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Abstract

We investigate 3D shape reconstruction from measurement data in the presence
of constraints. The constraints may fix the surface type or set geometric relations
between parts of an object’s surface, such as orthogonality, parallelity and others.
It is proposed to use a combination of surface fitting and registration within the
geometric optimization framework of squared distance minimization (SDM). In this
way, we obtain a quasi-Newton like optimization algorithm, which in each iteration
simultaneously registers the data set with a rigid motion to the fitting surface and
adapts the shape of the fitting surface. We present examples to show the appli-
cability of our method to constrained 3D shape fitting for reverse engineering of
CAD models and to high accuracy fitting with kinematic surfaces, which include
surfaces of revolution (reconstructed from fragments of archeological pottery) and
spiral surfaces, which are fitted to 3D measurement data of shells. Our optimization
algorithm can combine registration of multiple scans of an object and model fitting
into a single optimization process which is shown to be superior to the traditional
procedure, which first registers the data and then fits a model to it.
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1 Introduction

The motivation for the present research comes from reconstruction of ob-
jects from 3D scanner data, where special kinematic surfaces (cones, cylin-
ders, general surfaces of revolution, helical surfaces) appear frequently. Many
reconstruction algorithms for the more general representatives of these surface
classes require estimated surface normals [20,23]. Although these methods are
quite efficient when good normal estimates are available, they lack the desired
precision if it is difficult to obtain accurate normal estimation or the deviation
of the data from the ideal shape model is relatively large; an example is the re-
construction of vessels from archeological findings. Moreover, in these methods
the computation of the sweeping motion is separated from the computation
of the swept profile, which is a further source of errors.

In the present paper, we extend recent work on improved reconstruction of
surfaces of revolution [26] with a more generally applicable concept arising
from the geometric optimization framework of squared distance minimization
(SDM) [18,19,25,27]. Our new method combines the two types of optimiza-
tion problems that have been solved so far with SDM, namely curve/surface
fitting and registration. This new approach is not only applicable to surfaces
of revolution but also to other classes of surfaces and to a number of surface
reconstruction problems in reverse engineering in the presence of constraints.

1.1 Previous work

Since the focus of the present work is on constrained 3D shape reconstruction,
we only review research in this direction. A constraint may fix the surface type:
there have been a considerable number of contributions to fitting with special
surfaces and thus we refer to [23] for a detailed survey. The existing methods
are mainly taken from geometry (Gaussian image, line geometry, kinematical
geometry), image processing (methods in extension of the Hough transform)
and optimization (non-linear least squares problems). They are also used for
surface type recognition (shape filters).

Fitting data with a surface of a given type that is determined with appropriate
shape filters, while maintaining constraints between the individual elements
of the surface, is a challenging problem [23]. Not only do we need to check
the consistency of the constraints, we also need to fit the data simultaneously
under these constraints. The work of Benkö et al. [2], Fisher [6], and Karniel
et al. [10] can be considered to constitute the state of the art in this area.
In the actual fitting part of the problem, most authors use a least squares
formulation which embeds the constraints via penalty terms.
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Our research is based on a combination of registration and fitting, and in this
sense closely related to the work on knowledge based image segmentation via
a combination of registration and active contours [17,24,15] and to deformable
models introduced by Terzopoulos and Fleischer [21]. We also present a new so-
lution for the simultaneous treatment of multiple view registration and model
fitting, which extends prior work by Jin et al. [9] and Tubic et al. [22].

1.2 Contributions

Our contributions in this paper are:

• the extension of the SDM method to surface approximation with error mea-
surement orthogonal to the fitting surface;

• the combination of registration and surface fitting within the SDM frame-
work;

• refined algorithms for fitting with kinematic surfaces (rotational, helical and
spiral surfaces) plus a demonstration of their efficiency for shape reconstruc-
tion from measurement data of archeological pottery, shells and engineering
objects;

• a new way of incorporating constraints into 3D surface reconstruction for
applications in reverse engineering of CAD models;

• an efficient optimization algorithm which combines multiple view registra-
tion and model fitting and in this way achieves higher accuracy than the
traditional approach which first registers the data and then fits a model to
it.

