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Abstract

The conchoid surface G of a given surface F with respect to a point O is roughly speaking the
surface obtained by increasing the radius function of F with respect to O by a constant d. This
paper studies real rational ruled surfaces in this context and proves that their conchoid surfaces
possess real rational parameterizations, independently on the position of O. Thus any rational ruled
surface F admits a rational radius function r(u, v) with respect to any point in space. Besides the
general skew ruled surfaces and examples of low algebraic degree we study ruled surfaces generated
by rational motions.

Keywords: rational ruled surface, rational conchoid surface, polar representation, rational radius
function, pencil of conics.

1. Introduction

The conchoid is a classical geometric construction and dates back already to the ancient Greeks.
Given a planar curve C, a fixed point O and a constant distance d, the conchoid D of C with
respect to O at distance d is the set of points Q in the line OP at distance d of a point P varying
at the curve C,

D = {Q ∈ OP with P ∈ C, and QP = d}∗, (1)

where the asterisk denotes the Zariski closure. For a formal definition of the conchoid in terms of
diagrams of incidence we refer to [11, 12]. The definition of the conchoid surface to a given surface
F in space with respect to a given point O and distance d follows analogous lines. Note that the
definition of the conchoid (either for curves or for surfaces) by means of diagrams of incidence, in
combination with the Closure Theorem (see [2] p. 122), imply that elimination theory techniques,
such as Gröbner bases, provide the equations of the conchoid.

1.1. Polar representation of conchoids
We briefly turn to the curve case to discuss some important properties. For an analytic repre-

sentation it is appropriate to choose O = (0, 0). Using a representation of a curve C in terms of
polar coordinates c(t) = r(t)(cos t, sin t), its conchoid curve D with respect to O and distance d
is obtained by d(t) = (r(t)± d)(cos t, sin t). More generally we can consider any parameterization
k(t) of the unit circle S1. The curve C and its conchoid curves D are represented by

c(t) = r(t)k(t) and d(t) = (r(t)± d)k(t), with ‖k‖ = 1. (2)
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Surfaces and their conchoids are analogously represented. With respect to a given point O =
(0, 0, 0) ∈ R3 and a parameterization k(u, v) of the unit sphere S2, a surface F is parameterized
by a polar representation f(u, v) = r(u, v)k(u, v). The conchoid surface G of F at distance d is
consequently represented by

g(u, v) = (r(u, v)± d)k(u, v). (3)

We consider trigonometric parameterizations k = (cosu cos v, sinu cos v, sin v) of S2 or rational ones,
for instance k = (2ac, 2bc, a2+b2−c2)/(a2+b2+c2). This rational parameterization originates from
a stereographic projection with center (0, 0,−1) which maps points (a/c, b/c, 0) of the plane z = 0
to points k in S2. Here, a, b and c can be considered as polynomials, for instance a = u, b = v and
c = 1. More generally the unit sphere S2 admits rational parameterizations k = (A/D,B/D,C/D),
with

A = 2(ac+ bd), B = 2(bc− ad), C = a2 + b2 − c2 − d2, D = a2 + b2 + c2 + d2,

where a, b, c and d are assumed to be polynomials in u and v.
Conchoids of curves can be found in several monographs on curves and surfaces, see for instance

[4]. The classical conchoid of Nicomedes, that is the conchoid of a line, appeared already 200 B.C.
The conchoid of a circle with respect to one of its points is also a well known curve, called Limacon
of Pascal. A recent careful investigation of algebraic properties of conchoid curves and conditions
for their rationality, as well as direct parameterization algorithms, can be found in [11, 12].

The conchoid of a curve can be considered as special case of the cissoid of two curves. Given
two curves A and B and a fixed point O, and let P and Q be two points in A and B, respectively,
which are collinear with O. The cissoid of A and B with respect to O is the set of points X in
the lines OP for P ∈ A which satisfy the relation OX = OP − OQ. By specializing B as circle of
radius d centered at O, we arrive at the definition of the conchoid of A with respect to O. Some
authors use the sum instead of the difference in the cissoid’s definition. By reflecting B at O these
definitions are equivalent. A recent publication dealing with this topic is [1].

