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Abstract

Industrial Geometry aims at unifying existing and developing new methods and
algorithms for a variety of application areas with a strong geometric component.
These include CAD, CAM, Geometric Modelling, Robotics, Computer Vision and
Image Processing, Computer Graphics and Scientific Visualization. In this paper,
Industrial Geometry is illustrated via the fruitful interplay of the areas indicated
above in the context of novel solutions of CAD related, geometric optimization
problems involving distance functions: approximation with general B-spline curves
and surfaces or with subdivision surfaces, approximation with special surfaces for
applications in architecture or manufacturing, approximate conversion from implicit
to parametric (NURBS) representation, and registration problems for industrial
inspection and 3D model generation from measurement data. Moreover, we describe
a ’feature sensitive’ metric on surfaces, whose definition relies on the concept of an
image manifold, introduced into Computer Vision and Image Processing by Kimmel,
Malladi and Sochen. This metric is sensitive to features such as smoothed edges,
which are characterized by a significant deviation of the two principal curvatures.
We illustrate its applications at hand of feature sensitive curve design on surfaces
and local neighborhood definition and region growing as an aid in the segmentation
process for reverse engineering of geometric objects.

Key words: geometric optimization, distance function, curve approximation,
surface approximation, active contours, registration, feature sensitivity,
mathematical morphology

∗ Corresponding author.
Email addresses: pottmann@geometrie.tuwien.ac.at (H. Pottmann),

leopoldseder@geometrie.tuwien.ac.at (S. Leopoldseder),
hofer@geometrie.tuwien.ac.at (M. Hofer), tibor@geometrie.tuwien.ac.at
(T. Steiner), wenping@cs.hku.hk (W. Wang).

Preprint submitted to Elsevier Science 5 July 2004



1 Introduction

During the past decades, geometric methods have played an increasingly im-
portant role in a variety of areas dealing with computing for industrial appli-
cations; these include Computer-Aided Design and Manufacturing, Geomet-
ric Modeling, Computational Geometry, Robotics, Computer Vision, Pattern
Recognition and Image Processing, Computer Graphics and Scientific Visual-
ization.

These areas originated from different requirements in specific applications and
thus they have seen rather disjunct developments. In fact, very similar prob-
lems have been treated by different communities. These communities still have
different favorite solutions to nearly the same problems. Let us illustrate this
at hand of curve approximation. According to industry standards, the CAD
approach uses B-spline curves and a method for data fitting which iterates
between parameter estimation and linear least squares approximation [11,35].
Computer Vision and Image Processing developed another method, active
contours [4,12], which have originally been formulated as parametric curves.
Nowadays, the advantages of (discretized) implicit representations and the
formulation of the curve evolution via partial differential equations in the
level set method [19,31] are highly appreciated, in particular for difficult curve
approximation problems which arise in image segmentation. Curve approxi-
mation also appears in higher dimensional spaces: For example, in the space
of rigid body motions it leads to motion design for Robotics [17] or Computer
Animation.

In recent years, these different areas of research have started to become in-
creasingly interconnected, and have even begun to merge. A driving force in
this process is the increasing complexity of applications, where one field of re-
search alone would be insufficient to achieve useful results. Novel technologies
for acquisition and processing of data lead to new and increasingly challenging
problems, whose solutions require the combination of techniques from differ-
ent branches of applied geometry. The thereby emerging research area, which
aims at unifying existing and developing new methods and algorithms for a
variety of application areas with a strong geometric component, shall be called
Industrial Geometry.

Let us continue the example from curve approximation addressed above. The
viewpoint of Industrial Geometry would be to investigate the various algo-
rithms from a common perspective. Since all the available algorithms are
solving nonlinear geometric optimization problems, it is appropriate to study
and compare the known approaches from the optimization perspective. In the
present paper, we will point to recent results in this direction.
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It is impossible to outline all major current research streams in Industrial
Geometry in this paper. Therefore, we will focus just on a few topics. We will
briefly look at the level set method [19,31] and on hybrid data structures for
geometric computing [15]. The major part of this paper is devoted to geometric
optimization problems which involve distance functions. Here we will present
a survey with some new results on a recently developed class of optimization
algorithms, which can be called squared distance minimization. The benefits of
the optimization viewpoint rather than the perspective of a specific application
will become obvious. With nearly the same algorithms we can solve a wide class
of curve and surface approximation problems and a number of registration
(surface matching) problems.

The methods we are using for the topics indicated so far have a relation to
Computer Vision and Image Processing. As a further example for the fruitful
use of techniques which originate in these fields, we discuss a new metric on
surfaces. It is sensitive to features such as smoothed edges, which are char-
acterized by a significant deviation of the two principal curvatures. This new
metric can be easily understood with the concept of an image manifold [14],
and it has a number of interesting applications [26]: For example, we can de-
sign curves on surfaces whose shape is adapted to the features of the surface.
Moreover, we briefly address local neighborhood definition and region grow-
ing as an aid in the segmentation process for reverse engineering of geometric
objects. Image processing frequently uses mathematical morphology for basic
topological and geometric operations [10,30]; this work describes similar oper-
ations on surfaces, which – if desired – can be made sensitive to the features.