2 Fundamentals of SDM

Here we summarize a few basic facts about squared distance minimization
(SDM). For more details and issues of efficient implementation we refer to
[1,18,19,25,27]. Before entering this discussion we would like to point out that
many authors have used the distance field [13,14] for registration and fitting;
in fact, the concept of the distance field is so closely tied to the problem that it
must occur in some way. However, most papers do not use the distance function
in the same way as we are doing it: we use local quadratic approximants of
the squared distance function and in this way obtain fast local convergence
via algorithms of the Newton or quasi-Newton type.
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2.1 Squared distance function of a surface

Given a surface Φ ⊂ R3, the squared distance function d2 assigns to each
point x ∈ R3 the square of its shortest distance to Φ. The importance of this
function for our algorithms lies in the fact that we want to compute a surface
which minimizes the sum of squared distances to the data point cloud. Since
several important optimization concepts require second order approximants of
the objective function, we need to derive second order approximants of d2.

Let us fix the notation. We consider a surface Φ with unit normal vector
field n(s) = n3(s), attached to points s ∈ Φ. At each point s, we have a
local Cartesian frame (n1, n2, n), where the first two vectors n1, n2 determine
the principal curvature directions. We will refer to this local frame as the
principal frame Π(s). Let κj be the (signed) principal curvature in the principal
curvature direction nj, j = 1, 2, and let ρj = 1/κj.

Let s ∈ Φ be the normal foot point of a point p ∈ R3, i.e., s is the closest
point on Φ to p. Expressed in the principal frame at s the second order Taylor
approximant Fd of the function d2 at a point x ∈ R3 in a neighborhood of p
is

Fd(x) =
d

d− ρ1

[n1 · (x− s)]2 +
d

d− ρ2

[n2 · (x− s)]2 + [n3 · (x− s)]2. (1)

Here, [nj · (x− s)]2, j = 1, 2, 3, are the squared distances of x to the principal
planes and tangent plane at s, respectively.

In the important special case of d = 0 (i.e., p = s), the approximant Fd equals
the squared distance function to the tangent plane of Φ at s. Thus, if p is close
to Φ, the squared distance function to the tangent plane at p’s closest point
on Φ is a good approximant of d2.

In a Newton-like iteration it is important to employ nonnegative quadratic
approximants; we obtain them by removing from the expression of Fd(x) in
(1) those terms with a negative coefficient d/(d− ρj); see [25].

2.2 Registration using SDM

A set of points X0 = (x0
1,x

0
2, . . .) ⊂ R3 is given in some coordinate system Σ0.

It will be rigidly moved (i.e., registered) to be in best alignment with a given
surface Φ, represented in another system Σ. We view Σ0 and Σ as a moving
system and a fixed system, respectively. A position of X0 in Σ is denoted by
X = (x1,x2, . . .). It is the image of X0 under some rigid body motion α. Since
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we identify positions with motions and the motions have to act on the same
initial position, we write X = α(X0), or xi = α(x0

i ).

The registration problem is formulated in a least squares sense [3,5]: Compute
a rigid body transformation α∗, which minimizes the sum of squared distances
of α(x0

i ) to Φ,
F (α) =

∑

i

d2(α(x0
i ), Φ). (2)

Starting from an appropriate initial position α0, SDM performs a Newton-
like iteration to minimize F [19]. We describe here a single iteration of the
algorithm: Since F is the sum of squared distances of the data points xi to
the model shape Φ, a quadratic approximant is

G =
∑

i

Fd,i, (3)

where the Fd,i are the second order approximants of the squared distance
functions of xi to the model shape. These approximants have been described
in Section 2.1. Then, by equation (1), a second order Taylor approximant of
the squared distance function at xi is written in the form

Fd,i(x) =
3∑

j=1

αi,j[ni,j · (x− si)]
2, (4)

where ni,j · (x − si) = 0, j = 1, 2, 3, denote the coordinate planes of the
principal frame at the foot point si ∈ Φ of the point x0

i , and the αi.j can
readily be read from equation (1). The same form holds for a nonnegative
modification, i.e., terms with negative coefficients will be discarded. One now
approximates the displacement of the data point xi up to the first order by,

x′i = x0
i + c + c× x0

i , (5)

where c = (c̄1, c̄2, c̄3) and c = (c1, c2, c3) represent the translational and rota-
tional components of a velocity field.

Plugging x′i into G in equation (3) gives a local quadratic model of the objec-
tive function,

F2(c, c) =
∑

i

3∑

j=1

αi,j[ni,j · (x0
i + c + c× x0

i − si)]
2.

