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Abstract. Meshes with planar quadrilateral faces are desirable discrete
surface representations for architecture. The present paper introduces
new classes of planar quad meshes, which discretize principal curvature
lines of surfaces in so-called isotropic 3-space. Like their Euclidean coun-
terparts, these isotropic principal meshes meshes are visually expressing
fundamental shape characteristics and they can satisfy the aesthetical
requirements in architecture. The close relation between isotropic geom-
etry and Euclidean Laguerre geometry provides a link between the new
types of meshes and the known classes of conical meshes and edge offset
meshes. The latter discretize Euclidean principal curvature lines and have
recently been realized as particularly suited for freeform structures in ar-
chitecture, since they allow for a supporting beam layout with optimal
node properties. We also present a discrete isotropic curvature theory
which applies to all types of meshes including triangle meshes. The re-
sults are illustrated by discrete isotropic minimal surfaces and meshes
computed by a combination of optimization and subdivision.

Key words: discrete differential geometry, surfaces in architecture, isotropic
geometry, conical mesh, edge offset mesh, isotropic minimal surface.

1 Introduction

Recently, discrete differential geometry enjoys increasing interest in Computer
Graphics and Geometric Modeling. This emerging field at the border between
differential and discrete geometry provides attractive tools for processing dis-
crete surface representations with methods that may be seen as an extension of
the classical theory. This is quite different from numerical differential geometry
where approximation by smooth representations is directly or indirectly used as
a preprocessing step in order to employ the classical results.

Very recently it turned out that the precise geometric results and relations of-
fered by discrete differential geometry are of high importance in architectural de-
sign [7, 10, 11, 13, 19, 21]. This is rooted in the fact that in architectural freeform
structures which are based on polyhedral surfaces the mesh representation (i)
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is seen and greatly influences the aesthetics and (ii) is the basis for the actual
construction.

Though meshes are very well understood in geometric computing, their ap-
plication to architecture is difficult for at least two reasons. One is that triangle
meshes, though easy to compute and inherently stable due to their geometry,
lead to complications in node manufacturing and supporting beam layout [19,
21]. The other reason is that alternatives, namely quad meshes or hexagonal
meshes with planar faces, are harder to deal with: Quad meshes with planar
faces discretize so-called conjugate curve networks [24]; their computation in
general requires nonlinear optimization [13] and aesthetical requirements may
be very hard to achieve. Planarity of faces in hexagonal meshes is easy to realize
since only three faces meet in a vertex, but an aesthetic layout of such a mesh on
a given freeform surface is an unsolved problem. Building on recently achieved
progress [7, 13, 19, 21], the present paper introduces new remarkable classes of
planar quad meshes. These are formulated and studied with help of so-called
isotropic geometry, which is motivated as follows.

1. Principal curvature lines are sometimes viewed as appropriate curves for
guiding the force flow and for visually expressing fundamental shape charac-
teristics. These are reasons why they are preferred for beam layout. The ideal
force flow depends on the direction of gravity, whereas Euclidean principal
curvature lines are independent of it. Isotropic geometry has a distinguished
(isotropic) direction (cf. Section 2.1) and thus it is promising to investigate
whether isotropic principal curvature lines provide structural advantages.
Before doing so, we need tools to design meshes whose polygons are aligned
in isotropic principal direction. This is a main goal of the present paper.
An example is shown in Fig. 1. It also illustrates that isotropic principal
curvature lines may lead to aesthetically pleasing meshes. Isotropic princi-
pal curvature lines form a special conjugate curve network, namely the one
which appears as orthogonal network in the top view (projection in isotropic
direction).

2. Conical meshes [7, 13] and edge offset meshes [7, 21] have various advantages
for architecture, including a supporting beam layout with optimized nodes [7,
13, 21]. These two types of meshes are objects of Laguerre geometry. Isotropic
geometry occurs naturally as a model of Laguerre geometry. Hence, it is
interesting to see how these meshes appear in the so-called isotropic model
of Laguerre geometry. We have here a principle of transfer between meshes.
This is useful both for the theoretical understanding and for applications.

1.1 Previous work

Discrete differential geometry. Particularly important in the present context
are results on quadrilateral meshes with planar faces (PQ meshes). PQ meshes
discretize so-called conjugate curve networks on surfaces [24]. They are a basic
concept in the integrable system viewpoint of discrete differential geometry [4].
Circular meshes [14] and conical meshes [13] are special PQ meshes which dis-
cretize the network of principal curvature lines. In a circular mesh, each face
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Fig. 1. This architectural design study is based on a quadrilateral mesh with planar
faces which discretizes the network of isotropic principal curvature lines on a minimal
surface of isotropic geometry.

has a circum-circle; in a conical mesh, the face planes meeting at a vertex are
tangent to a cone of revolution. Principal curvature lines are a concept of Lie
sphere geometry, and thus circular and conical meshes may be treated in a uni-
fied way within Lie geometry [5]. Elementary relations between circular and
conical meshes are discussed in [20]. Mesh parallelism turned out to be an im-
portant tool for studying polyhedral surfaces with a view towards applications
in architecture [7, 21]. Due to its high importance for the present paper, mesh
parallelism is briefly reviewed in subsection 3.1. PQ meshes which are discrete
counterparts to minimal surfaces are the topic of several contributions (e.g. [2,
3, 21, 33]).
Geometry processing. Computational issues concerning the meshes men-
tioned above are only addressed in a few papers [2, 13, 21]. PQ meshes, in particu-
lar circular and conical meshes, may be designed by a combination of subdivision
and nonlinear optimization [13]. The same optimization algorithm can be used
to approximate a given shape by a circular/conical mesh, if the input mesh is
aligned along a network of principal curvature lines. Methods for the design and
computation of meshes with offset properties relevant for architecture and for
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the layout of supporting beams with optimized nodes are based on the concept
of parallel meshes [21].

Approximation of smooth surfaces by meshes with planar faces, without a fo-
cus on beam layout and offset properties, can be performed via variational shape
approximation [9]. Cutler and Whiting [10] modified this method with regard
to aesthetics and architectural design. Research on geometry for architecture in
general is promoted by the Smart Geometry group (www.smartgeometry.com).
Laguerre geometry is the geometry of oriented planes and spheres in Euclidean
3-space [1, 8]. It has been applied in the study of rational curves and surfaces
with rational offsets [16, 18] and in the reconstruction of developable surfaces
from point clouds [15]. Its recent application in the study of conical meshes [5,
13, 33] and meshes with edge offsets [21] is the most important one for the present
paper and will be continued in Section 3.
Isotropic geometry is based on a simple semi-Riemannian metric [22]; cf.
Section 2.1. It naturally appears when properties of functions are to be geo-
metrically visualized and interpreted at hand of their graph surfaces [17]. In
particular, this holds for the visualization of stress properties in planar elastic
systems at hand of their Airy surfaces [30]. An application of isotropic geometry
in Image Processing has been given by Koenderink and van Doorn [12].