Let a surface F in R3 be represented in polar coordinates by f(u, v) = r(u, v)k(u, v), with
‖k‖ = 1. We note that the conchoid surfaces are always computed with respect to the origin
O = (0, 0, 0) as focus point. The construction itself is invariant with respect to rotations and
scaling with center O. For general rational surfaces the rationality of the conchoids is typically
dependent on the position of the focus point O with respect to the surface. For ruled surfaces we
prove that their conchoids are rational independent on the position of the focus point.

Typically we use Cartesian coordinates x = (x, y, z) to represent points in R3. The dot product
of x and y is denoted by x · y and for the squared norm ‖x‖2 we also use x2. For representing
points in projective space P3 ⊃ R3 we use homogeneous coordinates (x0, x1, x2, x3)R, which are
determined only up to a common factor. Assuming x0 = 0 to be the ideal plane, the conversion
between Cartesian and homogeneous coordinates is x = x1/x0, y = x2/x0, and z = x3/x0.

1.2. Contribution
The main result being proved is that any rational ruled surface F admits a rational polar

representation f(u, v) = r(u, v)k(u, v) with a rational radius function r(u, v) = ‖f(u, v)‖ and a
particular rational parameterization k(u, v) of the unit sphere S2. This implies that the conchoid
surface G of F with respect to any point O in R3 and distance d admits a rational parameterization.

The construction involves finding a suitable rational parameterization k(u, v) of S2 for a given
rational ruled surface F together with the determination of the rational radius function r(u, v). In
the general case this amounts in parameterizing a rational one-parameter family of conics in P2, see
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Section 2. The construction of surfaces with rational conchoid surfaces is related to rational offset
surfaces. The dual approach to these surfaces uses a rational parameterization of the unit sphere
together with a rational function determining the distance of tangent planes from the origin, see
[7]. A Laguerre geometric approach to rational offset surfaces is discussed in [3, 5].

We investigate the general conchoid construction of rational ruled surfaces as well as several
particular cases where the parameterization problem turns out to be simpler. Ruled surfaces gener-
ated by rational motions of a line are discussed in Section 2.2 which includes rational cylinders and
rotational ruled surfaces. Geometric considerations and arguments go along with this discussion.
Further we give some examples in Section 3 to illustrate the results.

1.3. The conchoid of a line in R2

To introduce to the subject of conchoid curves and surfaces, we deal at first with two simple
examples, the conchoid of a line in R2 and the conchoid of a plane in R3, see Figure 1. The first
example gives the conchoid of Nicomedes and has even been studied by the ancient Greeks. We
introduce to basic techniques to construct parameterizations of conchoids.

Since the conchoid construction is invariant with respect to rotations and central similarities,
we assume that the line C whose conchoid we want to construct, is given by y = 1. Let k(u) =
(cosu, sinu) be a parameterization of the unit circle, then C is obtained by

c(u) =
1

sinu
(cosu, sinu) =

(cosu
sinu

, 1
)
, with r =

1
sinu

. (4)

Increasing r(u) by a constant d leads to a trigonometric parameterization of the conchoid D of C,

d(u) =
1 + d sinu

sinu
(cosu, sinu). (5)

Substituting trigonometric functions by rational functions converts (4) and (5) into rational param-
eterizations of C and D. By eliminating the parameter u we find that D is an algebraic curve of
order four,

D : y2(x2 + y2)− 2y(x2 + y2) + x2 + y2(1− d2) = 0.

Since this equation does not contain constant and linear terms in x and y, the origin O = (0, 0)
is a double point of D. Moreover the leading term is y2(x2 + y2), thus D is circular which means
that D passes through the ideal points (0, 1, i)R and (0, 1,−i)R, besides the ideal double point at
(0, 1, 0)R.

1.4. The conchoid of a plane R3

Analogously to the conchoid curve of a line in R2 we construct the conchoid surface of a plane F
in R3. Applying a rotation and a scaling with center O = (0, 0, 0), we assume F : z = 1. Considering
the parameterization k(u, v) = (cosu cos v, sinu cos v, sin v) of the unit sphere, the plane F : z = 1
is represented by the radius function r(u, v) = 1/ sin v. Thus the conchoid surface G of the plane
F admits the trigonometric parameterization

g(u, v) = (r(u, v) + d)k(u, v) =
1 + d sin v

sin v
(cosu cos v, sinu cos v, sin v), (6)

and an implicit equation of G reads

G : z2(x2 + y2 + z2)− 2z(x2 + y2 + z2) + x2 + y2 + z2(1− d2) = 0.
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Figure 1: Left: Conchoid of a line in R2. Right: Conchoid of a plane in R3.

