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In order to determine αh, we (overdo it maybe a little bit and) show that

α(s) =

∫ s

σ=0

√
a+ cosσ

b+ cosσ

∏nc
i=1(ci + cosσ)∏nd
i=1(di + cosσ)

dσ, (1)

with nc ≤ nd and di being distinct constants1, can be expressed as a linear
combination of elliptic integrals of the third kind2 with different elliptic
characteristics, that is

α(s) =

nd∑
i=0

γiΠ(δi;φ(s),m) (2)

where
φ(s) = arctan(ζ tan

s

2
). (3)

We compute3 the occurring constants γi, δi, ζ and m explicitly in terms of
the given a, b, ci and di.

Lets therefore assume α to be given by (2). As

d

ds
Π(l;φ(s), k) =

φ′

(1− l sin2 φ)
√

1− k sin2 φ
,

the derivative of α reads

α′ =
φ′√

1−m sin2 φ

n∑
i=0

γi

1− δi sin2 φ
. (4)

1Probably, this condition could be generalized, but I’m not (yet) familiar with closed
formulas for the coefficients of a partial fraction decomposition with multiple roots.

2Π(l;φ(s), k) =
∫ φ
0

1

(1−l sin2 θ)
√

1−k sin2 θ
dθ

3In order to avoid division by zero, it will turn out that a 6= 1, b 6= −1 and di 6= −1
for i = 1, . . . , nd. In order to avoid lengthy formulations, we therefore start with formal
manipulations.
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With the introduction of a new constant ζ we make the ansatz (3) for the
Jacobi amplitude φ of the integrals. Utilizing the trigonometric relations

sin arctanx =
x√

1 + x2
,

tan
s

2
=

sin s

cos s+ 1
,

sin2 s = (1− cos s)(1 + cos s),

Ck = 1− k sin2 φ thus simplifies to

Ck = 1− k ζ2 sin2 s

ζ2 sin2 s+ (1 + cos s)2

= 1− k ζ2(1− cos s)

(1− ζ2) cos s+ 1 + ζ2

=
(1− ζ2(1− k)) cos s+ 1 + ζ2(1− k)

(1− ζ2) cos s+ 1 + ζ2
.

With the abbreviation of the, w.r.t. cos s linear, term

Dk = (1− ζ2(1− k)) cos s+ 1 + ζ2(1− k),

we write Ck = Dk
D0

.

Furthermore, using the half-argument formula cos2 s2 = 1
2(cos s+ 1),

φ′ =
ζ

(1− ζ2) cos s+ 1 + ζ2
=

ζ

D0
.

Insertion into (4) therefore yields

α′ =
φ′√
Cm

nd∑
i=0

γi
Cδi

=

√
D0

Dm
ζ

nd∑
i=0

γi
Dδi

.

Finally, we introduce a new constant ξ, and make the following two ansatzes√
D0

Dm
=

1

ξ

√
cos s+ a

cos s+ b
, (5)

and

ζ

nd∑
i=0

γi
Dδi

= ξ

∏nc
i=1(ci + cos s)∏nd
i=1(di + cos s)

. (6)

This results in feasible solutions, since (5) yields a quadratic polynomial in
cos s and thus three equations for the unknowns m, ζ and ξ. Similarly, (6)
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yields nd + 1 conditions for the nd + 1 unknowns γi, if the δi are chosen
appropriately.

Before resuming with the computation, we recall the formula for the deter-
mination of the coefficients of a partial fraction decomposition4:

Given two polynomials P (x) and Q(x) =
∏n
i=1(x − αi), where

the αi are distinct constants and degP < n, the partial fraction
decomposition reads

P (x)

Q(x)
=

n∑
i=1

P (αi)

Q′(αi)

1

(x− αi)
,

where Q′ is the derivative of the polynomial Q.

Lets first consider (6). In order to be able to compare coefficients, we choose
δi with i = 1, . . . , nd, so that Dδi become multiples of di+cos s. This results
in

di =
1 + ζ2(1− δi)
1− ζ2(1− δi)

,

which yields

δi = 1− di − 1

(di + 1)ζ2
, and Dδi =

2

di + 1
(di + cos s),

for i = 1, . . . , nd. Equation (6) therefore becomes

ζ

2ξ

( γ0
Dδ0

+

nd∑
i=1

γi(di + 1)
1

di + cos s

)
=

∏nc
i=1(ci + cos s)∏nd
i=1(di + cos s)

.

Now we consider the partial fraction decomposition of the ratio of the two
polynomials C(x) =

∏nc
i=1(ci + x) and D(x) =

∏nd
i=1(di + x).

In case of nc = nd, we rewrite

C(x)

D(x)
= 1 +

(C −D)(x)

D(x)

= 1 +

nd∑
i=1

(C −D)(−di)
D′(−di)

1

di + x

= 1 +

nd∑
i=1

C(−di)
D′(−di)

1

di + x

= 1 +

nd∑
i=1

∏nc
j=1(cj − di)∏
j 6=i(dj − di)

1

di + x
.

4https://en.wikipedia.org/wiki/Partial_fraction_decomposition, TODO: find
better reference.
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In case of nc < nd, a straight forward computation yields

C(x)

D(x)
=

nd∑
i=1

C(−di)
D′(−di)

1

di + x

=

nd∑
i=1

∏nc
j=1(cj − di)∏
j 6=i(dj − di)

1

di + x
.

It thus follows by comparing coefficients of both modified sides of (6), that

γi =
2ξ

ζ

∏n
j=1(cj − di)

(1 + di)
∏
j 6=i(dj − di)

for i = 1, . . . , n.

Furthermore, we require Dδ0 to be constant w.r.t. cos s, and hence define

δ0 = 1− 1

ζ2
,

and consequently

γ0 =

{
2ξ
ζ for nc = nd,

0 for nc < nd.

The remaining unknowns are computed from the second ansatz (5) and read

ζ = ±
√
a− 1√
a+ 1

,

m =
2(a− b)

(a− 1)(b+ 1)
,

ξ = ±
√
a+ 1√
b+ 1

.

This explains the restrictions for the constants, namely a 6= 1, b 6= −1 and
di 6= −1 for i = 1, . . . , nd mentioned earlier.

Returning to the initial problem of integrating α′
h, we utilize the results from

above for nc = nd = 1 and choose the coefficients

a = 2 + 2h, b = c1 = 2− 2h, d1 =
1

4
(5− h2),

avoiding a 6= 1 and b 6= −1.
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