1.2 Contributions and Overview

The contributions of the present paper are the following ones.

1. We provide an introduction into isotropic geometry, Laguerre geometry and
the relations between them (Section 2).

2. Meshes which discretize the network of isotropic principal curvature lines
are studied in Section 3. There, we also address optimization algorithms for
their design and computation.

3. We introduce discrete isotropic curvatures for meshes with planar faces and
provide examples for discrete minimal surfaces of isotropic geometry (Sec. 4).

2 Fundamentals

2.1 Isotropic Geometry

Motions and metric. Isotropic geometry has been developed by Strubecker
in the 1940s. The results we need for the present investigations may be found
in [29] or in the monograph by Sachs [22]. Isotropic 3-space I3 is based on the
following group G6 of affine transformations (x, y, z) 7→ (x′, y′, z′) in R3,

x′ = a + x cos φ− y sinφ,

y′ = b + x sinφ + y cos φ, (1)
z′ = c + c1x + c2y + z, a, b, c, c1, c2, φ ∈ R,
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which are called isotropic congruence transformations (i-motions). We see that
i-motions appear as Euclidean motions (translation vector (a, b)T and rota-
tion angle φ) in the projection onto the xy-plane; the result of this projec-
tion p = (x, y, z) 7→ p′ = (x, y, 0) is called top view henceforth. Hence, an
isotropic congruence transformation is composed of a Euclidean motion in the
xy-plane and an affine shear transformation in z-direction. Many metric prop-
erties in isotropic 3-space I3 (invariants under G6) are actually Euclidean in-
variants in the top view. For example, one defines the i-distance of two points
xj = (xj , yj , zj), j = 1, 2, as the Euclidean distance of their top views x′j ,

‖x1 − x2‖i :=
√

(x1 − x2)2 + (y1 − y2)2. (2)

Thus, two points (x, y, zj) with the same top view (called parallel points) have
i-distance zero, but they need not agree. Since the i-metric (2) degenerates along
z-parallel lines, these lines are called isotropic lines. Due to the architectural ap-
plications we have in mind, the isotropic z-direction is to be thought as vertical.
Isotropic angles between straight lines are measured as Euclidean angles in the
top view.

Planes, circles and spheres. There are two types of planes in I3.
(i) Non-isotropic planes are not parallel to the z-direction. In these planes we

basically have a Euclidean metric: This is not the one we are used to, since we
we have to make the usual Euclidean measurements in the top view. An i-circle
(of elliptic type) in a non-isotropic plane P is an ellipse, whose top view is a
Euclidean circle. Such an i-circle with center m ∈ P and radius r is the set of
all points x ∈ P with ‖x−m‖i = r.

(ii) Isotropic planes are parallel to the z-axis. There, I3 induces an isotropic
metric. An isotropic circle (of parabolic type) is a parabola with z-parallel axis
and thus it lies in an isotropic plane. An i-circle of parabolic type is not the
iso-distance set of a fixed point.

There are also two types of isotropic spheres. An i-sphere S of the cylindrical
type is the set of all points x ∈ I3 with ‖x−m‖i = r. Speaking in a Euclidean
way, such a sphere is a right circular cylinder with z-parallel rulings; its top view
is the Euclidean circle with center m′ and radius r. Any point which is parallel
to m lies on the axis of this cylinder and may also serve as center of S. The more
interesting and important type of spheres are the i-spheres of parabolic type,

z =
A

2
(x2 + y2) + Bx + Cy + D, A 6= 0. (3)

From a Euclidean perspective, they are paraboloids of revolution with z-parallel
axis. The intersections of these i-spheres with planes P are i-circles: If P is not
isotropic, then the intersection is an i-circle of elliptic type. If P is isotropic, the
intersection curve is an i-circle of parabolic type.

Curvature theory of surfaces. In the present context, isotropic differential
geometry of surfaces is of great importance. To avoid degeneracies, we study only
those surfaces Φ which are regular and do not possess isotropic (i.e., vertical)
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tangent planes. Thus, we may write Φ in explicit form,

Φ : z = f(x, y). (4)

The isotropic version of Gaussian curvature theory uses the isotropic unit sphere,

Σ : z =
1
2
(x2 + y2) =: s(x, y). (5)

To each point x = (x, y, f(x, y)) ∈ Φ we associate as Gaussian image that point
σ(x) = x̃ = (x̃, ỹ, s(x̃, ỹ)) ∈ Σ whose tangent plane is parallel to the tangent
plane of Φ at x. This requires agreement of the gradients ∇f(x, y) = (fx, fy)
and ∇s(x̃, ỹ) = (x̃, ỹ) and thus yields for the Gaussian mapping σ,

σ : (x, y, f(x, y)) 7→ (fx, fy,
1
2
(f2

x + f2
y )). (6)

The derivative of σ is the isotropic shape operator. It is a linear mapping between
the parallel and thus identified tangent spaces of Φ at x and Σ at x̃. The top
view of the shape operator acts on vectors (t1, t2)T ∈ R2 and is given by

(t1, t2)T 7→ ∇2f · (t1, t2)T . (7)

Its transformation matrix is the Hessian ∇2f of f ,

∇2f =
(

fxx fxy

fxy fyy

)
.

The eigenvectors of the shape operator determine the isotropic principal curva-
ture directions. They are conjugate directions and appear as orthogonal vectors
in the top view (eigenvectors of ∇2f); the corresponding eigenvalues are called i-
principal curvatures κ1, κ2. Their product equals det(∇2f) and is called isotropic
curvature (or relative curvature)

K = κ1κ2 = fxxfyy − f2
xy. (8)

Isotropic mean curvature H is given by the Laplacian of f ,

2H = κ1 + κ2 = trace(∇2f) = fxx + fyy = ∆f. (9)

Isotropic minimal surfaces are characterized by H = 0 and thus they are graphs
of harmonic functions f (∆f = 0). They may have branching points (see e.g.
Fig. 8) and thus the surfaces can have several sheets; we understand a ”graph”
in this general sense. Isotropic minimal surfaces possess many properties which
are analogous to their Euclidean counterparts [22, 31]. We will construct discrete
i-minimal surfaces in Section 4.