Since ni,j · (x0
i − si) is the distance of x0

i to the j-th coordinate plane of the
principal frame, it vanishes for j = 1, 2; and it equals the oriented distance di

of x0
i to the model surface Φ for j = 3. Therefore we may rewrite F2 as

F2(c, c) =
∑

i

2∑

j=1

αi,j[ni,j · (c + c× x0
i )]

2 + F̃2(c, c). (6)
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Here, F̃2 denotes the part arising from the squared distances to the tangent
planes at the foot points, given by

F̃2(c, c) =
∑

i

[ni · (c + c× x0
i ) + di]

2, (7)

where ni = ni,3. Since F2 is a quadratic function in (c, c), the unique minimizer
(c′, c′) can be given explicitly by solving a system of linear equations.

Remark 1: In the above application of SDM we measure the squared distance
errors from the moving points xi orthogonal to the fixed model surface Φ. The
moving points xi are functions of the motion parameters (c, c) to be optimized.

So far we have estimated the displacement of the data point cloud with help
of the velocity field (c, c). We now apply an appropriate helical motion which
is determined by this velocity field: The Plücker coordinates (g, g) of the axis,
the rotational angle φ and the pitch p of the helical motion (including special
cases) are given by

p = (c · c)/(c)2, φ = ‖c‖, (g, g) = (c, c− pc). (8)

Recall that the Plücker coordinates of a line G consist of a direction vector
g and the moment vector g = p × g, where p represents an arbitrary point
on G. Altogether, the desired motion is the superposition of a rotation about
some axis A through an angle of φ = ‖c‖ and a translation parallel to A by
the distance of p · φ. For the explicit formulae we refer to the literature [20].

2.3 SDM for B-spline surface fitting

In this subsection, we describe the basic idea of B-spline curve fitting accord-
ing to [25]. Different from the SDM introduced in Section 2.1 and 2.2 (ref.
Remark 1, Section 2.2), this method measures the fitting error orthogonal to
a moving fitting surface. But, since the fitting error is also given by a quadratic
approximation of the squared distance to the fitting surface, we shall also re-
fer to the method as squared distance minimization, or SDM. Although the
method has been presented in [25] for B-spline curves only, its generalization
to fitting a B-spline surface to a point cloud (x1, . . . ,xN) is straightforward
and outlined below.

The main steps are as follows.

(1) Specify a proper initial shape of a B-spline fitting surface.
(2) Compute squared-distance error terms for all data points to obtain a local

quadratic model of the objective function.
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(3) Solve a linear system of equations to optimize the local quadratic model to
obtain an updated spline surface.

(4) Repeat steps 2 and 3 until convergence, e.g., until a pre-specified error
threshold is satisfied or the incremental change of the control points falls
below a preset threshold.

We explain below briefly steps 2 and 3.

Step 2. An error term is associated with each data point xi. The error term
to be used in the next iteration is found as follows. Compute a (nonnegative)
second order approximant of the squared distance function from xi to the
current instance of the fitting surface Φ; see equation (4). Let si = sc(ui, vi)
be the closest point on the fitting surface to xi. Then the error term for xi is

Ei,c =
3∑

j=1

αi,j[ni,j · (xi − sc(ui, vi))]
2. (9)

When we update the surface Φ to s+(u, v) with the new control points, the
surface point s+(ui, vi) given by the same parameters (ui, vi) is, in general, no
longer the foot point of xi; moreover, the normal vectors ni,j and curvature
radii ρi,j will have changed there. However, when the model surface is updated
by a small change of the control points, we still use equation (9) to estimate
the new fitting error at xi, by

Ei,+(D) =
3∑

j=1

αi,j[ni,j · (xi − s+(ui, vi))]
2, (10)

where the variables are the control points D := (d1, . . . , dm) of the B-spline fit-
ting surface, in the expressions of the updated surface points s+(ui, vi); we use
Ei,+(D) to emphasize the dependence of the error term on the control points
D. It has been shown in [25] that this simplification yields a quasi-Newton
method for optimization, which is not of a standard type (such as BFGS [11]),
but provides a very good trade-off between computational simplicity and fast
convergence.

