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Abstract We discuss the following motion design problem: Given are N positions
Σ(ti) of a moving body Σ0

⊂ R
3 at time instances ti. Compute a smooth

rigid body motion Σ(t) which interpolates or approximates the given
key or control positions Σ(ti). Moreover, the motion shall minimize a
certain energy which is expressed with help of the energies of trajectories
of points on the moving body. Based on very recent results on splines in
manifolds we present a characterization of motions which are analogous
to known energy minimizing spline curves, such as C2 cubic splines or
splines in tension.
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1. Introduction

Smooth interpolation or approximation of given positions of a moving
body is a fundamental task in computer animation and robot motion
planning (Latombe, 2001). There exists a large body of literature dealing
with this subject, which is rooted in kinematics and Computer Aided
Geometric Design (for a recent survey, see Jüttler and Wagner, 2002).

From a more abstract point of view, the problem is a curve inter-
polation or approximation problem in a manifold. In the present case,
this manifold is formed by the elements of the group SE(3) of Euclidean
congruence transformations. Depending on the application, various em-
beddings in a higher dimensional space are appropriate.

Recent work (Belta and Kumar, 2002; Hofer et al., 2004; Wallner,
2004) uses an embedding as 6-dimensional manifold M 6 in a 12-dimen-
sional affine space, which arises as kinematic image space of affine maps
in R

3. With an appropriate Euclidean metric in R
12, the orthogonal



projection onto M 6 can be computed explicitly. Now smooth motions
arise via the projection of smooth curves c(t) ⊂ R

12 onto M6. If c(t)
minimizes an energy functional, its projection c̄ ⊂ M6 is in general not
a minimizer. Therefore, this simple projection principle is not suitable
for variational motion design. For contributions to the latter topic, see
Barr et al., 1992; Jüttler and Wagner, 2002; Park and Ravani, 1997;
Ramamoorthi and Barr, 1997.

In continuation of work started in Hofer et al., 2004, we discuss
here variational motion design as a variational curve design problem
on M6 ⊂ R

12. Very recent general results on energy minimizing splines
in manifolds (Pottmann and Hofer, 2004) are used to characterize energy
minimizing motions. The energy is formulated with help of the energies
of trajectories of a finite or infinite set of points (feature points) on the
moving body. We find characterizations which are analogous to elegant
known results in classical spline theory. For example, the L2 norm of the
second derivative as an energy leads in the unrestricted classical curve
interpolation case to cubic C2 splines; for motion interpolation, we ob-
tain C2 motions for which – at each time instant – the force system,
defined by the 4-th derivative vectors attached to the feature points,
is in balance. Geodesic motions in the present setting appear as free
motions in the sense of mechanics (Arnol’d, 1989).

The focus of the present paper lies on the description of the theoretical
framework and the derivation of the main characterization of energy
minimizing motions. We address the computation, which is a special
case of the computation of splines in manifolds, only briefly, and finally
present illustrative examples.

2. The Group of Euclidean Motions Embedded
in the Affine Group

Consider a rigid body moving in Euclidean three-space E3. We use
Cartesian coordinates and denote points of the moving system Σ0 by
x0, y0, . . . , and points of the fixed system by x, y, and so on.

A one-parameter motion Σ0/Σ is a smooth family of Euclidean congru-
ence transformations depending on a parameter t which can be thought
of as time. A point x0 of Σ0 is, at time t, mapped to the point

x(t) = A(t) · x0 + a0(t) (1)

of Σ, where A(t) ∈ SO(3) and a0(t) ∈ R
3.

If we do not impose any restriction to the matrix A in Eq. (1), we get,
for each t, an affine map.



In the following, we will use a kinematic mapping that views affine
maps as points in 12-dimensional affine space. For that, consider the
affine map x = α(x0) = a0 + A · x0. Let us denote the three column
vectors of A as a1, a2, a3. They describe the images of the basis vectors
of Σ0 in Σ. Of course, we have x = a0 + x0

1a1 + x0
2a2 + x0

3a3. Now we
associate with the affine map α a point in 12-dimensional affine space
R

12, represented by the vector A = (a0, . . . , a3).
The images of Euclidean congruence transformations (rigid body mo-

tions) α ∈ SE(3) form a 6-dimensional manifold M 6 ⊂ R
12. Its 6

equations are given by the orthogonality conditions of A, i.e., ai · aj =
δij , i = 1, 2, 3.