Finally we point to the integral curves of the field of principal directions.
These are called isotropic principal curvature lines. They constitute exactly that
conjugate curve network on S which appears as orthogonal network in the top
view. Discrete counterparts form the content of Section 3.
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Metric duality. In projective 3-space we have a principle of duality. To give
some examples, points are dual to planes and vice versa, straight lines are dual to
straight lines and inclusions are reversed. However, duality cannot be applied to
metric quantities of Euclidean geometry. This is different in isotropic geometry,
which enjoys a metric duality. It may be realized by the polarity with respect to
the i-sphere (5), which maps point p = (p1, p2, p3) to plane P : z = p1x+p2y−p3.
Points p and q = (q1, q2, q3) with i-distance d (from (2), recall d2 = (p1− q1)2 +
(p2− q2)2) are mapped to planes P and Q : z = q1x+ q2y− q3. The i-angle φ of
the two planes P,Q equals d (we may even define i-angles in this way) and thus
φ is simply computed as φ2 = (p1 − q1)2 + (p2 − q2)2.

Parallel points, i.e. points with the same top view, in the duality correspond
to parallel planes. A surface Φ : z = f(x, y), seen as set of contact elements
(points plus tangent planes) corresponds to a surface Φ∗, parameterized by

x∗ = fx(x, y), y∗ = fy(x, y), z∗ = xfx + yfy − f. (10)

Contact elements along i-principal curvature lines of Φ and Φ∗ correspond in
the duality. Note that Φ∗ may have singularities which correspond to parabolic
surface points of Φ (K = 0). This is reflected in the following relations between
the isotropic curvature measures of dual surface pairs [32],

H∗ = H/K, K∗ = 1/K. (11)

Thus, the dual surface to an i-minimal surface is also i-minimal. For further
properties of the metric duality, see [22]. We will use duality in Section 4 to
obtain curvatures at mesh vertices from curvatures attached to faces. In partic-
ular, duality will allow us to derive curvatures in triangle meshes from those in
hexagonal meshes.

Already this very brief introduction into isotropic geometry reveals that it
is actually simpler than Euclidean geometry. Isotropic counterparts to nonlinear
problems of Euclidean geometry may be linear and thus computationally less
demanding than their Euclidean version. For example, equation (9) shows that
the PDEs characterizing minimal surfaces or surfaces of constant mean curva-
ture are linear in isotropic geometry; the corresponding equations of Euclidean
geometry are nonlinear. Since we use these tools mainly for aesthetical shape
generation, it may be sufficient to resort to the isotropic version.

In order to present the relation between isotropic geometry and Laguerre
geometry, we have to discuss sphere transformations.
Isotropic sphere transformations. In I3, there exists a counterpart to Euclid-
ean Möbius geometry (recall that planes and spheres form the set of so-called
Möbius spheres and Möbius transformations act bijectively on this set). In I3,
one puts i-spheres of parabolic type and non-isotropic planes into the same
class S of isotropic Möbius spheres; they are given by (3), including A = 0.
Together with an appropriate extension P of the point set of I3 (one adds R
as set of ”ideal points”), there exists a group M i

10 of so-called isotropic Möbius
(i-M) transformations which act bijectively in P and in S . The group of i-M-
transformations also acts bijectively on the set of i-M-circles. An i-M-circle is
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defined as intersection of two i-M-spheres and may be an i-circle of elliptic or
parabolic type or a non-isotropic line. The 10-dimensional group M i

10 is isomor-
phic to the group of Euclidean Laguerre transformations (see subsection 2.2).
The top view of an i-M-transformation is a planar Euclidean Möbius transfor-
mation. The basic i-M-transformations are inversions with respect to i-spheres.
The inversion (reflection) at an i-M-sphere S : z = A(x2 + y2)/2 + ... =: s(x, y)
is given by (x, y, z) 7→ (x, y, 2s(x, y)− z). The top view remains unchanged and
in z-direction we have a reflection at the corresponding point of S. An inversion
κ with respect to an i-sphere S of cylindrical type appears in the top view as
ordinary inversion with respect to the circle S′, the top view of S. Also in 3D,
corresponding points x, κ(x) lie collinear with a fixed center c which must be
contained in the axis of S.

2.2 Laguerre Geometry

Laguerre geometry is the geometry of oriented planes and oriented spheres in
Euclidean E3 [1, 8]. We may write an or. plane P in Hesse normal form nT ·x+h =
0, where the unit normal vector n defines the orientation; nT ·x+h is the signed
distance of the point x to P . An oriented sphere S, with center m and signed
radius r, is tangent to an oriented plane P if the signed distance of m to P
equals r, i.e., nT ·m + h = r. Points are viewed as or. spheres with radius zero.

A Laguerre transformation (L-transformation) is a mapping which is bijective
on the sets of or. planes and or. spheres, respectively, and keeps plane/sphere
tangency. Viewing or. spheres S as points S := (m, r) ∈ R4, an L-transformation
is seen in R4 as a special affine map S′ = a + R · S, where R describes a linear
map which preserves the inner product 〈x,y〉 := x1y1 +x2y2 +x3y3−x4y4. With
the diagonal matrix D := diag(1, 1, 1,−1) we have 〈x,y〉 = xT ·D · y, and the
condition on R reads RT ·D ·R = D. A simple example of an L-transformation
is the offsetting operation (given by the identity matrix R and a = (0, 0, 0, d)),
which adds a constant d to the radius of each sphere and in particular maps a
point to a sphere of radius d.

Let us return to the standard model of Laguerre geometry in E3. A pencil of
parallel or. planes has the same normal vector n (image point on the ”Gaussian”
sphere S2). An L-transformation keeps the parallelity of or. planes and induces
a Möbius transformation of the Gaussian sphere S2. The or. planes which are
tangent to two or. spheres envelope an or. right circular cone, and thus or. cones
(including limit cases) are also objects of Laguerre geometry.
The isotropic model of Laguerre geometry. There is the following remark-
able relation between Laguerre geometry and isotropic Möbius geometry. We
may use (n, h) as coordinates of an or. plane P . However, these four coordinates
are not independent due to ‖n‖ = 1. Thus, one replaces n = (n1, n2, n3) (point
of S2) by its image point (n1/(n3 + 1), n2/(n3 + 1), 0) under the stereographic
projection of S2 from (0, 0,−1) onto z = 0. It is then convenient (and can be
explained in a more geometric way, see e.g. [18]) to view the point

P i :=
1

n3 + 1
(n1, n2, h) (12)
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as a kind of dual image of the oriented plane P : n1x+n2y+n3z+h = 0. P i should
be seen as a point of isotropic space I3, whose point set has been extended to P
(see above). Thus, one also speaks of the isotropic model of Laguerre geometry.
Parallel or. planes P,Q appear in the isotropic model as parallel points P i, Qi.
The or. tangent planes of an or. sphere S are seen as points of an isotropic Möbius
sphere in the isotropic model. The common tangent planes of two or. spheres (=
or. cone) correspond to the common points of two i-M-spheres (= i-M-circle).
A non-developable surface Φ viewed as set of or. tangent planes is mapped to
a surface Φi in the isotropic model. Tangent planes along a Euclidean principal
curvature line of Φ are mapped to points of an isotropic principal curvature line
of Φi. Underlying all these facts is the essential result that an L-transformation
corresponds to an i-M-transformation in the isotropic model. Hence, the two
groups are isomorphic.

