the parametrization in Fig. 4 has been computed with a stretch minimizing
parametrization of Φf , the stretch between Φ and Φf can also be observed
as stretch between Φ and the parameter domain. Note that the red parts in
the figures indicate large stretching, which correspond exactly to the feature
regions of the model.

Fig. 3. Stretch minimizing parametrization with increasing feature sensitivity:
w = 0, 0.08, 0.25

Fig. 4. Visualization of the parameter domain with stretch-related color cod-
ing. Left: the model; center: parametrization without feature sensitivity; right: fs
parametrization.

Let us briefly describe parametrization by stretch minimization [19], since it
is heavily used in our work: At first, the boundary of a patch is mapped to
a rectangular domain. Since stretch minimization is a nonlinear optimization
problem, one requires an initial parametrization, which is set up with a robust
and computationally efficient method like mean value parametrization [6].
The texture stretch metric is defined as the root-mean-square stretch over all
directions and optimized with iterative local line search optimization. As it is
a nonlinear optimization problem, it is slow for large models. Thus, we employ
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a hierarchical approach as in [20] to increase both efficiency and quality of the
parametrization.

In a fs parametrization, sharp features, if handled as those, get blown up (see
Fig. 2); then we do not have a parametrization of Φ in the usual sense, but still
a practically useful tool, which is shown in the following by means of B-spline
surface fitting.

B-spline fitting based on a fs parametrization is illustrated in Fig. 5. We pa-
rameterize the model over a rectangular domain with a fs stretch minimizing
parametrization, that is, a stretch minimizing parametrization [19] of Φf . Then
we fit the data with a uniform cubic B-spline surface (30× 20 control points),
based on the standard regularized least squares fitting algorithm [23]. The fs
approach is superior at sharp and smooth feature areas. Sharp edges of the
model always get smoothed by fitting (unless we have multiple knot lines there,
which is only possible in special cases), but the rounding effect is smaller with
the fs approach.

Fig. 5. B-spline fitting. Without (left) and with (center) fs parametrization
(w = 0.07). Right: control grid.

An example of fitting the screwdriver part with periodic B-spline surfaces is
given in Fig. 6, and fitting errors are color coded. The red parts are regions with
high fitting error, while the blue parts are those with low error. Each fitting
surface contains 30× 30 control points. Control grids are illustrated in Fig. 7.
Fig. 8 shows the fitting results on a femur model, again using 30× 30 control
points. Compared to the result without feature sensitivity, the fs approach
preserves more significant details.

Our approach provides a good initial parametrization of mesh models suitable

8



Fig. 6. Fitting of a part on a screwdriver (left) using a periodic B-spline surface
without (center) and with (right) feature sensitivity, w = 0.20.

Fig. 7. Control grids of B-spline surfaces of Fig. 6 (middle and right) obtained by
fitting without (left) and with (right) feature sensitivity.

for B-spline surface fitting. After least-squares fitting, iterative methods can
be used to further improve the result. We tested this with the Newton-type
algorithm in [17], which is based on quadratic approximation of the squared
distance field and denoted by SDM in the following. For all iterative algorithms
in nonlinear optimization, good initial positions usually lead to better results
or faster convergence. Clearly, also SDM does not make an exception to this
rule. Fig. 9 shows the results of SDM optimization. If SDM gets initialized
with a fit obtained by a fs parametrization, it converges to a much better
result. In Fig. 10, the car part on the left is approximated with a B-spline
surface with 20 × 30 control points using a fs parametrization (center) and
SDM is then successfully used to improve that result; corresponding control
grids are shown in Fig. 11.
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Fig. 8. Fitting of femur part (left) using a periodic B-spline surface without(center)
and with (right) feature sensitivity, w = 0.20.

Fig. 9. Fitting results of SDM optimization, using as initial position a fitting
surface which has been computed without (left) and with (right) feature sensitivity.

4 Conclusion and Future Research

We have proposed to use a feature sensitive parametrization in connection with
a uniform knot distribution for least squares fitting with B-spline surfaces.
Even complicated data sets can be fitted well by a single B-spline patch with
this method. A single patch is not sufficient for very complex data sets and for
objects with a complicated topology. Future work could address this problem
by using the fs metric and tools from topology for an automatic patch layout
algorithm. Another interesting topic for future research would be variational
surface design based on minimization of Af . Af favors developable shapes, but
also punishes singularities, which are a main problem in developable surface
fitting.
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Fig. 10. Fitting a car part (left) by a cubic B-spline surface with 20× 30 control
points and a fs parametrization (center); the result can be further improved with
SDM (right).

Fig. 11. Control grids obtained by fs fitting before (left) and after (right) SDM
optimization for the B-spline surfaces in Figure 10, middle and right.
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Appendix

Proof of Theorem 1. It is sufficient to employ a principal curvature parametri-
zation x(u, v) of Φ. Furthermore, let n(u, v) be a unit normal vector field of
Φ. Under these assumptions, one of the coefficients gij of the first fundamen-
tal form vanishes, g12 = 0. Moreover, the coefficients lij of the so-called third
fundamental form (we write partial derivatives via indices, e.g., nu = ∂n/∂u),

l11 = n2
u, l12 = nu · nv, l22 = n2

v, (2)
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are related to the gij’s via

l11 = κ2
1g11, l22 = κ2

2g22, l12 = g12 = 0. (3)

The area element of Φ is given by

dA =
√

g11g22 − g2
12 dudv =

√
g11g22 dudv. (4)

Likewise, the area of the image manifold Φf , whose parametrization is X(u, v) =
(x(u, v), wn(u, v)) is found via

Af =
∫ √

X2
uX2

v − (Xu · Xv)2 dudv

=
∫ √

(g11 + w2l11)(g22 + w2l22)− (g12 + w2l12)2 dudv.

Using (3) and (4), this simplifies to the form stated in (1),

Af =
∫ √

(1 + w2κ2
1)(1 + w2κ2

2)g11g22 dudv =
∫ √

1 + w2(κ2
1 + κ2

2) + w4K2 dA.
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