It will be necessary to introduce a meaningful metric in R
12. Following

Hofer et al., 2004, this is done with help of a collection X of points
x0

1, x
0
2, . . . , x

0
N in the moving system (body), which shall be called feature

points henceforth. The squared distance between two affine maps α and
β is now defined as sum of squared distances of feature point positions
after application of α and β, respectively,

d2(α, β) = ‖A − B‖2 :=
∑

i

[α(x0
i ) − β(x0

i )]
2. (2)

With A = (a0, . . . , a3), B = (b0, . . . , b3), C := A − B = (c0, . . . , c3),
and x0

i = (x0
i,1, x

0
i,2, x

0
i,3) the distance becomes

‖A− B‖2 = ‖C‖2 =
∑

i

[c0 + x0
i,1c1 + x0

i,2c2 + x0
i,3c3]

2 = CT ·M · C. (3)

This expression with help of a positive definite symmetric matrix M
immediately reveals the following result (Hofer et al., 2004): The metric
(2) in the space of affine maps only depends on the barycenter sx =
(1/N)

∑

i x
0
i and on the inertia tensor

J :=
∑

i

x0
i · x

0
i

T
(4)

of the set of feature points x0
i in the moving system. R

12 equipped with
this metric is a Euclidean space E12.

We also see that we need not use unit point masses at a discrete
number of feature points. We could instead work with another positive
measure on a domain of interest D (the moving body) in Σ0, e.g. the
Lebesgue measure times the characteristic function χd of D. Of course,
we then replace summation in (2) by integration.



By a well-known result from mechanics, we can replace the points
x0

1, . . . , x
0
N by the six special points

sx ±

√

λj

2
ej , j = 1, 2, 3, (5)

without changing the barycenter and the inertia tensor of X. There,
λ1, λ2, λ3 and e1, e2, e3 are the eigenvalues and corresponding unit eigen-
vectors of the matrix J . Let us choose the barycenter as origin in the
moving system and the eigenvectors of J as coordinate axes. Then the six
points have coordinates (±f1, 0, 0), (0,±f2, 0), (0, 0,±f3), and the norm
in R

12 becomes

‖C‖2 = 6c2
0 + 2

3
∑

i=1

f2
i c2

i . (6)

For the following considerations it will be important to know about
the tangent spaces at points A ⊂ M 6 and to characterize orthogonality
to these tangent spaces.

A tangent vector at an arbitrary point A ∈ E12 can be interpreted in
E3 as a velocity vector field of an affine motion. In particular, a tangent
vector of M6 belongs to a velocity vector field of a Euclidean motion,
which is of the form v(x) = c + c × x. The coordinate representation
of this tangent vector in E12, attached to A = (a0, . . . , a3) ∈ M6, reads

T = (c + c × a0, c × a1, . . . , c × a3). (7)

We would like to express orthogonality of an arbitrary vector D =
(d0, d1, . . . , d3) ∈ R

12 to the tangent space at A. If we align origin
and axes of the coordinate system in Σ0 with center and axes of the
inertia ellipsoid, the inner product is expressed in view of (6) as

〈D, T〉 = 6d0 · (c + c × a0) + 2
3

∑

i=1

f2
i di · (c × ai).

This equation may also be written as

〈D, T〉 = 6d0 · c + 6c · (a0 × d0) + 2c
3

∑

i=1

f2
i (ai × di). (8)

Let us attach to the six feature point positions a0 ± fiai, i = 1, 2, 3,
the vectors of the linear vector field determined by D ∈ R

12. These
vectors are d0±fidi, and shall be interpreted as forces (for such concepts



from statics, see e.g. Pottmann and Wallner, 2001, pp. 191–194). The
moments of these forces are

(a0 ± fiai) × (d0 ± fidi).

The sums of force vectors and moment vectors is the screw

(sd, sd) = (6d0, 6a0 × d0 + 2
3

∑

i=1

f2
i (ai × di)). (9)

The screw resulting from the action of an instantaneous affine motion
(linear vector field) on these points is the same whether we use the 6
special feature points or the original set of feature points (or the mass
distribution). We call this the screw or force system Sd induced by the
linear vector field D.

The inner product (8) between T and D is now expressed as

〈D, T〉 = c · sd + c · sd. (10)

This is the virtual work done by the force system Sd on the body which
moves instantaneously with the velocity field determined by T. Orthog-
onality between D and all T requires (sd, sd) = 0, i.e., balance of the
induced force system Sd. Thus, we have proved the following result.

Theorem 1 A vector D ∈ R
12, attached to a point A ∈ M 6, is orthog-

onal to M6 ⊂ E12 iff the force system Sd induced by D is in balance.

3. Variational Motion Design as Variational
Curve Design on M

6
⊂ E

12

A Euclidean one-parameter motion corresponds to a curve on the
manifold M6 ⊂ E12. The design of such curves via projection onto M 6

is a principle of transfer from curve design to motion design (Hofer et al.,
2004). Such an approach, however, does not preserve minimum energy
properties. Thus, we are now dealing with the problem of constructing
energy minimizing interpolating spline curves on M 6. In this way, we
are computing energy minimizing Euclidean motions which interpolate
given positions.