These classical relations will be important to realize the close connection
between certain known meshes of Euclidean geometry and the meshes of isotropic
geometry which form the content of the present paper. For more results and
details on Laguerre geometry, see [1, 8, 18].

3 Principal meshes in isotropic geometry

3.1 Meshes with planar faces

Here, we first introduce some essential methods and results on mesh parallelism
[7, 21] and then apply them in the context of isotropic geometry.

M

mk

M ′

m′
k

Fig. 2. Meshes M , M ′ with planar faces are parallel if they are combinatorially equiv-
alent and corresponding edges are parallel.

Mesh parallelism. A mesh M is represented by its vertices, concatenated in
(m1, . . . ,mN ) ∈ R3N and the combinatorics, i.e., edges and faces. If M ′, M ′′

have the same combinatorics, a linear combination λ′M ′ + λ′′M ′′ is defined
vertex-wise; this operation corresponds to the linear combination of vectors in
R3N . Meshes M , M ′ are parallel, if they have the same combinatorics and cor-
responding edges are parallel (see Fig. 2). We use this definition only if the faces
of M (and hence of M ′) are planar. Clearly, corresponding faces of M and M ′
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lie in parallel planes. The set of meshes parallel to M is denoted by P (M ). This
space does not only contain ’nice’ meshes; we may see various undesirable effects
such as unevenly distributed face sizes, sharp regression edges or overlapping re-
gions in meshes of this space, but it is theoretically and practically important to
use it. Even visually unpleasant meshes of P (M ) are helpful in the computation
of optimized supporting beam layouts (cf. [21]).

Since triangles with parallel edges are scaled copies of each other, two parallel
triangle meshes are scaled copies of each other. This degeneracy does not matter
since we do not consider triangle meshes anyway (except at the end of Sec. 4
where a different type of parallelism is used).

Suppose M ′, M ′′ ∈ P (M ). Then, for each edge mimj , the vectors m′
i −m′

j ,
m′′

i − m′′
j are multiples of mi − mj . It follows that any expression (λ′m′

i +
λ′′m′′

i ) − (λ′m′
j + λ′′m′′

j ) is a multiple of mi −mj . This shows that the linear
combination λ′M ′ + λ′′M ′′ is also parallel to M , and thus P (M ) is a linear
subspace of R3N . The zero vector of P (M ) is the mesh o = 0 ·M , all of whose
vertices coincide with the origin of the coordinate system.
Meshes with offsets. A mesh M ′ ∈ P (M ) at constant distance from M is
called an offset of M . Different ways to define the precise meaning of a constant
offset distance, dist(M , M ′) = d, lead to different kinds of offsets:

(i) vertex offsets: ‖mi −m′
i‖ = d, independently of the vertex mi.

(ii) edge offsets: The distance of corresponding parallel edges (actually, lines
which carry those edges) does not depend on the edge and equals d.

(iii) face offsets: The distance of faces (actually, planes which carry faces) is
independent of the face and equals d.

To characterize offset pairs of parallel meshes M , M ′, one defines a further par-
allel mesh, the Gauss image S = (M ′ − M )/d, which satisfies dist(S ,o) = 1.
Then, the following result is easy to show [21]:

(i) For the vertex offsets, the vertices of the Gauss image S are contained in the
unit sphere S2. If S is a quad mesh and no edges degenerate, then M has a
vertex offset if and only if it is circular, i.e., each face has a circum-circle.

(ii) For edge offsets, the edges of the Gauss image S are tangent to S2. These edge
offset meshes are studied in [21] and allow for a realization as architectural
designs with beams of constant height and the cleanest possible nodes.

(iii) For the face offsets, the faces of the Gauss image S are tangent to S2. A
mesh has a face offset if and only if it is conical, i.e., the faces around each
vertex are tangent to a cone of revolution.

Hence, if M has the v-offset (e-offset, f-offset, resp.) property, any parallel
mesh including S has the same offset property.
Relative Gauss mapping and r-principal meshes. The condition that
parallel meshes M , M ′ are at constant distance (in the notation from above,
dist(M ′, M ) = d) is too rigid for certain applications in architecture, in particu-
lar for the layout of fair planar quad meshes, see [21]. One therefore considers the
following generalization: We let M ′ = M +dS , where S ∈ P (M ) is a mesh which



Discrete Surfaces in Isotropic Geometry 11

approximates a certain convex surface Σ, then called the ”relative unit sphere”.
The mesh S , which is parallel to M , is called r-Gauss image of M . The vector si

of S corresponding to a vertex mi of M is the r-normal vector. Then the r-offset
at r-distance d has vertices mi + dsi. The correspondence σ : M → S between
the meshes M and S is called r-Gauss mapping. We use here the terminology
from relative differential geometry [28], which generalizes Euclidean differential
geometry of curves and surfaces by choosing a different ”unit sphere” Σ instead
of the standard Euclidean one. Below, we will choose a paraboloid Σ.

Definition 1. If M and S are parallel quad meshes such that S approximates
the r-unit sphere Σ, we call M an r-principal mesh.

Here, ”approximation” needs to be specified. We have seen three important
examples above: S may have its vertices on Σ (S inscribed to Σ), it may have
its face planes tangent to Σ (S circumscribed to Σ) or its edges may be tangent
to Σ (here, S is called ”midscribed” to Σ [27]). An r-principal mesh can be
considered as discrete counterpart to the network of relative principal curvature
lines of a smooth surface. One reason for this is the following: The relative
normals vi + tsi, si ∈ S , vi ∈ M , along each mesh row or column of M form
a discrete model of a developable surface (since normals at consecutive vertices
are coplanar; see [21]).

Mesh parallelism in isotropic space. Without explicitly mentioning it, we
have described isotropic surface theory in terms of relative differential geometry
with the paraboloid Σ of (5) as r-unit sphere. The presented concepts are ideally
suited to study principal meshes in I3 (i-principal meshes). Before doing this,
we address some consequences of metric duality in I3 onto mesh parallelism and
principal meshes in I3.