2 Geometry representations

The choice of an appropriate representation of a geometric object is a fun-
damental issue for the development of efficient algorithms. Following a recent
survey by L. Kobbelt [15], one may classify the basic types of 3D geometry
representations according to the following table.

unstructured structured hierarchical

explicit point binary octree
clouds voxel grid

parametric triangle NURBS subdivision
mesh surface

implicit moving least 3D grid octree,
squares surface binary space

partitions
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Explicit representations are meant as sequences of points and can be seen
as maps f : N → R

3. Parametric representations are described by maps
f : R

2 → R
3 and implicit representations by trivariate functions f : R

3 → R.
In the table above, the basic data structures which are at our disposal are
called unstructured (list, graphs; they have a sequential or topological order-
ing, respectively), structured (array; has a global index structure) and hierar-
chical (octrees, binary space partitions). Basic operations which are frequently
performed within geometric algorithms are evaluation (computing points, nor-
mals, ...), queries (inside or outside, distance, closest point,...), and modifica-
tion of geometry and/or topology. The various entries in the table behave
quite differently with respect to these operations.

Whereas Computer Graphics seems to use all these representations by now,
CAD so far focuses on a few of them. This is probably not an ideal situation.
On the other hand we see the possibility of achieving big progress by looking at
the entire collection of representations, and by combining them in an optimal
way (see 2.1).

The level set method in CAD

The implicit representation of a surface Φ in R
3 describes it as zero set of a

function f : R
3 → R,

Φ := {x ∈ R
3 : f(x) = 0}. (1)

Associated with f , we have a whole family of level sets,

Φc := {x ∈ R
3 : f(x) = c = const.}. (2)

It is sometimes an advantage to view the whole family. In connection with
curves or surfaces which evolve in some optimization procedure, this is a fruit-
ful approach and one of the basic ingredients in the highly successful level set
method [19,31]. The level set method formulates the optimization process of
the shape under consideration (called active curve or active surface) with a
partial differential equation (PDE) and employs efficient algorithms for the
numerical solution of that PDE on a grid.

The level set method is very popular in Computer Vision, Image Processing
and Computer Graphics [19,29,31]. We have not seen many applications of
the level set method in CAD so far, but it can be expected that this picture
will change. A main concern which might have hindered the use of the level
set method, is the representation it is based on: an implicit representation,
evaluated just on a grid. However, there are a variety of complicated shape
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computation problems for which one does not need to work throughout the
whole computation with the final NURBS representation. We may decouple
the shape finding procedure from the final representation. The level set method
can be applied to shape optimization and then one applies a conversion pro-
cedure from level sets to NURBS. This conversion is briefly addressed in 4.6,
but requires more studies for successful practical use.

2.1 Hybrid geometry representations

A promising direction for future research has been opened in recent research
by L. Kobbelt. He proposes hybrid representations, which are various clever
combinations of geometry representations. The aim is to use the individual
parts in these combinations for those operations where they perform best.
For example, a combination of a mesh with an implicit representation can be
applied to mesh repair. The combination of a polygon and a grid leads to a
formulation of an active contour in the plane (called r-snake), which is easy to
implement and allows us to control the topology [3]. The latter is an important
issue for the level set method, whose original formulation would easily achieve
changes in the topology of the deforming shape, but hardly allow us a control
over that change.

3 Distance functions

The distance function of a curve or surface M assigns to each point x of
the embedding space the shortest distance d(x) of x to M . Since d is not
differentiable at M one often uses the signed distance function, which agrees
with d up to the sign. It is well defined for a closed object and takes on different
signs inside and outside the object, respectively. In the following, we will just
speak of the distance function for both the signed and the unsigned version.

3.1 A view into the literature

The distance function is an excellent example of a topic which has been ad-
dressed by all areas which involve geometric computing. Early work on the
geometry of the distance function comes from the classical geometric liter-
ature of the 19th century. One looks at its graph surface, which consists of
developable surfaces of constant slope and applies results of classical differen-
tial geometry, line and sphere geometry (for a modern presentation, see e.g.
[27]).
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The level sets of the distance function of a geometric object M are the offsets
of M , which are of particular importance in Computer Aided Design and
Manufacturing (see e.g. [11,20]).

Distance functions are also basic to morphological operators in Image Pro-
cessing [10,30]. The distance function is not differentiable at points of the
cut locus, which is a concept that appears in different variants (medial axis,
skeleton, bisector,....) in various areas for a number of applications (for CAD
related work, see e.g. [20]).

Computer Graphics uses distance functions in many ways, for example in
adaptively sampled distance fields [9]. These proved to be a versatile and
unifying representation with many applications (NC simulation, interference
checking, sculpting,...). Distance functions also blend well with a recent trend
in Computer Graphics of working directly with clouds of points rather than
meshes.

Optimal robot trajectories are in a natural way related to shortest paths on
manifolds and thus distance functions play a central role [17]. They also occur
in obstacle avoidance with the potential field (barrier) approach [17].