The intersection of G with the ideal plane is z2(x2 + y2 + z2) = 0 and consists of the ideal conic
x2 + y2 + z2 = 0 and the doubly counted line z2 = 0. The conchoid G is a surface of rotation of
degree four with z as axis. The horizontal intersections are circles with centers on z and G can be
generated by rotating the conchoid of a line around z.

Considering a plane F in general position with respect to the coordinate system, the unknown
radius function of F can also be obtained by inserting the parameterization r(u, v)k(u, v) into the
linear equation F : a·x+a0 = 0, with a0 6= 0 and a = (a1, a2, a3) as normal vector of F . This results
in r(u, v) = −a0/(a ·k). Planes passing through the origin (a0 = 0) have to be excluded here, since
these planes are not in bijective correspondence to the bundle of lines with vertex O = (0, 0, 0).

Considering a quadric surface F passing through the origin O, the presented method to deter-
mine r(u, v) works too. Let F be given by the implicit equation F : x ·A ·x + b ·x = 0. Inserting a
rational polar representation r(u, v)k(u, v) with an unknown function r(u, v) into F gives a rational
solution r(u, v) = −(b · k)/(k ·A · k) besides the trivial solution r = 0. This argumentation can be
extended to monomial algebraic surfaces of degree n with an (n−1)-fold point at O and it is proved
easily that their conchoid surfaces are rational. Note that in this whole paragraph the focus is not
taken in generic position but as a point on the quadric in the first case and as the singularity in
the second case. Changing the position of the focus (e.g. out of the quadric) results in a different
behavior.

We summarize the presented parameterization technique: to construct a parameterization of
the conchoid surface G of a given surface F with respect to the origin O and a specified distance d,
we have to determine a polar representation r(u, v)k(u, v), where k(u, v) is a suitable parameteri-
zation of S2. If both r(u, v) and k(u, v) are rational functions, the surface F has a rational polar
representation and its conchoid surfaces G are rational. The following sections contain a detailed
discussion for rational ruled surfaces F and their conchoids.

2. The conchoid surfaces of rational ruled surfaces

A ruled surface F carries a one-parameter family of straight lines, thus admits a parametric
representation f(u, v) = c(u) + v e(u), where c(u) is called directrix curve and e(u) is a direction
vector field of F ’s generating lines. The directrix curve c on F can be replaced with any other
curve h(u) = c(u) + v(u)e(u) different from F ’s generating lines.

Let fu = ċ + vė and fv = e be the partial derivatives of f. The normal vector

n(u, v) = ċ(u)× e(u) + vė(u)× e(u) = n1(u) + vn2(u)
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is a linear combination of the vectors n1 and n2. Given a fixed generating line L of F , the normal
vectors along L may be linearly independent or not. In the previous case L is called skew generating
line, and in case of linear dependece L is called torsal generating line of F . A ruled surface carrying
only a finite number of torsal generators is called skew ruled surface. If all generating lines of F are
torsal, F is a developable ruled surface. The latter family consists of cylinders, cones and tangent
surfaces of space curves or combinations of those.

The construction of a conchoid surface of a parameterized ruled surface F relies on the polar
representation f(u, v) = r(u, v)k(u, v). We consider the mapping

σ : f(u, v)→ k(u, v) = σ(f(u, v)), (7)

and denote σ(f(u, v)) as spherical part of F and r(u, v) as radius function. We may write σ(F )
instead of σ(f(u, v)).

The spherical part σ(F ) of a ruled surface F (see Fig.2, right) consists of a one parameter family
of great circles in S2 being the v-lines of k(u, v). Considering the parameterization f = c + ve of
F , the circles are the intersections of S2 with planes E : x · (c× e) = 0. Typically the great circles
S2 ∩ E envelope some curve which needs not to be real or may degenerate to single points.