Step 3. We use a B-spline surface, whose representation of the form s(u, v) =∑
k Bk(u, v)dk is linear in the control points. Substituting this form for s+(ui, vi)

in the objective function yields

F (D) =
N∑

i=1

Ei,+(D) + Fs(D)

= Fs(D) +
N∑

i=1

3∑

j=1

αi,j[ni,j · (xi −
∑

k

Bk(ui, vi)dk)]
2. (11)

Here, Fs is a smoothing term, assumed to be quadratic in D. The part coming
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from the sum of squared distances is also quadratic in the unknown control
points D. Therefore the minimization of F requires only the solution of a linear
system.

2.4 TDM and PDM

When setting αi,1 = αi,2 = 0 and αi,3 = 1 in Eqn. (4) (or Eqn. (10)), we obtain
the tangent distance minimization or TDM, since Fd,i(x) = [ni(x− si)]

2 which
measures the squared distance from x to the tangent plane at si.

When αi,1 = αi,2 = αi,3 = 1 in Eqn. (4) (or Eqn. (10)), we obtain Fd,i(x) =
‖x−si‖2, which measures the distance between the two points x and si; hence,
the resulting minimization scheme is called the point distance minimization
or PDM. A detailed discussion of these two minimization methods and their
comparison with SDM can be found in [25].

SDM is simplified to the TDM method if we approximate the function d2 at a
point xi by the squared distance to the tangent plane at the foot point yi. For
registration, a method similar to TDM has been first proposed by Chen and
Medioni [5] and is known to be superior to the standard ICP [3]. For B-spline
curve fitting, the TDM method has been described by Blake and Isard [4]. It
is known [19,25] that TDM corresponds to a Gauss-Newton iteration. Thus, it
exhibits quadratic convergence for a zero residual problem and a good initial
position. However, this is not a practical assumption and thus one should
enhance its stability by applying step-size control, e.g., using the Armijo rule
or the Levenberg-Marquardt (L-M) regularization [11].

The standard ICP algorithm [3] approximates d2 at xi by the squared distance
to the foot point si, i.e., the error term for xi is defined in PDM as ||xi −
s+(ui, vi)||2 (ref. Eqn. (10)). This PDM method is frequently used for freeform
surface fitting [23], exhibits only linear convergence and is prone to be trapped
in a poor local minimizer; see, e.g., [25].

3 Combination of Surface Fitting and Registration

Before entering the general discussion, let us explain the main idea with the
following example: We want to fit a surface of revolution to a set of data
points.

The standard solution to this problem uses estimated surface normals at the
data points and line geometry to compute the rotational axis [20]. The axis
is then kept fixed and an appropriate generatrix is computed to obtain the
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final surface. This method works very well for finding a good initial guess of
the axis, but has the disadvantage that the error in the axis estimate, which
arises from the normal estimates, cannot be further reduced in the subsequent
computation of the generatrix. We present here the following idea.

After an initial guess of the axis A has been found, use a coordinate system
in which A is a coordinate axis, say the x3-axis. A surface of revolution with
this axis takes a very simple form. Then, we use SDM optimization to simul-
taneously update the fitting surface (i.e., control points of its generatrix) and
move the set of data points (as a single rigid body system) until the fitting
error is minimized. This is carried out by combining the techniques in Section
2.2. and Section 2.3. Moving the data point cloud is a registration process and
equivalent to changing the axis. However, we register the data point cloud to
a changing surface rather than a fixed one.

More specifically, let us explain the registration of a point cloud to a changing
surface s. In each iteration, for each data point x0

i , we compute its closest
point si,c ≡ sc(ui, vi) on the current instance of the fitting surface Φ : s(u, v),
and set up the SD error term,

Ei,c =
3∑

j=1

αi,j[ni,j · (xi − si,c)]
2.