Consider a mesh M and a parallel mesh S approximating the isotropic sphere
Σ. Corresponding face planes are parallel and thus we call M and S f-parallel.

Let us now apply metric duality, namely the polarity with respect to Σ, to
an f-parallel mesh pair (M , S). Corresponding vertices m∗

i , s
∗
i of the dual meshes

M ∗, S∗ are the poles of corresponding (parallel) face planes Mi, Si of M , S . Thus,
corresponding vertices m∗

i , s
∗
i are parallel points, i.e., their top views agree; we

call M ∗, S∗ v-parallel. The v-parallel pair (M ∗, S∗) has identical top views and
the combinatorics is dual to that of (M , S). However, corresponding face planes
of (M ∗, S∗) are no longer parallel. Clearly, the meshes which are v-parallel to
M ∗ form a linear space.

Both S and S∗ approximate Σ; if one mesh is inscribed, the other is circum-
scribed, whereas being midscribed remains unchanged under duality. By Def. 1
we can say: If M and S are f-parallel quad meshes and S approximates the i-unit
sphere Σ, then M is an i-principal mesh.

In the smooth setting, metric duality preserves i-principal curvature lines.
Thus we can also use the dual approach: An i-principal mesh M is v-parallel
to a mesh S approximating Σ. Now viewing I3 as isotropic model of Laguerre
geometry, we may perform the change to the standard model in E3. This is a
geometric transformation τ which maps M ⊂ I3 to a mesh N = τ(M ) ⊂ E3.
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Corresponding parallel vertices of M and S are transformed into corresponding
parallel face planes of N and T = τ(S). Since T is an approximation of the
Euclidean sphere τ(Σ) and f-parallel to N , the mesh N is a Euclidean principal
mesh. More precise versions of this general result will be given below.

3.2 Conical and circular meshes in isotropic geometry

In this section we describe two main classes of principal meshes in I3 and de-
rive properties which are fundamental for their design and computation. These
meshes contain aesthetically pleasing ones, which will be demonstrated in section
3.3. We even expect structural advantages, which is a topic of ongoing research.

An i-conical mesh M ∈ I3 is parallel to a quad mesh S whose planar faces
are tangent to an isotropic sphere Σ of parabolic type such as (5). All tangent
planes of Σ which pass through a vertex si ∈ S envelope an isotropic cone of
revolution ∆i and thus the face planes of S which meet at si are tangent to
∆i. By parallelity of corresponding faces in S and M also the faces of M which
meet at the corresponding vertex vi ∈ M are tangent to an isotropic cone of
revolution Γi. The cone Γi arises from ∆i by the translation si 7→ vi.

Let us now apply duality to the f-parallel pair (M , S). As discussed above,
we obtain a v-parallel pair (M ∗, S∗), where S∗ has its vertices s∗i on Σ; s∗i are
the points of tangency between the face planes of S and Σ. Hence, any quad
Q∗ in S∗ has an isotropic circum-circle (intersection of Q∗’s plane and Σ). This
means that the top view of each face Q∗, which agrees with the top view of the
corresponding face of M ∗, has a Euclidean circum-circle. Thus also all faces in
M ∗ have an isotropic circum-circle and we have to call M ∗ ∈ I3 an i-circular
mesh. We see that in I3 conical and circular meshes are dual to each other.
Recall that regularity of surfaces is not preserved under duality. Thus duality is
practically only useful if S is regular (without over-foldings), which implies that
M and M ∗ approximate surfaces without parabolic surface points.

Let us now show that any i-circular mesh M is not only v-parallel to an
inscribed mesh S of Σ, but also f-parallel to another inscribed mesh S1 of Σ.
We pick an arbitrary vertex vi ∈ M and define a point si ∈ Σ as corresponding
vertex of S1. By parallelism of corresponding edges we can now uniquely con-
struct S1. As in Euclidean geometry, there are infinitely many parallel meshes
S1 of M which are inscribed to Σ. Conversely, any mesh M which is parallel
to an inscribed mesh S1 of Σ is circular: If we denote the isotropic angles at
the vertices of a quad Q ∈ S1 by α1, . . . , α4 (these are the Euclidean angles in
the top view, Fig. 3, left), being circular means that the sum of opposite angles
equals π,

α1 + α3 = α2 + α4 = π. (13)

Since the angles of the quad F ∈ M parallel to Q are the same, also F has an
isotropic circum-circle and thus M is i-circular. Let us summarize our results:

Theorem 1. I-circular meshes discretize the network of isotropic principal cur-
vature lines. An i-circular mesh M is v-parallel to an inscribed PQ mesh S of
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the i-unit sphere Σ. Moreover, it is f-parallel to infinitely many inscribed PQ
meshes S1 of Σ. Each quad in M , S and S1 has an isotropic circum-circle, i.e.,
the top views of these meshes are Euclidean circle patterns (Fig. 3, left).

α1α1α1α1α1α1α1α1α1α1α1α1α1α1α1α1α1 α2α2α2α2α2α2α2α2α2α2α2α2α2α2α2α2α2

α3α3α3α3α3α3α3α3α3α3α3α3α3α3α3α3α3
α4α4α4α4α4α4α4α4α4α4α4α4α4α4α4α4α4

ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1ω1 ω2ω2ω2ω2ω2ω2ω2ω2ω2ω2ω2ω2ω2ω2ω2ω2ω2

ω3ω3ω3ω3ω3ω3ω3ω3ω3ω3ω3ω3ω3ω3ω3ω3ω3
ω4ω4ω4ω4ω4ω4ω4ω4ω4ω4ω4ω4ω4ω4ω4ω4ω4

Fig. 3. The top view of an i-circular mesh is a Euclidean circle pattern (left). The
centers of the circles define the dual mesh, which appears as top view of an i-conical
mesh (right).

By duality between i-circular and i-conical meshes and between inscribed
and circumscribed meshes of Σ we see that any conical mesh M is v-parallel to
infinitely many circumscribed meshes S1 of Σ. Moreover, we note that the pole
of a plane Q with respect to Σ has as top view the center of the circle which
appears as top view of the i-circle Q ∩Σ. This proves the following result:

Theorem 2. I-conical meshes discretize the network of isotropic principal cur-
vature lines. They are dual to i-circular meshes. An i-conical mesh M is f-parallel
to a circumscribed mesh S of the i-unit sphere Σ. It is also v-parallel to infinitely
many circumscribed meshes S1 of Σ. The top view M ′ of M is a quad mesh,
whose vertices are the centers of circles in a pattern and thus M ′ is a special
Voronoi diagram (Fig. 3, right).