2.1. General construction
Let a rational ruled surface F be given by f(u, v) = c(u) + ve(u), with rational directrix c(u)

and rational direction vectors e(u). Typically it is difficult to define F as zero set of an implicit
function. In order to find a rational polar representation r(u, v)k(u, v) of F , we investigate the
squared length

‖f(u, v)‖2 = ‖c(u)‖2 + 2vc(u) · e(u) + v2‖e(u)‖2. (8)

We prove that there exists a reparameterization of F such that ‖f(u, v)‖ is a rational function.
At first a curve h(u) = c(u) + v(u)e(u) of F with rational radius function ‖h(u)‖ is constructed.
In a second step we show how to extend this result to a rational polar representation of F . The
constructive proof that any rational ruled surface F carries a curve h(u) with rational radius
function ‖h(u)‖ is mainly based on the following lemma.

Lemma 1. Let
a(u) : (x0, x1, x2) ·A(u) · (x0, x1, x2)T = 0, (9)

be a one parameter family of conics in P2(R), with a symmetric matrix A(u) in R3×3 with real
rational entries (aij(u) ∈ R(u)), and (x0, x1, x2)R are homogeneous coordinates in P2(R). If for
all but finitely many u ∈ R the quadratic curve a(u) contains more than one real point, then there
exists real rational functions y0(u), y1(u) and y2(u) which satisfy (9) identically.

Proof: We give a short outline. The complete proof can be found in [6, 8] and further applications
of this property to rational surfaces with families of conics can be found in [5, 9, 10]. One way
to construct a rational curve y(u)R = (y0, y1, y2)(u)R which satisfies (9) identically, is to apply a
coordinate transformation such that the conics a(u) are represented in diagonal form

a(u) : L(u)x2
0 +M(u)x2

1 +N(u)x2
2 = 0. (10)

We assume that the coefficients L, M and N are polynomials without common zeros. Consider a
zero u? of L. Equation (10) factorizes into two real or conjugate complex linear equations in x1

and x2, depending on the signs of M(u?) and N(u?). Performing these factorizations for all zeros
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Figure 2: Left: The family of conics a(u) and different solutions y(u). Right: Spherical part k(u, v) of a ruled
surface.

of the polynomials L, M and N , we obtain a system of necessary linear equations for a solution
of (10). Typically we have to take into account also one quadratic equation to determine a real
curve y(u) ⊂ P2(R) satisfying (10) identically. �

What does this mean for the equation (8), the squared norm of a ruled surface parameterization?
Performing the substitutions v = x2/x1 and ‖f‖ = x0/x1 in equation (8) results in a one-parameter
family of conics

a(u) : x2
1c(u)2 + 2x1x2c(u) · e(u) + x2

2e(u)2 − x2
0 = 0, (11)

with rational coefficients. According to the Cauchy-Schwarz inequality c2e2 − (c · e)2 ≥ 0, the
quadratic curves a(u) are real for all but finitely many u ∈ R. According to Lemma 1 there exists
a rational curve y(u)R = (y0, y1, y2)(u)R with y(u) ∈ a(u). For an illustration see Fig.2, left. This
proves

Lemma 2. Let f(u, v) = c(u) + ve(u) be a rational parameterization of a rational ruled surface
F in R3. Then there exists a rational solution y(u) = (y0, y1, y2)(u) of (11) and consequently a
rational curve h(u) = f(u, v(u)) in F with rational distance ‖h(u)‖ from the origin O = (0, 0, 0),
with

h(u) = c(u) + v(u)e(u), with v(u) =
y2(u)
y1(u)

, and ‖h(u)‖ =
y0(u)
y1(u)

. (12)

Applying a stereographic projection, the family of conics a(u) from (11) admits a rational param-
eterization z(u, t) with the property that the t-lines of z(u, t) are the conics a(u). Substituting
v = z2(u, t)/z1(u, t) in f(u, v) = c(u) + ve(u) results in a rational parameterization of F

f(u, t) = c(u) +
z2(u, t)
z1(u, t)

e(u), with ‖f(u, t)‖ =
z0(u, t)
z1(u, t)

= r(u, t). (13)