Consider an m-dimensional manifold Φ, embedded in Euclidean R
n,

m < n. Moreover, a sequence of points pi ∈ Φ, i = 1, . . . , N and real
numbers t1 < · · · < tN are given. We are seeking interpolating splines
in the manifold.

Let us recall the situation, where we are not confined to a manifold:
Among all curves x(t) ⊂ R

n, whose first and second derivative satisfy



ẋ ∈ AC(I), ẍ ∈ L2(I) on I = [t1, tN ], and which interpolate the given
data, x(ti) = pi, the unique minimizer of

E2(x) =

∫ tN

t1

ẍ2dt, (11)

is the interpolating C2 cubic spline c(t).
Pottmann and Hofer, 2004 extended this well-known result to the

case where the admissible curves x(u) are restricted to the given man-
ifold Φ. We are considering the restriction to Φ as a constraint, rather
than formulating the problem in terms of the intrinsic geometry of the
manifold. The solution can be characterized as follows (Pottmann and
Hofer, 2004):

Theorem 2 Consider real numbers t1 < . . . < tN and points p1, . . . , pN

on an m-dimensional C4 manifold Φ in Euclidean R
n. Then among all

C1 curves x : [t1, tN ] → Φ ⊂ R
n, whose restrictions to the intervals

[ti, ti+1], i = 1, . . . , N − 1 are C4 and which interpolate the given points,
x(ti) = pi, i = 1, . . . , N , a curve c which minimizes the functional E2 of
Eq. (11) is C2 and possesses segments c|[ti, ti+1], whose fourth derivative
vectors are orthogonal to Φ. Moreover, at the end points p1 = c(t1)
and pN = c(tN ) of the solution curve, the second derivative vector is
orthogonal to Φ.

We are viewing ti as given time instances, at which given positions,
i.e., points Pi ∈ M6, have to be interpolated. The energy (11) of a
curve X(t) ⊂ E12 uses the norm induced by (2) and thus it may also
be interpreted as sum of the corresponding energies (L2 norms of the
second derivatives) of the feature point trajectories.

According to Theorem 2, the solution curve C(t) ⊂ M 6 has 4-th

derivative vectors C(4)(t), which are orthogonal to M 6. The force system

S4(t) induced by C(4)(t) consists of the fourth derivative vectors of the
feature point trajectories at a given instant t. Using Theorems 1 and 2,
we obtain the following result.

Theorem 3 Consider N input positions, corresponding time instances
ti and differentiability assumptions as in Theorem 2. Then, an interpo-
lating motion minimizing the sum of energies (L2 norms of the second
derivatives) of the feature point trajectories is characterized as follows.
The motion is C2, has at each time instant t 6= ti a balanced 4-th deriva-
tive force system S4(t), and at the end positions balanced force systems
S2(t1), S2(tN ) of second derivatives. In particular, the trajectory of the
barycenter of the feature points is an interpolating cubic C2 spline.



The result on the trajectory of the barycenter follows from the van-
ishing of the force components sk of the involved k-th derivative systems
Sk = (sk, sk).

We see that these motions somehow balance the deviations of the
point trajectories from C2 cubic splines; there the 4-th derivatives would
vanish everywhere. Note that a motion with only C2 cubic spline tra-
jectories must be translational (the image curve lies in a 3-dimensional
affine subspace contained in M 6 and is a cubic spline itself).

It is also quite natural that the moving body via its mass distribution
(barycenter and inertia tensor) enters the variational formulation and
the interpretation of the solution. That the present approach is natural
from the viewpoint of mechanics and kinematics, is also nicely seen if
we replace the energy in (11) by the L2 norm of the first derivative,

E1(x) =

∫ tN

t1

ẋ2dt. (12)

Moreover, we just prescribe the two end positions. Then, one finds with
a known counterpart of Theorem 2 (see e.g. Pottmann and Hofer, 2004)
a curve C(t) ⊂ M6, whose second derivative vectors C̈ are orthogonal
to M6. From this we conclude immediately that the minimizers of E1

are geodesics on M6 in a scaled arc length parameterization, i.e., ‖Ċ‖ =
const. This proves the following theorem.

Theorem 4 Motions which join two given positions and arise from
minimization of (12) correspond to geodesics on M 6, parameterized by
a constant multiple of arc length. At any time instant, such a geodesic
motion possesses a balanced force system S2(t) of second derivatives.
The trajectory of the barycenter of the feature point set on the moving
body is a straight line traced with constant speed. These motions are free
motions of a body in the sense of mechanics.