By duality, an i-conical mesh has at each vertex the angle balance condition

ω1 + ω3 = ω2 + ω4 = π. (14)

These are isotropic angles and may be measured as Euclidean angles in the top
view (cf. Fig. 3, right). (14) also follows from the fact that the vertices of M ′

are centers of circles in a pattern.

Remark 1. I-circular meshes are closely related to conical meshes of Euclidean
geometry. The change τ from the isotropic model of Laguerre geometry to the
standard model maps an i-circular mesh M to a conical mesh N = τ(M ) in
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M

M1

Fig. 4. The i-circular mesh M (left) has been obtained by combined Catmull-Clark
subdivision and optimization. The image M1 of M under an isotropic Möbius transfor-
mation is again an i-circular mesh. The mesh on the right hand side has been obtained
by subdivision and optimization towards an i-conical mesh.

E3. This follows immediately from the fact that the i-circum-circles of M ’s faces
are mapped to the tangent cones of the face planes meeting at N ’s vertices.
Any isotropic Möbius transformation maps an i-circular mesh M (seen as set
of vertices) to another i-circular mesh M1 (Fig. 4). The transformation under
τ yields the known invariance of Euclidean conical meshes (viewed as sets of
oriented face planes) under Laguerre transformations.

3.3 Optimization algorithms

The computation of i-circular and i-conical meshes can be performed with al-
gorithms from Liu et al. [13]. We just have to use conditions (13) and (14),
respectively, as constraints. A simple way for designing such meshes is to alter-
nate between subdivision and optimization (Figs. 4 and 5). It should be noted
that optimization, even if this seems to be the case if we read the description of
algorithms above, does not magically convert any given mesh into an i-circular
or i-conical mesh: Only initial meshes which do not deviate too much from one
with the desired properties will behave in a controlled and expected way. Since
it is easier to define a coarse mesh which has nearly planar faces and further
desired properties (e.g. being close to a discretely i-orthogonal mesh), the com-
bination with subdivision usually works quite well. Although planarity of faces
and other constraints are in general destroyed by any linear subdivision method,
this can be ‘repaired’ in the optimization phase.

3.4 Isothermic meshes and their dual counterparts in I3

A further remarkable type of i-principal meshes M are those which are v-parallel
to a planar quad mesh S all of whose edges touch the i-sphere Σ. Each face plane
of S intersects Σ in an isotropic circle which is tangent to the edges of that
face. If we transform Σ into a Euclidean sphere with an appropriate projective
map , S is mapped to a Koebe polyhedron [34]. Thus, we may call S , which is
midscribed to Σ, an isotropic Koebe polyhedron. The top view of the isotropic
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M0
M1

M2

M ′

Fig. 5. Meshes M0, M1 and M2 (enlarged) have been generated by repeated subdivision
and i-conical optimization. The same holds for the i-conical mesh M ′, but here the side
conditions that M ′ approximates a given design plus its boundary resulted in a loss of
smoothness.

Koebe polyhedron is a quad mesh with the following properties: (i) each face has
an inscribed circle, and (ii) per edge there is only one point of tangency with the
inscribed circles of the adjacent faces. This shows the existence of an orthogonal
circle packing (Fig. 6). The arising orthogonal circle patterns have been first
discussed by Schramm [26]; their computation from given combinatorics amounts
to the minimization of a convex function [6]. We call M an i-isothermic mesh; it
is an isotropic counterpart of the S-isothermic meshes by Bobenko at al. [2]. As
in the Euclidean case, these meshes are not suitable for approximating arbitrary
surfaces. They discretize isothermic surfaces of I3. In section 4 we will investigate
a particularly beautiful class of i-isothermic meshes, namely discrete versions of
i-minimal surfaces.

Theorem 3. I-isothermic meshes discretize the network of isotropic principal
curvature lines on isothermic surfaces in I3. An i-isothermic mesh is v-parallel
to an isotropic Koebe polyhedron and has a top view mesh whose faces have
inscribed circles which belong to a Schramm circle pattern (Fig. 6).

Remark 2. If we view an i-isothermic mesh M as set of i-circles inscribed to its
faces, an i-Möbius transformation maps M to another i-isothermic mesh. More-
over, if we map the set of inscribed i-circles via the transfer τ to the standard
model of Laguerre geometry in E3, we obtain a set of right circular cones Γj ,
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Fig. 6. The top view of an i-isothermic mesh is a quad mesh whose faces have inscribed
circles. These circles are part of a circle packing (left). Quadruples of points of tangency
are co-circular; these orthogonal circles form a second circle packing (right).

whose vertices gj form a quad mesh N with planar faces and the edge offset prop-
erty (for direct constructions of the meshes N , see [21]). The cone Γj with vertex
gj contains the 4 edges emanating from vj . The invariance of i-isothermicity un-
der i-Möbius transformations proves the invariance of edge offset quad meshes
N under Laguerre transformations if N is viewed as set of vertex cones Γj .

4 Isotropic curvatures in meshes with planar faces

The aesthetics of meshes is essential for artistic applications such as architecture.
Aesthetics is closely related to the curvature behavior and thus it is important
to have an adapted discrete curvature theory at our disposal. This is the topic of
the present section. We will illustrate the results with discrete minimal surfaces,
i.e., surfaces with vanishing discrete i-mean curvature.

We consider a mesh M ∈ I3 with planar faces, not necessarily a quad mesh,
and an f-parallel mesh S which approximates Σ. Thus S may be viewed as i-
Gauss image σ(M ) of M . For such a situation, an adapted discrete curvature
theory has been developed recently [21]. We briefly describe this theory, using
the simplifications which arise in I3, and later present a dual counterpart which
is more specific to isotropic geometry.

I-curvatures at faces. Let F be a face of M with vertices v0, . . . ,vk−1. The
corresponding parallel face S = σ(F ) of S shall have vertices s0, . . . , sk−1. The
isotropic area of a domain can be measured as usual area in the top view. Let
v′

i, s
′
i ∈ R2 denote the top views of the involved vertices. The signed areas of the

top views of F and S (isotropic areas of F and S) can be computed as

area(F ′) =
1
2

k−1∑
j=0

det(v′
j ,v

′
j+1), area(S′) =

1
2

k−1∑
j=0

det(s′j , s
′
j+1), (15)



Discrete Surfaces in Isotropic Geometry 17

with indices modulo k. We also need the so-called mixed area of the two polygons
F ′ and S′, which is a well known concept in convex geometry [25],

area(F ′, S′) :=
1
4

k−1∑
j=0

[det(v′
j , s

′
j+1) + det(s′j ,v

′
j+1)]. (16)

I-curvature K and i-mean curvature H of mesh M at face F are then defined as

K(F ) =
area(S′)
area(F ′)