Rational polar representations of F and its conchoids G with respect to O and distance d read

f(u, t) = r(u, t)k(u, t) =
1
z1

(z1c + z2e), with r =
z0
z1
, and k =

1
z0

(z1c + z2e),

g(u, v) = (r(u, t) + d)k(u, t) =
z0 + dz1
z0z1

(z1c + z2e) . (14)
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Theorem 3. Let F be a rational ruled surface in R3. Then there exists a rational polar repre-
sentation f(u, v) = r(u, v)k(u, v) in terms of a rational distance function r(u, v) and a rational
parameterization k(u, v) with ‖k‖ = 1. The straight lines on F are represented by the v-lines of
f(u, v). Consequently, the conchoid surfaces G of F admit rational parameterizations (14).

Distinguished directrix curve. To represent the family of conics (11) by a diagonal matrix A(u)
means to represent the ruled surface f(u, v) = p(u) + ve(u) by the foot-point curve p(u) of F
with respect to O = (0, 0, 0). Starting from a general directrix curve c(u), the foot-point curve
p(u) = c(u) + v(u)e(u) is determined by the condition p · e = 0. This leads to v(u) = −(c · e)/e2,
and we obtain

p(u) = c(u)− c(u) · e(u)
‖e(u)‖2

e(u). (15)

According to this distinguished directrix curve p(u), the equation (11) in P2 simplifies to

a(u) : p(u)2x2
1 + e(u)2x2

2 − x2
0 = 0. (16)

Introducing affine coordinates x = x1/x0 and y = x2/x0 we obtain a family of real ellipses centered
at (0, 0) and common axes x and y. The lengths of the major and minor axes are the reciprocal
values of ‖p(u)‖ and ‖e(u)‖, which are in general not rational.

Typically the construction of the parameterization z(u, t) of the family of conics a(u) in equation
(16) requires some computational effort. There are a couple of geometrically distinguished cases
where this computation simplifies or is elementary. In particular, if the squared norm of e(u) or
p(u) is constant, the family of conics (16) passes through two fixed points.

2.2. The conchoid surfaces of ruled surfaces whose direction vectors have rational length
Let F be a rational ruled surface with foot-point curve p(u) with respect to the origin and

directions vectors e(u) with rational length. Without loss of generality we may assume ‖e(u)‖ =
1. Consequently the squared norm of the parameterization f(u, v) = p(u) + ve(u) simplifies to
‖f‖2 = ‖p‖2 + v2. Using the substitutions v = x2/x1 and ‖f‖ = x0/x1, the corresponding family of
conics (16) reads

a(u) : p(u)2x2
1 + x2

2 = x2
0. (17)

Obviously these conics share the common points (1, 0, 1)R and (1, 0,−1)R. Applying a stereographic
projection to this family of conics a(u) leads to a rational parameterization of (17),

z(u, t) = (1 + p(u)2t2, 2t, 1− p(u)2t2).

Consequently the ruled surface F admits the rational parameterization

f(u, t) = p(u) +
z2(u, t)
z1(u, t)

e, with ‖f(u, t)‖ =
z0(u, t)
z1(u, t)

. (18)

Using (14) one obtains a rational polar representation of F and its conchoid surfaces G. In the
remainder of this section we discuss some examples.

• Let F be a rational cylinder. We may assume that F ’s direction vector is e = (0, 0, 1). The
cross section curve p(u) = (p1, p2, 0)(u) is the foot-point curve of F with respect to O.

7



F

G

f
g

O

(a) Rotational cylin-
der

F

G

f
g O
(b) Rotational cone

F

G

f
g

O

(c) Rotational hyper-
boloid

d
f

g

F

G
O

(d) Rotational hyperboloid

Figure 3: Rotational ruled surfaces and their conchoids.

• Let F be a rotational ruled surface. We may assume that F ’s rotational axis is parallel to
the z-axis of the coordinate system, but different from it, and that its direction vector is
e(u) = (cosα cosu, cosα sinu, sinα), with α = const. Besides the trivial cases α = 0 where
F is a plane and α = π/2 where F is a rotational cylinder, F is a one sheet hyperboloid. An
example is illustrated in Fig. 3(d).