Algorithms for fast computation of the distance function in two or three dimen-
sions are often performed on a grid. One exploits the fact that the distance
function has a normalized gradient field, i.e., it is a solution of the eikonal
equation ‖∇f(x)‖ = 1. The main types of algorithms are fast marching [31]
and fast sweeping [33,38]. Computational Geometry developed different types
of algorithms for fast distance computations. We point especially to approxi-
mate nearest neighbor algorithms (see e.g. [1]), which are even working well in
higher dimensions, where a grid based computation would hardly be feasible.

As an example, we consider the computation of the distance function of a
geometric object Φ in the presence of obstacles: The function value d(x) at
a point x (not in an obstacle) is the length of the shortest path from x to
a point of Φ, which avoids the obstacles. Zhao’s algorithm [38] is very well
suited to solve this problem: we just have to mark the grid points inside the
obstacles with a flag; these points will never be updated and therefore never
influence the computation of the distance function in the admissible points of
the grid. The distance function of a point p in the plane in the presence of
some obstacles, computed with Zhao’s algorithm, is shown in Fig. 1. We also
see that this is only an approximation, since the precise level sets near the
point p should be circles. Tsai’s algorithm [33] does not have this distortion,
but on the other hand it is not easily extendable to the presence of obstacles.
Fig. 1 furthermore shows the shortest paths connecting the point p with six
other points and respecting the obstacles.
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p

Fig. 1. Level sets of the distance function of a point p in the presence of obstacles
and shortest paths emanating from p, respecting the obstacles.

3.2 Quadratic approximants of the squared distance function

In subsequent optimization algorithms we will have to minimize functions,
which contain sums of squared distances of points to a curve or surface. In or-
der to achieve good local convergence, we will use a Newton or quasi-Newton
algorithm, and this requires local quadratic approximants of the squared dis-
tance function of a curve or surface.

Such local quadratic approximants have been studied in [22]. We briefly sum-
marize here the main results and start with the squared distance function
d2(c) of a planar curve c. Deriving a second order approximant only makes
sense at a smooth point p of that function, and thus we exclude points on the
cut locus.

Consider an admissible point p in the plane. The point c0 ∈ c, which is
closest to p is a normal foot point (see Fig. 2). Let e1, e2 denote unit tangent
and normal vector of c at c0, respectively. In this Frenet frame, we have
p = (0, d), with |d| being the distance of p to c. The curvature center k0

at c0 has coordinates (0, ρ), where ρ is the inverse curvature 1/κ and thus
has the same sign as the curvature. In that frame, the second order Taylor
approximant Fd of the squared distance function at p is found to be

Fd(x1, x2) =
d

d− ρ
x2

1 + x2
2. (3)

In Fig. 2, the second order Taylor approximant Fd at p is depicted with some
level sets (ellipses). The following special cases should be kept in mind:

7



PSfrag replacements

e1

e2

c

c0

k0

p

Fig. 2. Planar curve c with Frenet frame e1, e2 in c0. The squared distance
function of the curve c and the local quadratic approximant of this function in the
point p are visualized by level sets.

• For d = 0 we get the Taylor approximant F0 = x2
2 at the normal foot point.

This shows the following interesting result: At a point p of a curve c the
second order approximant of the squared distance function of c and of the
curve tangent T at p are identical. Visually, this is not unexpected since
curvature depends on the scale. Zooming closer to the curve it appears less
and less curved.

• For d → ∞, the Taylor approximant tends to F∞ = x2
1 + x2

2. This is the
squared distance function to the foot point c(t0).

For an implementation which employs the discussed approximants, it is better
to express them in the same coordinate system as the curve itself. This is
done by viewing Fd as a weighted sum of x2

1, the squared distance to the
normal, and x2

2, the squared distance to the tangent at the foot point. If
e1 · x + d1 = 0, ‖e1‖ = 1 and e2 · x + d2 = 0, ‖e2‖ = 1 are the equations of
the normal and the tangent at the foot point c0, respectively, the quadratic
approximant reads

Fd(x) =
d

d− ρ
(e1 · x + d1)

2 + (e2 · x + d2)
2. (4)

For the applications we have in mind, it can be important to employ nonnega-
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tive quadratic approximants to d2. If the approximant (4) is indefinite, which
happens when A := d/(d − ρ) < 0, we set A to zero. This means we use the
squared distance to the tangent at the foot point.

Analogous considerations can be performed for the squared distance function
of a surface s. Given s and a point p, we compute the closest point s0 ∈ s to
p. At p0, we use the principal frame, defined by the two principal curvature
directions e1, e2 and the surface normal vector e3. Let κi be the (signed)
principal curvature to the principal curvature direction ei, i = 1, 2, and let
ρi = 1/κi. Then the two principal curvature centers at the considered surface
point s0 are expressed in the principal frame as ki = (0, 0, ρi). It can be shown
that the second order Taylor approximant Fd of d2 at p = (0, 0, d) is given by

Fd(x1, x2, x3) =
d

d− ρ1

x2
1 +

d

d− ρ2

x2
2 + x2

3. (5)

4 Curve and surface approximation using squared distance mini-

mization

4.1 The SDM method with the squared distance field attached to the model
shape

As input we consider a model shape M . This can be a curve or surface in any
analytical or discrete representation (smoothed mesh or a sufficiently dense
point cloud with low noise level). The model shape M shall be approximated
by a B-spline curve or surface. We will compute a geometric least squares
approximant, where distances are measured orthogonal to the model shape M .