, H(F ) =
area(F ′, S′)

area(F ′)
. (17)

It has been shown in [21] that these definitions of curvatures in many aspects
behave as their counterparts in the smooth setting. An example is the following:
If F , S or any linear combination of them is convex, one can prove H(F )2 −
K(F ) ≥ 0 and thus compute principal curvatures κ1(F ), κ2(F ) which satisfy
H(F ) = [κ1(F ) + κ2(F )]/2 and K(F ) = κ1(F )κ2(F ). A further example is the
curvature behavior of the offset meshes M d = M + dS ,

K(F d) =
K(F )

1 + 2dH(F ) + d2K(F )
, H(F d) =

H(F ) + dK(F )
1 + 2dH(F ) + d2K(F )

. (18)

This includes the following discrete isotropic version of a known result on surfaces
of constant mean curvature in Euclidean geometry: If M has constant isotropic
mean curvature H 6= 0, then its offset at distance d = −1/H has constant i-mean
curvature −H and the offset at distance d = −1/(2H) has constant i-Gaussian
curvature K = 4H2.

Remark 3. We have adopted common sign conventions in isotropic geometry
which differ from the Euclidean ones at some places. This is seen in the last
remark on offsets, in the sign of H, and in the fact that we defined the derivative
(not the negative derivative) of the i-Gauss mapping as shape operator.

1
2

34

2∗

1∗

4∗

3∗

Fig. 7. Left: Two parallel quads have vanishing mixed area if they possess opposite
orientation and parallel diagonals. If one of the two quads possesses an inscribed circle,
so does the other. Right: Christoffel dual meshes are parallel meshes where all pairs of
corresponding faces have vanishing mixed area.
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I-minimal surfaces and Christoffel duality. Discrete minimal surfaces in I3

are meshes with H = 0, i.e. with

area(F, S) = 0, (19)

for all parallel face pairs (F, S), which is equivalent to area(F ′, S′) = 0. Ac-
cording to (9), they discretize graph surfaces of harmonic functions. A simple
characterization of parallel quads F = 1234 and S = 1∗2∗3∗4∗ with vanishing
mixed area has been presented in [21],

area(F, S) = 0 ⇐⇒ 13 parallel 2∗4∗, 24 parallel 1∗3∗. (20)

This is illustrated in Fig. 7, left. Note that the two quads differ in their orienta-
tion. If F has an inscribed circle, so does S (Fig. 7, left). It may seem easy now
to construct isotropic minimal surfaces. However, starting from a mesh S which
approximates Σ, it will in general not be possible to derive a minimal mesh M
by a face-wise construction from the faces S ∈ S , since the construction of the
four faces around a vertex does not close. If the construction is possible in a
consistent way, one calls the pair (M , S) a Christoffel-dual pair (Fig. 7, right).
Christoffel duality should not be mixed up with metric duality.

S ′
S ′
1

M

M1

Fig. 8. Discrete i-minimal surfaces represented by i-isothermic meshes: isotropic En-
neper surface M and isotropic counterpart M1 to Bonnet’s minimal surface; the top
views of the corresponding isotropic Koebe meshes are S ′, S ′

1. In meshes S , M , S1, M1

all row and column polygons are planar.
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M ∗

M ∗
1

Fig. 9. Discrete i-minimal surfaces which are dual to the surfaces from Fig. 8.

We have already presented meshes to which Christoffel duality can be applied.
These are the i-isothermic meshes, in particular isotropic Koebe meshes. The
Christoffel dual of an isotropic Koebe mesh is a discrete i-minimal surface, and
a special i-isothermic mesh. This is the isotropic counterpart to the discrete
Euclidean minimal surfaces of Bobenko et al. [2].

Figures 8 and 9 show some examples which have been generated as follows:
Apply an inversion to the planar regular square grid (viewed as set of circles
inscribed to the grid cells) to get a circle packing and a Koebe mesh S ′ in the
plane. This is a discrete version of two orthogonal pencils of circles. Then lift
this mesh to the paraboloid Σ such that one obtains an i-Koebe mesh S ; the
edges of S have to touch Σ. The Christoffel dual M of S is a discrete isotropic
Enneper surface, whose smooth analogue has been studied by Strubecker [31].
Just lifting the square grid to Σ and then computing the Christoffel dual yields a
discrete right hyperbolic paraboloid, the simplest i-minimal surface. Computing
an i-Koebe mesh Sr with rotational symmetry and dualizing it, one obtains
a discrete rotational i-minimal surface. Its smooth counterpart is the so-called
logarithmoid, obtained by rotating the curve z = lnx of the xz-plane around
the z-axis (for a hexagonal version, see Fig. 10, left). Finally, we may apply an
isotropic Möbius transformation to Sr and obtain an i-Koebe mesh S1 whose
top view S ′

1 discretizes two orthogonal pencils of circles through two points. The
resulting i-minimal surface M1 is a discrete isotropic counterpart to Bonnet’s
minimal surface. The i-minimal meshes of this paragraph are exactly those which
possess planar discrete principal curvature lines (row and column polygons).

Surfaces M ∗ and M ∗
1 which correspond to M and M1, resp., via metric

duality are illustrated in Fig. 9. These surfaces have the property that the planes
of all faces along the same row or column of the mesh pass through a fixed point
(which may be at infinity).

The concept is not limited to quad meshes. We may also construct hexagonal
meshes which are discrete versions of minimal surfaces, starting from hexagonal
Koebe polyhedra. In the example of Fig. 10, left, the realization of area(F, S) = 0
is simple due to rotational symmetry. It allows us to split each hexagon by the
symmetry axis into two quads and compute the Christoffel dual. Fig. 10 also
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shows rotational hexagonal meshes whose discrete curvature measures H or K
are constant; their construction is based on formula (17) and the exploitation of
symmetry.

Fig. 10. Hexagonal meshes with planar faces and rotational symmetry, representing
an i-minimal surface (left), a surface with constant i-mean curvature H (middle) and
a surface with constant i-curvature K (right).

Remark 4. Application of an i-M-inversion κ to the inscribed circles of the faces
in an i-minimal mesh M results in a collection of inscribed circles of the faces
of another mesh κ(M ). The latter is no longer minimal, but can be shown to
discretize the graph z = f(x, y) of a biharmonic function (∆2f = 0), also known
as an Airy surface [30]. By mapping M or κ(M ) back to the standard model
of Laguerre geometry in the way explained in Remark 2, one obtains discrete
versions of so-called Laguerre minimal surfaces (of the spherical type), which
have been investigated by Blaschke [1]. Since the presented i-minimal meshes
M are i-isothermic, the resulting Laguerre-minimal meshes N possess the edge
offset property (cf. Remark 2). There are further types of Laguerre-minimal
edge offset meshes, all of which can be constructed from Koebe meshes. These
remarkable discrete surfaces will be the subject of a forthcoming publication.