The error after a small displacement of the data point set and a change of the
surface is estimated as follows. We use a linearization for the displacement of
the data point set, i.e., xi will be approximated by x′ = x0

i + c + c× x0
i ; the

change of the control points updates the model surface to s+(u, v); therefore,
the surface points si,c will be replaced by si,+ ≡ s+(ui, vi). Then, the new
error term, as an approximation to the squared distance from xi and Φ, is

Ei,+ =
3∑

j=1

αi,j[ni,j · (x0
i + c + c× x0

i − si,+)]2, (12)

where the variables are the motion parameters (c, c) and the control points
D. A sum of these error terms, together with a quadratic fairness term Fs,

F =
N∑

i=1

3∑

j=1

αi,j[ni,j · (x0
i + c + c× x0

i − si,+)]2 + Fs(D), (13)

gives rise to the minimization of a quadratic function in each iteration. Since
the surface points si,+ depend linearly on the unknown shape parameters, i.e.,
control points, F is quadratic in those unknowns as well as (c, c), assuming
that Fs is also a quadratic function of D. Of course, the data point cloud is
updated with an appropriate helical motion as for pure registration. We note
that this method is applicable even when shape parameters are not linear
variables, such as the weights in a rational B-spline surface – one just needs
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to apply a linearization (see Section 4.2), like using (c, c) to approximate a
rigid motion.

Due to misalignment, multiple review registration for a 3D object usually
introduces errors not present in the measurement data. These errors would
affect the subsequent surface fitting errors, thus the precision of the final
reconstructed CAD model of the 3D object.

Within the present setting, we may use an initially registered point cloud for
the initial steps in the constrained fitting procedure. In later steps, however,
we can allow a different motion for each of the K scans that have been used. In
this way we hope to remove inaccuracies resulting from the initial registration
(see [9,22]). Given K point clouds Xk = {x0

k,i, i = 1, . . . , Nk}, k = 1, . . . , K,
which represent the individual scans (views), our SDM objective function is
reformulated as

F =
K∑

k=1

wk

Nk∑

i=1

3∑

j=1

αk,i,j[nk,i,j · (x0
k,i + ck + ck × x0

k,i − sk,i,+)]2 + Fs(D), (14)

where wk is a weight for the points in each scan (in practice, we can choose
wk = 1/Nk); αk,i,j and nk,i,j have the same meaning as in (13); (ck, ck) is the
velocity field of Xk. We will show some examples in Section 4.3.2.

The new version of the SDM method — a combination of fitting and registra-
tion — is as simple as the previously discussed cases of pure surface fitting or
registration. Its performance from the viewpoint of optimization is compara-
ble to that of pure fitting [25]. As in [25], TDM with step size control also has
good performance.

4 Applications

In this section we present three applications of our combined framework of reg-
istration and fitting to: 1) surface reconstruction from archeological pottery;
2) shell shape model verification; and 3) constrained CAD model reconstruc-
tion in reverse engineering. In all these applications we need to fit a surface of
a special type to a given set of 3D scanned data points. For the convergence
analysis we use the average error defined by the following root mean squared
error :

Ave Error =

√√√√ 1

N

N∑

i=1

‖xi − si,c‖2 (15)

The data set is first normalized by uniform scaling to fit in the unit box [0, 1]3,
to make the optimization parameters independent of model dimensions.
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Fig. 1. Approximation of an archeological finding by a rotational surface: (top left)
original model; (top right) surface reconstructed with SDM method; (bottom left)
average errors versus the number of iterations. Note that SDM and TDM are nearly
the same, and both better than PDM; (bottom right) data points rotated into a
profile plane. From left to right: initial guess and results after optimization with
PDM, TDM and SDM. (# of points: 2,260)

4.1 Surfaces of revolution

In order to fit a surface of revolution to a set of data points, we use the well-
known line geometric method to compute an initial guess [20]. The axis is then
used as x3-axis of the coordinate system. For the generatrix we take a B-spline
curve, (r(u), z(u)) =

∑
k(rk, zk)Bk(u) with control points pk = (rk, zk). Then

the surface is

x(u, v) =
∑

k

(rk cos v, rk sin v, zk)Bk(u) + (0, 0, pv).

Here p is the pitch of the helical surface; we have p = 0 for a surface of revolu-
tion. The essential parameters pk = (rk, zk) and p appear linearly, therefore the
SDM method from Section 3 can be applied. For pure surface fitting, accord-
ing to Section 2.3, the parameters (ui, vi) of the closest point si,c = sc(ui, vi)
to xi are kept unchanged when we move to si,+ = s+(ui, vi).

The registration part does not require the full motion group. We exclude trans-
lations parallel to the x3–axis by setting c = (c1, c2, 0). Moreover, rotations
about the x3–axis are excluded by setting c = (c1, c2, 0). This is done for both
surfaces of revolution and helical surfaces. In the latter case, eventually, neces-
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Fig. 2. Approximation of a broken archeological finding by a rotational surface: (top
left) original model; (top right) surface reconstructed with SDM method; (bottom)
average errors versus the number of iterations. SDM and TDM are nearly the same,
and both better than PDM. (# of points: 2,863)

sary translations in axis direction or rotations about the axis can be handled
via a translation of the profile curve parallel to the axis.