• More general examples are obtained by applying a rational motion to a line. The direction
vector e(u) defines a rational curve in the unit sphere. A well known example, the Plücker
conoid, is discussed in Sect 3.1.

• Other special cases of rational ruled surfaces F occur if the norms ‖p(u)‖ and ‖e(u)‖ in
equation (16) are both rational. We may assume ‖e‖ = 1 and we denote ‖p(u)‖ = α(u).
Thus there exists a spherical rational curve a(u) with ‖a(u)‖ = 1 and p(u) = α(u)a(u). The
spherical part σ(F ) consists of great circles being contained in planes spanned by the rational
orthogonal unit vectors a(u) and e(u) and σ(F ) admits the parameterization

k(u, t) = a(u) cos t+ e(u) sin t.

To determine the radius function r(u, t) of f(u, t) = r(u, t)k(u, t), the parameterization z(u, t)
= (α(u), cos t, α(u) sin t) of the conics a(u) from (16) leads to r(u, t) = z0/z1.

This case occurs when computing conchoid surfaces G of rotational ruled surfaces F with
respect to a point O on the rotational axis. Examples are illustrated in Fig.3(a), 3(b), and 3(c).
It is evident that the conchoid surface G of F is a rotational surface. The generating curve
of the conchoid G is the conchoid curve with respect to O of a generating line of F .

2.3. The conchoid surfaces of rational cones
Let F be a rational cone with vertex v = (0, 0, 1) and directrix curve c(u) = (c1(u), c2(u), 0).

For dealing with the general case we assume that O /∈ F . Then F is parameterized by

f(u, v) = v + v(c(u)− v) = v + ve(u),
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with e(u) = (c1(u), c2(u),−1). With respect to these choices the squared length of f(u, v) is
‖f(u, v)‖2 = 1− 2v + e(u)2v2. According to (11) the family of conics reads

a(u) : x2
1 − 2x1x2 + x2

2e(u)2 = x2
0. (19)

The conics a(u) share two common points (1,−1, 0)R and (1, 1, 0)R, and a stereographic projec-
tion results in their rational parameterization z(u, t) = (1 − 2t + e(u)2t2, 1 − e(u)2t2, 2t(1 − t)).
Substituting v = z2/z1 in f(u, v) gives the rational parameterization

f(u, t) = v +
2t(1− t)

1− e(u)2t2
e(u), with ‖f(u, t)‖ =

z0(u, t)
z1(u, t)

=
1− 2t+ e(u)2t2

1− e(u)2t2
. (20)

Rational polar representations of F and its conchoid surfaces G are obtained with (14).

3. Examples

This section shows two examples in detail. The conchoid construction of a famous cubic ruled
surface, the Plücker conoid, which is projectively equivalent to the Whitney umbrella, and the
conchoid of a hyperbolic paraboloid. The necessary computational steps are outlined. To obtain
a diagonal normal form of the family of conics determined by the squared distance ‖f(u, v)‖2 we
might use the method presented in Section 2.1. These examples show another method where the
conics a(u) are represented in a coordinate system which is based on the vertices of a polar triangle
as base points.

3.1. Plücker conoid
The Plücker conoid F is an algebraic ruled surface of order three, also called cylindroid and

projectively equivalent to the Whitney umbrella. A trigonometric parameterization with the double
line as z-axis reads (0, 0, sin 2u)+v(cosu, sinu, 0). It can be generated in the following way. Rotate
the x-axis around z and superimpose this rotation by the translation (0, 0, sin 2u) in z-direction.
An implicit equation of F is z(x2 + y2) = 2xy.

Since the z-axis is a double line of F , the origin is a double point and the computation of
the conchoid with respect to O is trivial. Thus we apply a translation by (0, 1, 2). A rational
parameterization of the translated surface which is again denoted by F is given by

f(u, v) =
(
−(u2 − 1)v
u2 + 1

,
u2 + 2vu+ 1

u2 + 1
,

2(u4 − 2u3 + 2u2 + 2u+ 1)
(u2 + 1)2

)
(21)

The squared length of f(u, v) corresponds to the family of conics

a(u) : −(u2 + 1)4x2
0 + α(u))x2

1 + 4u(u2 + 1)3x1x2 + (u2 + 1)4x2
2 = 0, (22)

with α(u) = 5(u2 + 1)4 + 16u(u2 − 1)((u2 + 1)2 + u(u2 − 1)). It’s obvious that these conics share
the vertices (±1, 0, 1)R.