Note that a helical motion is a geodesic motion between two positions
Σ(t1) and Σ(t2), if the positions of the inertia ellipsoids share a common
axis, and if this is the axis of the helical motion joining the two positions.
For more results on free motions, we refer to Arnol’d, 1989.

By minimization of a combination Et := E2 + wE1 with a constant
positive factor w one obtains the counterparts of splines in tension for
motions. These are characterized as in Theorem 3, but instead of a
balanced 4-th derivative force system, the linearly combined force system
S4 − wS2 is in balance. A proof follows from results in (Pottmann and
Hofer, 2004). Various other spline types, interpolating or approximating,
can be transferred to motion design within the present setting. This will
be developed in the future.



Note that the functionals we are considering are also optimizing the
parameterization. This is useful for motion design where the time t as
parameter plays an important role for applications.

Since even for geodesics we do not have simple results on uniqueness,
the more involved case of splines will hardly allow us a characterization
of situations with a unique solution. For a proof of the existence of the
solution, we refer to (Bohl, 1999; Wallner, 2003).

4. Computational Approach and Examples

Although the presented spline motions possess nice geometric charac-
terizations, the problem is still nonlinear and does not admit an explicit
solution as in the unrestricted curve design case. Thus, we have to
use numerical algorithms based on a discretization. Geometrically this
means that we replace the curve C(t) ⊂ M 6 by a sufficiently dense poly-
gon Pc with vertices Ci ∈ M6. These vertices represent positions of the
motion at discrete time instances.

Discretizing a quadratic functional, such as E1, E2, Et, results in a
quadratic function in the coordinates of the vertices Ci of the approxi-
mating polygon P . Since the Ci’s are restricted to M 6, we end up with
the constrained minimization of a quadratic function in a rather high di-
mensional space. From a geometric viewpoint, we have to construct the
closest point p∗ on some manifold S to a given point p. Here, p repre-
sents the unrestricted (discretized) spline curve in E12. For the solution
of this problem, we developed a geometrically motivated optimization
algorithm of the quasi-Newton type (Hofer and Pottmann, 2004). It has
been used for the computation of the examples presented in Figs. 1,2.

Another computational approach directly uses the characterization of
the motions in a discretized way. For example, a motion minimizing E2

has a balanced 4th central difference screw at any instance in the time
discretization. This results in a system of nonlinear equations, which
can be solved with a Newton iteration. In view of the bad global be-
haviour of a pure Newton algorithm, we used the quasi-Newton approach
mentioned above.

5. Conclusions and Future Research

We have used a kinematic mapping of SE(3) to points of a six dimen-
sional manifold M6 embedded in 12-dimensional Euclidean space E12.
The latter space corresponds to affine maps, and the metric therein is
defined naturally with help of feature points (a mass distribution) of the
moving body. Variational motion design is thus transferred to variational
curve design on M6. Based on recent results on splines in manifolds,



(a) (b)

(c) (d)

Figure 1. Cyclic motion of a robot gripper interpolating 5 positions (dark), and
the paths of the barycenter and the feature point (f1, 0, 0): Motion minimizing (a)
E1, (b) Et with w = 0.05, (c) E2; (d) Path of feature point compared to cubic spline.

Figure 2. Open motion interpolating 8 positions and minimizing E2.



we could characterize and compute the solutions of several variational
motion design problems that generalize known variational curve design
schemes. The present contribution is not aiming at a special represen-
tation of the solution, e.g. in NURBS form, which could be obtained
after the design by an approximation scheme (see Jüttler and Wagner,
2002). Future research will be devoted to a more efficient computation
based on a quadratically convergent Newton-type iteration, to motion
smoothing, and to obstacle avoidance in motion design.

Acknowledgements

This research has been supported by the Austrian Science Fund (FWF)
under grant P16002-N05, and in part by California Department of Trans-
portation through University of California-Davis.

References

Arnol’d, V.I. (1989), Mathematical methods of classical mechanics. 2nd ed., Springer,
New York.

Barr, A.H., Currin, B., Gabriel, S., and Hughes, J.F. (1992), Smooth interpolation of
orientations with angular velocity constraints using quaternions, Computer Graph-
ics 26 (SIGGRAPH ’92), pp. 313–320.

Belta, C., and Kumar, V. (2002), An SVD-projection method for interpolation on
SE(3), IEEE Trans. on Robotics and Automation 18, 334–345.

Bohl, H. (1999), Kurven minimaler Energie auf getrimmten Flächen, PhD thesis,
Stuttgart.

Hofer, M., and Pottmann, H. (2004), Energy-minimizing splines in manifolds, sub-
mitted for publication.

Hofer, M., Pottmann, H., and Ravani, B. (2004), From curve design algorithms to the
design of rigid body motions, The Visual Computer, to appear.
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