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Basic sphere geometric principles are used to analyze approxima-
tion schemes of developable surfaces with cone spline surfaces, i.e. G1-
surfaces composed of segments of right circular cones. These approxima-
tion schemes are geometrically equivalent to the approximation of spatial
curves with G1-arc splines, where the arcs are circles in an isotropic metric.
Methods for isotropic biarcs and isotropic osculating arc splines are pre-
sented that are similar to their Euclidean counterparts. Sphere geometric
methods simplify the proof that two sufficiently close osculating cones of
a developable surface can be smoothly joined by a right circular cone seg-
ment. This theorem is fundamental for the construction of osculating cone
spline surfaces. Finally, the analogous theorem for Euclidean osculating
circular arc splines is given.
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1 Introduction

Sphere geometry is a classical topic of geometry (see e.g. [2, 14]). But it is also
an active area within modern geometry [1, 3] and has been applied to rational
PH curves and surfaces and various other problems in computer aided geometric
design [16, 17]. In the present paper — which is heavily based on the author’s
PhD thesis [11] — we use sphere geometry to analyze approximation algorithms
of developable surfaces with cone spline surfaces, i.e. G1-surfaces composed of
segments of right circular cones, see for instance the example in Figure 1.

In the CAGD literature, rising attention is given to developable surfaces be-
cause they are surfaces that can be unfolded into a plane without stretching
or tearing. Thus, there are many industry applications, for instance in sheet-
metal and plate-metal based industries. The isometric mapping of a developable
surface into the plane needs, in general, numerical computation methods, see
e.g. [4, 7, 9, 21]. Redont [18] first uses patches of right circular cones (cones of
revolution) as their development and bending into other developable shapes is el-
ementary. Because of the global methods given in [18], the adjustment of a single
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(a) (b)

Figure 1: Developable surface (a) and approximating cone spline surface (b)

cone patch affects the position of all adjacent patches. Local Hermite approxima-
tion schemes based on geometric methods have been presented recently [10, 12].

Developable surfaces are the envelopes of their one parameter set of tangent
planes, i.e. they are dual to a spatial curve. For the aim of approximation of
developable surfaces we are specially interested in cones of revolution which are
special examples of developable surfaces whose tangent planes all touch a one
parameter set of spheres. This property motivates using 3-dimensional Euclidean
Laguerre geometry in which the elements are oriented spheres and oriented planes
of Euclidean 3-space.

Especially useful for our purposes we will find the so-called isotropic model
of this geometry which provides a point representation of oriented planes, thus
a curve representation of developable surfaces. Cones of revolution appear as
isotropic circles, cone spline surfaces therefore are transformed to spatial isotropic
arc splines.

In this paper we will give two curve approximation schemes with spatial
isotropic arc splines. The corresponding approximation schemes of developable
surfaces with cone spline surfaces can be found in [10]. The first algorithm is
an isotropic biarc scheme, whereas the second algorithm constructs an isotropic
osculating arc spline of a given spatial curve, i.e. each second of the isotropic arc
segments of the arc spline have second order contact with the target curve.

The great advantage of the interpretation of developable surfaces as isotropic
curves with the help of Laguerre geometry lies in the fact that curves are easier to
handle than surfaces. Thus, we will be able to prove the important theorem that
two sufficiently close osculating cones of a developable surface can be smoothly
joined by a right circular cone segment. This theorem confirms the feasibility
and practicality of the osculating cone spline surface algorithm presented in [10].

Finally, we will prove the Euclidean counterpart of above theorem on isotropic
arc splines: Each two, sufficiently close, osculating circles of a twisted curve in
Euclidean 3-space can be smoothly joined with a circular arc which gives a G1 arc
spline. Geometric algorithms to construct these Euclidean osculating arc splines
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are introduced in [12]. There, a segmentation algorithm of the given spatial curve
and approximation errors are given. These investigations also include planar (see
also [13]) and spherical osculating arc splines as special cases.

The present paper is structured as follows. Section 2 gives a brief introduction
into 3-dimensional Euclidean Laguerre space and its isotropic model. Section 3
describes our first curve approximation scheme, namely with isotropic biarcs.
Section 4 provides the second curve approximation scheme producing isotropic
osculating arc splines. This section also includes the proof of Theorem 4.1 on
the existence of real solution arcs. Finally, section 5 contains the proof of the
analogous Theorem 5.1 on Euclidean osculating arcs. It also includes a short
introduction to 3-dimensional Euclidean Möbius geometry, another sphere geom-
etry which simplifies our proof.