A rational solution (z0, z1, z2) of (22) is computed by stereographic projection of the line (0, 1, t)R
onto the conics from (22) with center (1, 0, 1)R. This leads to the reparameterization along the
generating lines of F ,

v(u, t) =
z2
z1

= −α(u)t2 + (u2 + 1)2(4tu− 1)
2(u2 + 1)3t

. (23)
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Figure 4: Conchoids G of a hyperbolic paraboloid (left) and of a Plücker conoid (right).

The surface F has the rational radius function

‖f(u, t)‖ =
z0
z1

= −α(u)t2 + (u2 + 1)2

2(u2 + 1)3t
. (24)

Substituting (23) in (21) leads to a rational parameterization of f(u, t) and a rational parameteri-
zation of the conchoid G with respect to O and distance d = 1

g(u, t) =

 β(u, t)(u2 − 1)(α(u)t2 + (u2 + 1)2(4tu− 1))
β(u, t)(−α(u)t2u+ (u4 − 1)2t+ (u2 + 1)u)
4tβ(u, t)(u2 + 1)2((u2 + 1)2 − 2(u2 + 2)u)


with

β(u, t) =
α(u)t2 + 2(u2 + 1)3t+ (u2 + 1)2

2t(u2 + 1)2(α(u)(u2 + 1)2t2 + (u2 + 1)4)
.

3.2. Hyperbolic paraboloid
A hyperbolic paraboloid can be given by f(u, v) = (u, v, uv+1), and the squared length of f(u, v)

reads ‖f(u, v)‖2 = (u2 +1)v2 +2uv+(u2 +1). For the corresponding one parameter family of conics
a(u) we get

a(u) : −x2
0 + (u2 + 1)x2

1 + 2ux1x2 + (u2 + 1)x2
2 = 0.

By the rational transformation x0 = x0, x1 = x1 + x2, x2 = x1 − x2, the conics are transformed
into the normal form, where we use again xi instead of xi,

a(u) = −x2
0 + 2(u2 + u+ 1)x2

1 + 2(u2 − u+ 1)x2
2 = 0. (25)

According to Lemma 1 there exists a curve

y(u) =
1
5

(
(2
√

2− 4
√

3)u2 + (6
√

2− 2
√

3)u− 2
√

2− 6
√

3, (2
√

6 + 2)u+ 5, 2
√

6 + 3
)
.

10



following the conics a(u). Stereographic projection applied to each conic a(u) finally leads to
a parameterization z(u, t) of a(u) and the desired reparameterization of F . The center of the
stereographic projection is y(u) and the line which is projected to a(u) is chosen by q(t) = (0, 1, t)R.
This leads to the rational polar representation of the hyperbolic paraboloid F ,

f(u, t) = (u, v(u, t), uv(u, t) + 1),

with

v(u, t) =
b− 2t+ bt2 + u(−c+ 2at− at2) + u2(c− 4t− at2) + u3(−1− 2t+ t2)
−1− 2bt+ t2 + 2ut(2 + t) + 2u2t(−a+ t) + u3(−1 + 2t+ t2)

,

and the constant factors a = 1−
√

6, b = 2−
√

6 and c = 3−
√

6. For the rational radius function
of f(u, t) we obtain

‖f(u, t)‖ =
√

2(1 + t2 + u(−1 + t2) + u2(1 + t2))(4−
√

6 +
√

6u+ 2u2)
2(−1− 2bt+ t2 + 2ut(2 + t) + 2u2t(−a+ t) + u3(−1 + 2t+ t2))

.

4. Conclusion

We have discussed the well known conchoid construction applied to rational ruled surfaces. The
main result says that the conchoid of a rational ruled surface is a rational surface independent
on the position of the focus point. The construction basically relies on the parameterization of
a rational one-parameter family of conics. Special cases like cylinders, cones and rotational ruled
surfaces are discussed and several examples are given to illustrate the method.
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