For the sake of simplicity in our explanation, we confine ourselves to planar
curves, but the concept works for surfaces of arbitrary dimension and codi-
mension in higher dimensional spaces as well.

The method which is proposed here is inspired by active curve models from
Computer Vision [4]. An initial B-spline curve is iteratively deformed with an
optimization algorithm. The goal is to find a B-spline curve

c(t) =
n∑

i=1

Bi(t)di, (6)

which minimizes the objective function

F =
N∑

k=1

d2(sk,M) + λFs. (7)
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Here, sk := c(tk), k = 1, . . . , N are curve points at preselected parameter
values tk. These sampled points sk, called ’sensor points’ in the following,
must be sufficiently dense so that they describe the shape of the B-spline
curve well. The value of λ is a given contant and Fs is a smoothing term, for
which we use a combination of L2 norms of low derivatives of c(t). Thus the
objective function F is the sum of squared distances of the sensor points to
the model shape M plus a weighted smoothing term λFs.

We assume that the basis functions are given; for a B-spline this requires the
choice of degree and knot sequence before the optimization is started. The
optimization is over the control points di. In fact, it is not essential that we
use B-splines; any other curve scheme with an expression of the form (6) can
be used as well.

From an optimization viewpoint, we have a nonlinear least squares problem
[8,13]. The basic optimization procedure is a (stabilized) Newton algorithm,
in which we use the local quadratic approximants of the squared distance
discussed above. The method will be called squared distance minimization
(SDM) henceforth. It proceeds as follows:

(1) Initialize the active curve and determine the boundary conditions.
(2) Repeatedly apply the following steps a.–c. until the approximation error

or change in the approximation error falls below a predefined threshold:
a. With the current control points di, compute, for k = 1, . . . , N , the

active curve point sk =
∑

i Bi(tk)di and a nonnegative local quadratic
approximant F k

d of the squared distance function of the model shape
M at the point sk.

b. Compute displacement vectors ci, i = 1, . . . , n, for the control points
di by minimizing the function

F =
N∑

k=1

F k
d [

∑

i

Bi(tk)(di + ci)] + λFs. (8)

Fs is a quadratic function in the unknowns ci. Since F
k
d are quadratic

functions and the argument
∑

i Bi(tk)(di+ ci) is linear in ci, also the
first part of F and thus the function F itself is a quadratic func-
tion in the displacement vectors ci of the control points. Thus, its
minimization amounts to the solution of a linear system of equations.

c. With ci from the previous step, we replace the control points di by
d∗

i = di + ci.

Fig. 3 illustrates the algorithm. The model shape M is a curve which is to be
approximated by a B-spline curve. This figure also shows an initial position
of the B-spline curve c(t), with control points di, and the updated B-spline
curve, with control points d∗

i , after one iteration step. For one of the sample
points sk = c(tk) the local quadratic approximant F k

d of the squared distance
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Fig. 3. One step in the curve approximation procedure. The curve M is approxi-
mated by a B-spline curve.

function is indicated by three of its level sets, which are concentric ellipses.

There are various issues which need a closer discussion. One has to appro-
priately preprocess M (or better its distance field), such that one can quickly
compute the required local quadratic approximants. Moreover, the adaption of
the number of control points (knots in a B-spline model) during the evolution
is an important issue. Solutions to these problems are found in [37].

Ongoing research shows that a slight extension of the SDM algorithm can also
optimize the weights in the full NURBS model.

4.2 Surface approximation with SDM

The SDM approach to curve approximation has a straightforward extension
to surface approximation.

The active surface model we are using shall be of the form s(u, v) =
∑

Bi(u, v)di,
so that surface points sk to given parameter values (uk, vk) depend on the con-
trol points di in a linear way.

The quadratic function we are minimizing in each iteration step again consists
of a distance part, set up via local quadratic approximants of the squared
distance function at the sensor points, and a regularization term. For more
details, see [23]. An example is presented in Fig. 4. It shows a triangulated
CAD surface (data was obtained by 3D laser scanning) and its approximating
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Fig. 4. (Top) Model shape M is a triangle mesh, obtained by 3D laser scanning.
(Left) Model shape M and initial position of approximating B-spline surface s(u, v).
(Right) Final B-spline surface s(u, v).

B-spline surface of bidegree (3,3) with 5x8 control points).

The SDM method is also suitable for approximation with subdivision sur-
faces. An important property of the SDM method is the linear dependence of
the sample points sk on the control points. For a subdivision surface, surface
points also depend linearly on the vertices of the starting mesh of the subdi-
vision procedure. It is therefore possible to optimize the initial mesh so that
the sample points well approximate the model shape. Of course, there arise
important issues such as the determination of the initial mesh configuration.
These are discussed in a recent contribution by Cheng et al. [6]. Figure 5 shows
an example of the approximation of a bone structure by a subdivision surface
using Loop’s scheme.