2 Fundamentals of 3-dimensional Euclidean La-

guerre space

For the analytic treatment in real Euclidean 3-space E3 we will use the affine
coordinate vector x = (x, y, z) to describe a point x ∈ E3. Let U denote the
set of oriented planes u of E3 and C the set of oriented spheres c including the
points of E3 as (non-oriented) spheres with radius zero. The elements of C are
also called cycles. The basic relation between oriented planes and cycles is that
of oriented contact. An oriented sphere is said to be in oriented contact with an
oriented plane if they touch each other in a point and their normal vector in this
common point is oriented in the same direction. The oriented contact of a point
(nullcycle) and a plane is defined as incidence of point and plane.

Laguerre geometry is the survey of properties that are invariant under the
group of so-called Laguerre transformations α = (αH , αC) which are defined by
the two bijective maps

αH : H → H,αC : C → C (1)

which preserve oriented contact and non-contact between cycles and oriented
planes.

Analytically, a plane u is determined by the equation u0 + u1x + u2y + u3z =
0 with normal vector (u1, u2, u3). The coefficients ui are homogeneous plane
coordinates (u0 : u1 : u2 : u3) of u in the projective extension P 3 of E3. Each
scalar multiple (λu0 : λu1 : λu1 : λu2), λ ∈ R\{0} describes the same plane, thus
it is possible to use normalized homogeneous plane coordinates

u = (u0 : u1 : u2 : u3), with u2
1 + u2

2 + u2
3 = 1 (2)

which are appropriate for describing oriented planes where the unit normal vector
(u1, u2, u3) determines the orientation of the plane.
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An oriented sphere (cycle)

c = (xm, ym, zm; r) (3)

is determined by its midpoint m = (xm, ym, zm) and signed radius r. Positive
sign of r indicates that the normal vectors are pointing towards the outside of
the sphere whereas in the case of negative sign of r they are pointing into the
inside. Points of E3 are cycles characterized by r = 0.

The relation of oriented contact is given by

u0 + u1xm + u2ym + u3zm + r = 0 (4)

2.1 The isotropic model

As developable surfaces are envelopes of their one parameter family of oriented
tangent planes it is appropriate to use a model of Euclidean Laguerre space in
which oriented planes are represented by points. Thus, we will briefly discuss
the so-called isotropic model of Euclidean Laguerre geometry. This model can be
obtained by the map

Λ : U → I3, Λ(u) =
1

1 − u3

(u1, u2, u0). (5)

which maps oriented hyperplanes u ∈ U of E3 onto points in a 3-dimensional
affine space I3. ui denote the normalized homogeneous plane coordinates of u

according to (2). There is a geometric interpretation of the map Λ (see e.g.
[11, 17]) which is not essential for the present investigations.

The inverse Λ−1 maps each point x̄ = (x̄, ȳ, z̄) of I3 to an oriented plane in
E3 with normalized plane coordinates

Λ−1(x̄) =
1

x̄2 + ȳ2 + 1
(2z̄ : 2x̄ : 2ȳ : x̄2 + ȳ2 − 1). (6)

Formula (5) fails for oriented planes u with u3 = 1, i.e. normal vector (0, 0, 1).
In order to obtain a one-to-one map Λ, one has to extend the point set of I3 by
an affine line of ideal points which correspond to the planes (u0 : 0 : 0 : 1). Thus
one obtains the so-called isotropic conformal closure I3

M
of I3. In applications

one will apply a suitable coordinate transformation in E3 such that no planes
with normal vector (0, 0, 1) appear. Locally, this is always possible.

By interpreting cycles c as their set of oriented tangent planes and by applying
(5) we obtain

Σ := Λ(c) : 2z̄ + (x̄2 + ȳ2)(r + zm) + 2x̄xm + 2ȳym + r − zm = 0. (7)
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These surfaces Σ = Λ(c) are paraboloids of revolution with z̄-parallel axis or,
in case of r + zm = 0, planes that are not parallel to the z̄-direction. The z̄-
direction is also called isotropic direction. The surfaces Σ, defined by (7), are
called isotropic Möbius spheres. The intersection of two isotropic Möbius spheres
is either an ellipse whose top view (normal projection onto z̄ = 0) is a circle, or
a parabola with isotropic axis, or a non-isotropic line. These curves are called
isotropic Möbius circles.

Let us now look at developable surfaces and cones of revolution, in particular.
A developable surface, viewed as envelope of its one parameter family of oriented
tangent planes, is mapped to a spatial curve in I3 via (5). The oriented tangent
planes of a cone of revolution, however, can be alternatively defined as family of
all oriented planes being in oriented contact with two different cycles c1, c2. A
cone of revolution thus has an isotropic circle Λ(c1) ∩ Λ(c2) as Λ-image. Note
that the preimage of isotropic circles may degenerate to cylinders of revolution
if the signed radii of c1 and c2 are equal, or to a pencil of planes in case of two
nullcycles c1, c2.