Figure 1 shows an example of 2,260 data points of a scanned pot. The profile
curve is a cubic B-spline curve with 7 control points and uniform knots. The
significant improvement of the rotation axis is illustrated by the data points
rotated into the profile plane: after optimization this cloud is much thinner
than the one obtained in the initial fit via line geometry. The results of using
SDM, TDM, and PDM are shown. Here and for the examples below, the
stability of SDM is enhanced by applying a regularization similar to the L-
M method, a trust-region based regularization conventionally applied to the
Gauss-Newton method. It is observed that for this example SDM and TDM
have nearly the same convergence behavior, while PDM is much slower.

4.2 Spiral surfaces

A spiral surface is generated by a curve undergoing a spiral motion (one-
parameter subgroup of similarities in R3), which is the composition of a rota-
tion about a spiral axis A and an exponential scaling from the so-called spiral
center C ∈ A. Placing C at the origin and setting A to be the x3-axis, a spiral

12



surface with a B-spline profile can be represented as

x(u, v) = epv
∑

k

[rk cos v, rk sin v, zk]Bk(u). (16)

Spiral surfaces are frequently taken as models for shapes of shells [12]. We
would like to test the precision of this mathematical model using our new
optimization method. Very recently, we devised a method which is in some
sense analogous to the line geometric approach and can estimate the spiral
axis and center from a set of data points and estimated normals, under the
assumption that the data points are close to some spiral surfaces [8]. Using
this method to provide an initial fit, we now present an improved spiral fitting
algorithm based on SDM.

Iterations

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
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PDM 
TDM 

Fig. 3. Shell helix pomata: (top left) data points of a shell; (top right) initial fit;
(bottom left) average error v.s. the number of iterations. Note that SDM performs
better than PDM and TDM; (bottom right) fit computed by SDM. (# of points:
13666)

We note that x(u, v) (16) is no longer linear in the unknowns p (spiral pa-
rameter) and pk = (rk, zk). Hence, we use the following first order Taylor
approximant at the current values pc and pk,c of the unknowns,
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x(u, v) = epcv
∑

k

[rk cos v, rk sin v, zk]Bk(u) +

+v(p− pc)e
pcv

∑

k

[rk,c cos v, rk,c sin v, zk,c]Bk(u).

Keeping the parameter values (ui, vi) of the foot points si,c, we arrive at new
points si,+, which depend linearly on the unknown parameters. Therefore,
SDM from Section 3 works again.

Figure 3 shows that an initial fit can be improved significantly by our opti-
mization algorithm, although for this example the residual fitting error is still
rather large. For this example, we see that PDM and TDM do not converge as
fast as SDM. Since the optimized fit is not ideal, we are inclined to conclude
that the spiral surface is not an accurate model for this type of shell.

4.3 Constrained 3D shape reconstruction

4.3.1 Constrained fitting to a single set of data points

In the applications described above, it is an advantage to represent a fitting
surface in an adapted coordinate system Σ; for example, we put the rotational
axis into a coordinate axis or the spiral center into the origin. Choosing an
adapted coordinate system may also be possible for a typical engineering ob-
ject: important elements such as rotational axes, planar faces, etc. can be
brought into a special position with respect to Σ. Using an adapted coordi-
nate system, we can set up a parametric model (see Figures 4,8,10). Varying
the parameters gives a family of models all of which satisfy the constraints.
Thus, our viewpoint leads to an unconstrained optimization problem for the
parameters of the model.

Identifying such a coordinate system Σ for building the parametric model is
made feasible either with some prior knowledge about the model or by user
interaction. Within the general SDM procedure described in Section 3, we
now adapt the model shape parameters (if necessary, using linearization as in
Section 4.2) and update the position of the data set using a rigid motion with
respect to the model shape.