4.3 Discussion from the viewpoint of optimization

If one uses unmodified second order Taylor approximants F k
d in the SDM

method, the quadratic function (8) is a second order approximant of the ob-
jective function F in (7) at the current position (iterate) of the active curve.
For smooth model shapes M , the influence parameter λ of the smoothing part
is reduced to zero in later steps anyway. Therefore, in this case the algorithm
is a Newton algorithm and exhibits local quadratic convergence.
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Fig. 5. Approximation with a subdivision surface using Loop’s scheme and the
SDM method. (Left) Target bone shape, (Middle) control mesh of the subdivision
surface, (Right) final subdivision surface obtained by the SDM method

We did, however, suggest to use only nonnegative approximants F k
d . As a re-

sult of this, we do not work with the exact Hessian ∇2F of F , but with a
positive definite approximant to it. In this sense, it is a quasi-Newton algo-
rithm. Although it is not of a standard type such as BFGS (see e.g. [13]), we
expect that one can prove superlinear convergence.

In later steps of the iteration, the sensor points will be very close to M already.
Therefore, it is natural to use only the squared distance to the tangent at
the foot points of the sensor points as functions F k

d . This method of squared
tangent distance minimization (TDM) is exactly a Gauss Newton iteration
for the solution of the nonlinear least squares problem at hand. Using well-
known results from optimization [13] we conclude that TDM exhibits quadratic
convergence for a zero residual problem (F = 0 at the minimizer, i.e., a spline
fits precisely onto the model shape M). TDM converges rapidly for a small
residual problem, i.e., if there are sufficiently many control points in the active
shape so that it can well approximate the model shape M . Since we have
incorporated a regularization term Fs, we have a similar stabilizing effect as
in the Levenberg-Marquardt method [13].

Even if we have a positive definite approximate Hessian, a good global conver-
gence behavior would require to check, especially in the initial iteration steps,
whether there is sufficient decrease in the value of the objective function F .
We propose to apply the following global convergence improvement of SDM
and TDM: if the new position of the active curve does not have sufficient
decrease, one reduces the stepsize and uses as new control points di + µci,
with µ < 1, according to the Armijo rule or a similar stepsize strategy [13].
In Fig. 6 the necessity of a stepsize control is shown for an example where the
TDM method was used.

The different behavior of the SDM method and the PDM method for curve
approximation can be best visualized with a 3-dimensional plot where the
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Fig. 6. (Left) The fitting curve generated by TDM without stepsize control.
(Right) The fitting curve generated by TDM with stepsize control (Armijo rule).

Fig. 7. Curve evolution of (left) SDM method and (right) PDM method.

third dimension represents the time in the curve evolution process, see Fig. 7.
The bottom layer of the depicted surface shows the initial position of the
active curve, whereas the top layer shows the final shape of the active curve.

In the SDM method the active shape adjusts to the model shape in very few
iteration steps, i.e., all the significant changes happen in the lower part of the
3-dimensional plot of Fig. 7(left). In the PDM method, however, the adjusting
process needs much more iterations, with mostly tangential movement in the
later steps of the algorithm, see Fig. 7(right).

In Fig. 8 we show an extension of the SDM method to an example that requires
a global search capability, see Fig. 8. The target shape is the elongated, closed
curve at the top level of Fig. 8 and the initial shape is the circular shape at
the bottom level. In the evolution process of this curve global properties of
the distance function are used, as well as ideas from active contours in image
processing.
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Fig. 8. Curve evolution of SDM method for an example that requires a global
search capability.

4.4 The SDM method with the squared distance field attached to the fitting
curve

The formulation of SDM given above measures the distance of the active shape
and the input data (the model shape M) orthogonal to M . This is fine if M
is a smooth curve or a sufficiently dense point sequence with a low noise level.
For applications with sparse data points or very noisy measurement data, this
approach does not work. In that case, one can measure the error orthogonal
to the fitting curve or surface, as proposed in [36].

X0

(a) (b)

X0

PD(t0)

P(t0)

Fig. 9. SDM error measurement orthogonal to the active curve. The SD error
function is shown via its iso-value curves (a) before and (b) after the curve has
been updated. The change of tangent direction and curvature in one iteration is
neglected.

Let us explain this for curves. We have to attach the squared distance field to
the active curve. At first sight, this is much more complicated than the previous
version. However, it turns out that one can effectively use the following error
measurement [36]: at each data point, we compute a nonnegative quadratic
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approximant of the squared distance function to the current version of the
active curve (Fig. 9, (a)). We then use this quadratic function for measuring the
fitting error in the next iteration (Fig. 9, (b)). In this local error metric, points
on the same iso-value ellipse have the same approximate squared distance to
the fitting curve. The shapes of the ellipses are well adapted to the curve shape.
This is one of the reasons why the resulting new SDM method outperforms
currently used methods such as the standard CAGD approach based on linear
least squares approximation and parameter correction [11,35].
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Fig. 10. (a) A target shape (several points arranged in a rectangular shape) and
an initial position of the active B-spline curve. (b) The fitted curve generated by
point distance minimization (PDM) in 20 iterations. (c) The fitted curve generated
by SDM in 20 iterations.

Fig. 10 shows an example for this approach: An active B-spline curve deforms
from an initial shape (with a very uneven distribution of its twelve control
points) towards a target shape. Two methods are compared, namely PDM
(the standard CAGDmethod of alternation between parameter estimation and
linear least squares fitting), and the SDM method. The fact that alternating
optimization of parameters and control points is only linearly convergent, and
can be improved by Gauss-Newton optimization has already been addressed
in [32]. The example in Fig. 6 and a further example in Fig. 11 demonstrate
the capability of the SDM method to fit extremely noisy data sets.