I-curvatures at vertices. Metric duality in I3 allows us to define discrete
curvatures at vertices as well. Dual to the points of a domain F in a plane
P is a set F ∗ of planes through a point P ∗. By duality, the isotropic measure
(density) D(F ∗) of the plane set F ∗ in the sense of integral geometry [23] equals
the isotropic area of F (area(F ′) of the top view F ′). Let P0, . . . , Pk−1 be the
face planes of a mesh M around vertex v. Each plane Pj can be written as
z = pj,1x + pj,2y + pj,3 and we set pj := (pj,1, pj,2). Then, the measure D(v) of
the “vertex planes around v” (which are dual to the points in the face v∗ of the
dual mesh M ∗) is computed as the areas in (15),

D(v) =
1
2

k−1∑
j=0

det(pj ,pj+1). (21)

The rest follows easily: We consider a v-parallel mesh S of M which approxi-
mates Σ. Let s ∈ S be the vertex corresponding to v ∈ M (i.e., s′ = v′). The
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planes through s possess a density measure D(s) = (1/2)
∑

det(qj ,qj+1) and
analogous to (16) we define the mixed measure D(v, s) = (1/4)

∑
[det(pj ,qj+1)+

det(qj ,pj+1)]. In view of equations (11) and (17) curvatures of M at vertex v
are defined by

K(v) =
D(v)
D(s)

, H(v) =
D(v, s)
D(s)

. (22)

Discrete face curvatures do not make much sense for triangle meshes M since
f-parallel triangle meshes are similar and thus one cannot find an appropriate
Gaussian image S unless M itself approximates Σ. However, vertex curvatures
work for triangle meshes as well (see Fig. 11). In fact, here it is particularly
easy to get S : We project the vertices of M in isotropic z-direction onto Σ. The
relation between face curvatures, vertex curvatures and curvatures associated
with edges of principal meshes will be described in a separate publication.

M

Fig. 11. Diagram surfaces for vertex curvatures H (middle) and K (right), computed
with formula (22) for the triangle mesh M , whose vertices lie on a given analytic surface
z = f(x, y). The curvatures match the true values with high accuracy.

Conclusion and future research. The main contribution of the present paper
is the geometric discussion of remarkable new types of meshes. For applications,
i-minimal surfaces are certainly interesting. They deserve a much more detailed
investigation and the derivation of tools such as the computation of a discrete
i-minimal surface through a prescribed closed boundary.

Discrete differential geometry in its interplay with architecture is a wide
area for future work. We only address a few topics related to isotropic geometry:
Due to their optimal node properties, we need to know more about the possible
shapes of quadrilateral edge offsets meshes and the related i-isothermic meshes.
A careful investigation of smooth and discrete Laguerre-minimal surfaces and
their suitability for architecture is also missing. Discrete surfaces in I3 with
constant H or K are also of interest.

Probably the most important research task towards the implementation of
freeform geometry in architecture is to find new ways of approximating a given
freeform shape by meshes with properties that are desirable for architecture (for
a result obtained by currently available methods, see Fig. 5, bottom).
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werken. Patent No. A1049/2006.

8. Cecil, T.: Lie Sphere Geometry. Springer, 1992.

9. Cohen-Steiner, D., Alliez, P., and Desbrun, M.: Variational shape approximation.
ACM Trans. Graphics, 23(3):905–914, 2004.

10. Cutler, B. and Whiting, E.: Constrained planar remeshing for architecture. In
Symp. Geom. Processing 2006, poster.

11. Glymph, J. et al.: A parametric strategy for freeform glass structures using quadri-
lateral planar facets. In Acadia 2002, pages 303–321. ACM, 2002.

12. Koenderink, I. J. and van Doorn, A. J.: Image processing done right. In Computer
Vision – ECCV 2002, Part I, pages 158–172.

13. Liu, Y., Pottmann, H., Wallner, J., Yang, Y.-L., and Wang, W.: Geometric
modeling with conical meshes and developable surfaces. ACM Trans. Graphics,
25(3):681–689, 2006.

14. Martin, R., de Pont, J. and Sharrock, T.: Cyclide surfaces in computer aided
design. In J. A. Gregory, editor, The mathematics of surfaces, pages 253–268.
Clarendon Press, Oxford, 1986.

15. Peternell, M.: Developable surface fitting to point clouds, Comp. Aid. Geom. Des.,
21(8):785–803, 2004.

16. Peternell, M. and Pottmann, H.: A Laguerre geometric approach to rational offsets.
Comp. Aid. Geom. Des., 15:223–249, 1998.

17. Pottmann, H. and Opitz, K.: Curvature analysis and visualization for functions
defined on Euclidean spaces or surfaces. Comp. Aid. Geom. Des., 11:655–674, 1994.

18. Pottmann, H. and Peternell, M.: Applications of Laguerre geometry in CAGD.
Comp. Aid. Geom. Des., 15:165–186, 1998.



Discrete Surfaces in Isotropic Geometry 23

19. Pottmann, H., Brell-Cokcan, S. and Wallner, J.: Discrete surfaces for architectural
design. In Curve and Surface Design: Avignon 2006, pages 213–234. Nashboro
Press.

20. Pottmann, H. and Wallner, J.: The focal geometry of circular and conical meshes.
Adv. Comput. Math, 2007. to appear.

21. Pottmann, H., Liu, Y., Wallner, J., Bobenko, A., and Wang, W.: Geometry of
multi-layer freeform structures for architecture. ACM Trans. Graphics, 26(3), 2007.

22. Sachs, H.: Isotrope Geometrie des Raumes. Vieweg, 1990.

23. Santalo, L.: Integral Geometry and Geometric Probability. Addison Wesley, 1976.

24. Sauer, R.: Differenzengeometrie. Springer, 1970.

25. Schneider, R.: Convex bodies: the Brunn-Minkowski theory. Cambridge University
Press, 1993.

26. Schramm, O.: Circle patterns with the combinatorics of the square grid. Duke
Math. J., 86:347–389, 1997.

27. Schramm, O.: How to cage an egg. Invent. Math., 107:543–560, 1992.

28. Simon, U., Schwenck-Schellschmidt, A. and Viesel, H.: Introduction to the affine
differential geometry of hypersurfaces. Lecture Notes. Science Univ. Tokyo, 1992.

29. Strubecker, K.: Differentialgeometrie des isotropen Raumes III: Flächentheorie.
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