We use an example to illustrate these steps. Figure 4 shows 33,981 measured
data points of a machine part, and the parametric CAD model of the part and
three side views, with constraints and model parameters indicated. Figure 5
shows the initial fit, final fit and error curves. The constraints of the model are
preserved strictly and only the values of the model parameters are updated in
each iteration. Here and later for the examples in Section 4.3, only the TDM
method is used, since many faces of the CAD model are planar, i.e., having

14



zero curvature, thus making SDM reduce to TDM at these planar locations.
The variations of all the model parameters are shown in Figure 6.

For evaluation, using the same data and CAD model in Figure 4, we compare
our combined approach with an approach that optimizes position and surface
shape alternatively [9]; (the latter is therefore called the alternating method).
TDM is used in both position and shape updates in the alternating method.
One position update and its successive surface shape update are counted as
one iteration of the alternating method. The two error curves are shown in
Figure 5 (bottom right), from which it is clear that the combined approach
is more efficient. A theoretical explanation is that in the alternating method
the iterate follows a zig-zag path in the subspace of motion parameters and
the subspace of shape parameters, thus making the alternating method have
only linear convergence. On the other hand, the combined method using TDM
behaves similarly to the Gauss-Newton method, and therefore can have near
quadratic convergence for small-residual problems.

W1

W1

H5R3

W2

W2

W2

W2W2

W2

R2

R1W1

W1

H5

W2 W2

W2

W2W2

W2

H2

H1

R2

R4

H3

R1

H4

Fig. 4. (top left): A data set of 33,981 points from a machine part; (top middle):
its triangulated surface; (top right): a parametric model; (bottom left): top view;
(bottom middle): bottom view; (bottom right): front view.

4.3.2 Constrained fitting to multiple views

In this section we provide an experimental validation of our conjecture that
relaxing the initial registration by allowing different motions for the individ-
ual scans can reduce the overall error. As seen from Figures 8 and 10, the
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Fig. 5. (top left): Initial fit; (top right): optimized fit after 6 iterations of TDM;
(bottom left): average error of our method v.s. the number of iterations; (bottom
right): comparison with the alternating method.

Fig. 6. Variations of the parameters for the machine part model in Figure 4.

combination of fitting with multiple-view registration leads to higher accu-
racy than first performing the registration on the point cloud data and then
fitting a model to the registered data. We consider it an important feature of
our algorithm that multiple-view registration can so easily be combined with
fitting.
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Fig. 7. left: A data set of 331,150 points from a 3D model using 7 scans; right: the
registered point set
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Fig. 8. (top left): front and bottom views of a parametric model; (top right): initial
model and initial fit; (bottom left): optimized fit after 8 iterations of TDM; (bottom
right): average error v.s. the number of iterations, and comparison with the single
view case. We see that combining fitting and multiple-view registration lead to
higher accuracy.

4.4 Remarks on the implementation

In this section we provide a few details on the actual implementation.

Closest points. Our algorithm requires to find for every data point x its closest
point (foot-point) s on the initial surface. If there are too many points, this
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Fig. 9. left: A data set of 107670 points from a CAD model based on 7 scans; right:
the registered point set
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Fig. 10. Combining fitting and multiple-view registration. (top left): front view of
the parametric model; (top right): side view; (middle left): initial fit; (middle right):
optimized fit after 12 iterations of multiple-views TDM; (bottom) average error v.s.
the number of iterations, and comparison with the single view case.

step will be very time consuming. To speed up this step, we sample a number
of points on the surface firstly, then construct a kd-tree structure for finding
the nearest point in the set of sample points. Viewing the nearest sample
point as an initial point, we then apply a Newton iteration to compute a more
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precise foot-point on the surface. Of course, if the surface is very simple, like
a plane or cylinder, we can find the closest point directly.

Step size control. In each step we minimize the objective function by solving
a linear system. We use Levenberg-Marquart regularization in order to avoid
instabilities and too large steps [11].

5 Conclusions

We have shown that 3D shape fitting in the presence of constraints may be
simplified and made more efficient by combining registration and surface ap-
proximation. To achieve a good convergence behavior, we have implemented
this idea within the framework of SDM. We have also compared SDM with
TDM and PDM, and found that SDM and TDM are more efficient than PDM,
and with proper step size control TDM is as good as SDM in many cases. More-
over, we have shown that relaxing the initial registration in the final phase
of our algorithm is easily formulated within our framework and improves the
fitting accuracy.

Among the topics for future research we would like to mention a thorough
investigation of the combination of registration and implicit surface fitting
[16].
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