4.5 Approximation by ruled surfaces for NC machining and rapid prototyping

Standard surface approximation methods which require the estimation of the
parametrization are hardly applicable in situations where a special parametri-
zation is used to efficiently capture a special surface shape. A good example
for that are ruled surfaces, which are obtained as B-Spline surfaces s(u, v) of
bidegree (1, n). The u-parameter lines are the straight lines (rulings) on the
surface. Approximating a given model shape by a ruled surface has interesting
applications in NC machining (peripheral milling with a cylindrical cutter),
wire cut electric discharge machining or in architecture (see e.g. [27]). With
the SDM method, approximation by a ruled surface becomes a simple task
but boundary conditions have to be considered: In the case of a closed surface
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(a) A closed target shape and an

initial B-spline curve.

(b) The fitting curve generated by

PDM in 50 iterations.

(c) The fitting curve generated by

TDM in 50 iterations.

(d) The fitting curve generated by

SDM in 50 iterations.

Fig. 11. A comparison of three methods for fitting an extremely noisy target
shape.

model M (see e.g. Fig. 12) the initial position of the active surface s(u, v)
has to be chosen outside of M to avoid shrinking of s(u, v). In the case of an
open surface patch M we fix in sufficient distance to M two end rulings of an
initial shape and then let the surface flow towards the model shape via SDM.
In each iteration, only those sensor points are used whose foot points lie inside
M (and not on the boundary).

As noted above, one of the industrial application of surface approximation with
ruled surfaces is peripheral milling with a cylindrical cutter [18]: The material
is removed by the cutters side, i.e. by the cylindral surface. Thus the milling
process generates an offset surface of the ruled surface that is traced out by
the moving cutter axis. In order to generate a certain model shape M with
this method, using a cutter of radius r, one has to approximate an offset of M
at the distance r with a ruled surface and move the cutters axis on this ruled
surface. In [16] the authors decompose the model shape M into several parallel
strips which are generated with the method of peripheral milling. The ruled
layers are then used in a novel rapid prototyping technique. In our context this
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Fig. 12. (Top) Model shape M is a triangle mesh, obtained by 3D laser scanning.
(Left) Approximating ruled B-spline surface s(u, v) of bidegree (1, 3) with 2 × 10
control points. (Right) Superposition of M and s(u, v).

problem can be formulated as follows: Approximate the offset surface of our
model shape M at distance r with a B-spline surface s(u, v) of bidegree (1,3)
with more than 2 control points in u-direction. This B-spline surface will be
composed of several layers of ruled surfaces. It is just a linear side condition
in the optimization process to keep the control points of s(u, v) in layers of
parallel planes. Fig. 13(right) shows the result for six layers of ruled surface
strips which approximate an offset surface of the model shape M depicted in
Fig. 13(left). The middle figure shows an approximation of M itself by such a
surface composed of layers of ruled surfaces.

4.6 Approximating level sets by NURBS

The SDM method can be applied to the approximation of an implicitly repre-
sented model shape M : f(x) = 0 as well. In fact, SDM implicitizes the model
shape M anyway, since it uses the distance function. The level set method is
often stabilized by requiring that the level set function f is (close to) a signed
distance function. If the output of a level set method is not yet a signed dis-
tance function, one can run a few iterations of a solver for the eikonal equation
and then achieve a signed distance function. Thus, the output of the level set
method as a descriptor of a model shape M is a perfect input for the SDM
method. Local quadratic approximants of the squared distance function f 2

can be computed quickly and efficiently from a signed distance function f ,
even if it is given only on a grid.
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Fig. 13. Ruled layers approximation for rapid prototyping. (Left) Model shape
M is a triangle mesh, obtained by 3D laser scanning. (Middle) Model shape M

and approximation with a piecewise ruled B-Spline surface, i.e., a surface s(u, v) of
bidegree (1,3) with 7 × 25 control points. (Right) Approximating B-Spline surface
s(u, v) of bidegree (1,3) approximating an offset of the model shape M .

For a really practical conversion program, one needs an automatic choice of
a good initial shape (patch layout) and the incorporation of changes in the
patch structure or degrees of freedom (e.g., adding or deleting knots) during
the optimization. Note that sharp edges and features should be captured very
well, which again requires an appropriate patch layout. This is a topic of
current research.

5 Registration based on squared distance minimization

For the goal of shape inspection it is of interest to find the optimal Euclidean
motion (translation and rotation) that aligns a cloud of measurement points
of a workpiece to the CAD model from which it has been manufactured. This
makes it possible to check the given workpiece for manufacturing errors and
to visualize and classify the deviations. This is one instance of a registra-
tion problem. Another registration problem concerns the merging of partially
overlapping scans of the same object (typically available in different coordi-
nate systems) into a single consistent representation in the same coordinate
system.

We will outline an SDM algorithm for the solution of the shape inspection
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problem. It involves only two rigid systems (point cloud and CAD model,
respectively), but it is fundamental for the entire family of rigid registration
problems.

A well-known standard algorithm to solve the present registration problem is
the iterative closest point (ICP) algorithm of Besl and McKay [2]. Indepen-
dently, Chen and Medioni [5] proposed a similar algorithm. Although these
two algorithms are based on similar ideas, we will see later that the difference
— from the viewpoint of optimization — is not marginal at all. Most of the
literature is based on these algorithms and deals with a variety of possible
improvements. An excellent summary with new results on the acceleration of
the ICP algorithm has been given by Rusinkiewicz and Levoy [28].

Problem Formulation

A set of points X0 = (x0
1, x

0
2, . . .) is given in some coordinate system Σ0. It

shall be rigidly moved (registered, positioned) to be in best alignment with a
given surface Φ, represented in system Σ. We view Σ0 and Σ as moving and
fixed system, respectively. A position of X0 in Σ is denoted by X = (x1, . . .).
It is the image of X0 under some rigid body motion α. Since we identify
positions with motions, the motions have to act on the same initial position.
Thus, we always write X = α(X0).

The point set X0 may be a cloud of measurement points on the surface of a
3D object. The surface Φ may be the corresponding CAD model, another scan
of the same object, a scan of a similar object, a mean shape in some class of
shapes, etc. For our description, we will simply speak of a data point cloud
and a surface Φ (‘model shape’), but have in mind that Φ may also be given
just as a point cloud. We will not address those additional issues which come
up when only a part of the data shape agrees with a part of the model shape.

The registration problem shall be formulated in a least squares sense as follows.
Compute the rigid body transformation α∗, which minimizes

F (α) =
∑

i

d2(α(x0
i ),Φ). (9)

Here, d2(α(x0
i ),Φ) denotes the squared distance of α(x0

i ) to Φ. If we view
α : x′ = a + A · x as a special affine map in R

3, we have to compute its 12
parameters (a, A) under the constraint that A is an orthogonal matrix. Hence,
the present problem is a constrained nonlinear least squares problem [8,13].
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Registration based on SDM

In a rather straightforward modification of the SDM method we proceed as
follows. Starting with an initial guess, we enter an iteration. In each step,
we compute at the current data point positions (x1, x2, . . .) local quadratic
approximants Fi of the squared distance function of the surface Φ. One way
of dealing with the rigidity constraints on the moving system is the use of a
linearization, i.e., a velocity field. A possible new position xi,+ of a point xi is
estimated with help of its velocity vector v(xi) = c̄ + c× xi as

xi,+ = xi + v(xi) = xi + c̄ + c× xi. (10)

Thus, the estimate for the value of the objective function F after a displace-
ment becomes

F+ =
∑

i

Fi(xi,+) =
∑

i

Fi(xi + c̄ + c× xi). (11)

Since the functions Fi are quadratic, F+ is a quadratic function in the unknown
vectors c, c̄ ∈ R

3, which characterize the displacement. Hence, minimization
of F+ requires the solution of a linear system in 6 scalar unknowns.

However, we cannot directly move the points xi with help of their velocity
vectors v(xi) = c̄ + c × xi. This would result in an affine distortion of the
moving system. Instead, we compute from the solution (c, c̄) a helical motion
which moves the points xi to new positions that are close to xi,+ = xi + v(xi)
(for details, see [24,25]). The remark on step size control which we have made
in section 4 applies here as well.

In Fig. 14 a set of synthetically generated data points with Gaussian noise is
registered to a model of a CAD workpiece. The figure shows the point cloud
in its initial position and the final position after 15 iterations.

The present framework contains the two best known algorithms for registra-
tion. If we let Fi be the squared distance function to the foot point yi ∈ Φ
of xi, we obtain an algorithm which is (essentially) the ICP algorithm [2]. If
Fi is taken as squared distance function to the tangent plane of Φ at yi, one
obtains the algorithm by Chen and Medioni [5]. Since the data points xi in
later iterations are very close to Φ, the latter method uses much better ap-
proximants than the former (cf. Eq. (5)). In fact, one can show that ICP is
essentially a gradient descent method with local linear convergence. The algo-
rithm of Chen and Medioni, the registration analogue to the TDM method, is
a Gauss-Newton algorithm and exhibits local quadratic convergence for a zero
residual problem. It converges very well also for a small residual problem.
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Fig. 14. Registration of a point cloud X to model Φ. X is given in the initial and
the aligned position.

The presented SDM registration method based on a linearization of the motion
is also just quadratically convergent for a zero residual problem. However, it
is not hard to use a second order motion approximant and in this way achieve
quadratic convergence even for a larger residual (stronger deviation of the
set of data points from Φ). The transition of the presented approach to the
simultaneous registration of more than two systems can be performed along
the path described in [24]. How much our geometric considerations simplify
the Newton approach can be seen in comparison to [34].

6 Image Manifolds for Geometry Processing

Active curves and surfaces as well as registration problems have their origin in
Computer Vision and Image Processing. We would like to point here to another
concept which comes from this area and is expected to be of great value for
Geometric Modelling and CAD. This is the concept of image manifolds, which
has been introduced by Kimmel, Malladi and Sochen [14]. Given a 2D image,
one associates with each point x = (x, y) in the image plane an auxiliary point
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X = (x, y, f1, . . . , fn) in a higher dimensional space, where the fi’s are local
image properties such as grey level, color coordinates, texture measures, etc. In
this way, the planar image domain is mapped to a two-dimensional surface M
embedded in R

m, m = 2+n. For certain types of images this manifold M has
sufficient smoothness so that it makes sense to apply methods of differential
geometry. Depending on the application, one may introduce an appropriate
metric in R

m and use also ideas from pattern classification [7]: if the features fi

have been chosen carefully, image parts with the same local structure will be
close to each other in R

m, even if they are not so close in the 2D image itself.
Of course, image manifolds can also be associated with volumetric images and
movies [14].

It is obvious that one can also handle images defined on a surface s. This
might have a number of remarkable applications, also in CAD/CAM. There is
also the possibility to define an image which is associated with the underlying
surface s itself. We give an example for such a geometric image manifold
[26]: Let us consider the unit normal vectors as a vector valued image on the
surface. Thus, each surface point x ∈ s with unit normal vector n is mapped
to the point X = (x, wn) ∈ R

6. Here, w is a chosen positive constant. The set
of all image points X forms a two-dimensional image manifold M ⊂ R

6. We
now use the canonical Euclidean metric in R

6. It induces on the manifold M a
metric, which has remarkable properties when viewed from R

3. The length of
a curve c on s, measured in this metric, not only depends on the point set c

but also on the variation of the surface normals along c. We assume that the
surface s has features which are characterized by high curvature (i.e. strong
variation of the normals) across the feature, but much smaller curvature along
the feature. Then, in this new metric, distances across features appear larger
than those along features. We have a feature sensitive metric. The constant
w guides the sensitivity to features. In other words, w determines what we
consider a feature; this is necessary anyway, since features rely on curvatures
and thus depend on the scale.

It is not hard to work with the feature sensitive (FS) metric, since FS distances
are ordinary Euclidean distances on M . The fact that M lies in R

6 does
not cause any major problem for these computations. For details we refer to
[26]. Fig. 15 compares the behavior of the distance functions in the ordinary
Euclidean metric and in the FS metric. Note that the isolines of the FS distance
tend to stop at features.

This new feature sensitive (FS) metric on a surface offers us a variety of
applications. Figure 16 shows several geodesic curves we have computed on
a parametric surface. Two pairs of input points are each connected with a
Euclidean geodesic and a FS geodesic. The latter metric forces the geodesic
curves to follow the features of the surface.
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Fig. 15. Approximate geodesic circles on a triangle mesh in the Euclidean metric
(left) and feature sensitive metric (right).

Fig. 16. Geodesic curves on a parametric surface with features: (light colored)
computed in the Euclidean metric, i.e. w = 0; (dark colored) computed in the FS
metric, for w = 2.

The original motivation for the introduction of the FS metric comes from re-
verse engineering of geometric objects. There, a variety of shape classification
methods have been developed, which aim at a segmentation of the measure-
ment data into regions of the same surface type [35]. Particularly for tradi-
tional geometric objects, where most of the surfaces on the boundary of the
object are fundamental shapes, the surfaces are often separated by edges or
smoothed edges, so-called blending surfaces. Thus, it is natural to look at ge-
ometric processing tools on surfaces which are sensitive to such features. The
FS metric simplifies the definition of local neighborhoods for shape detection,
the implementation of region growing algorithms and the processing of the
responses from local shape detection filters (images on surfaces). For example,
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Fig. 17. Dilation in the FS metric with w = 1: Starting with the dark regions
(left) we get the result shown (right). Note that the FS metric prevents a flow across
features.

the neighborhoods of a point shown in Fig. 15 are not equally useful for local
shape detection: The neighborhood based on the Euclidean metric (left) flows
across the feature. However, the neighborhood based on the FS metric (right)
respects the feature and is more likely to belong to the same surface type in an
engineering object. Another example is depicted in Fig. 17: One can see the
result of an edge detection process (left) which seperates the geometric object
into different regions. This result is beautified (right) by region growing with
help of the FS distance function. The morphological operation dilation in the
FS metric can easily be stopped at features.

We expect that the applications of the FS metric go far beyond the examples
which have been shown here. Currently, we are exploring feature sensitive sur-
face parameterizations, computed via parameterizations of the image manifold
M . Moreover, the global behavior of surface registration algorithms seems to
be greatly improvable through the use of appropriately defined image mani-
folds.

7 Conclusion and Future Research

Exploiting the huge body of knowledge available in various fields that deal
with geometric computing, we can search for unifying methods and in this
way simultaneously achieve progress for a number of applications. Even just
the adaptation of a method known in one field to an application in another
field may lead to remarkable progress. This is a basic philosophy behind In-
dustrial Geometry and has been illustrated at hand of optimization problems
involving distance functions and concepts taken from Computer Vision and
Image Processing (active contours, registration algorithms, image manifolds).
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We expect great benefit of CAD from future research in Industrial Geometry.
To give just one example, the incorporation of prior knowledge, also shape
knowledge, into surface design and reconstruction, could be performed in ex-
tension of ideas from Computer Vision and Image Processing. These ‘smart
surfaces’ would certainly be a welcome addition to current design methods.
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