We summarize: In the isotropic model of 3-dimensional Euclidean Laguerre
space the oriented planes are represented by points of a 3-dimensional space I3.
Oriented spheres (cycles) are mapped to isotropic Möbius spheres, i.e. paraboloids
of revolution with isotropic axis or non-isotropic planes. Cones of revolution are
represented by isotropic Möbius circles. Furthermore, Laguerre transformations
(1) are realized as special quadratic transformations, so-called isotropic Möbius
transformations. These are bijective on the set of Möbius spheres Σ.

2.2 Fundamentals on isotropic metric in I3

The 3-dimensional isotropic space I3 can be supplied with an isotropic metric that
is derived from the semidefinite scalar product 〈〉i of two vectors x1 = (x1, y1, z1)
and x2 = (x2, y2, z2)

〈x1,x2〉i = x1x2 + y1y2 (8)

This defines the isotropic distance di of two points a1 and a2 by

di(a1, a2) :=
√
〈a2 − a1, a2 − a1〉i (9)

Let ã = (xa, ya) denote the normal projection of a = (xa, ya, za) into the xy-plane.
Then (9) simply describes the Euclidean distance of ã1 and ã2. Consequently,
the distance of two points lying on an isotropic line is zero.

Note that the isotropic distance is a metric property in I3 (see e.g. [19]) and
is not invariant under isotropic Möbius transformations.

In section 4 we will need the term isotropic osculating circle of a given twisted
curve g: g(t) = (x(t), y(t), z(t)) in I3. We may restrict ourselves to curves
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which are regular and without inflection points and have no isotropic (z-parallel)
tangents and isotropic osculating planes. Let g̃(t) = (x(t), y(t)) again denote the
top projection of g. To determine the isotropic osculating circle c of g at a point
g(t0) we intersect the cylinder of revolution through the osculating circle c̃ of g̃ at
g̃(t0) with the osculating plane in g(t0), compare with Figure 2. Clearly, isotropic
osculating circles are invariant under isotropic Möbius transformations.

3 Spatial isotropic biarc approximation of

curves

We will briefly analyze the approximation of curves in I3 with isotropic biarcs.
Let a1 and a2 be two points of a given curve g and p1,p2 their tangent vectors
which are normalized by 〈pi,pi〉i = 1. The Hermite elements (ai,pi), i = 1, 2
shall now be connected by an isotropic biarc, i.e. a pair of isotropic arcs c1 and
c2 joined with G1 continuity.

Transforming this problem back from I3 to the standard model of Euclidean
Laguerre geometry with the map Λ−1 we obtain the approximation of a devel-
opable surface Λ−1(g) by a pair of cone segments Λ−1(c1), Λ

−1(c2). The Hermite
data (ai,pi) to be interpolated is the Λ image of the (oriented) Hermite elements
(τi, ei), i.e. a set of planes τi each of which contains a ruling ei.

Thus, approximation with isotropic biarcs is equivalent to the cone pair ap-
proximation introduced in [10]: From a developable surface take a sample of
rulings and compute the tangent planes along these rulings. Then each two con-
secutive rulings plus tangent planes can be smoothly joined by a G1-pair of right
circular cones. This results in a G1-cone spline surface.

But let us return to the isotropic biarcs. Completely analogous to the situation
with Euclidean biarcs we define a control polygon for the Bézier representation
of the isotropic biarc. The control points will be named by a1,b1, c,b2, a2 (see
Figure 2).

For b1 = a1 + λ1p1 and b2 = a2 − λ2p2 we obtain

〈b2 − b1,b2 − b1〉i = (λ1 + λ2)
2, (10)

as the normal projections c̃1, c̃2 of the isotropic arcs c1, c2 have to be Euclidean
circles. There is a one parameter set of solutions which we can get by choosing
b1(λ1) and computing b2(λ2) via (10). The junction point c can be computed by

c =
λ2b1 + λ1b2

λ1 + λ2

.
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Figure 2: Isotropic biarcs

For the representation of ci as rational Bézier curves of degree two (see e.g. [5])
we have weights 1 at ai and c and weights wi at bi which satisfy

|wi| =
|〈bi − ai, c − ai〉i|

di(ai,bi)di(ai, c)
.

The sign of w1 and w2 has to be chosen equal to the sign of λ1 and λ2. Positive
values of λi indicate that the arc contained in the triangle ai,bi, c is used, thus
a positive weight wi is needed.

In Euclidean 3-space we know [10]

Theorem 3.1 Given two G1 elements (e1, τ1), (e2, τ2), i.e. rulings plus tangent
planes, in general position, there is a one parameter family of cone pairs inter-
polating this data. The cones possess a common inscribed sphere Σ. The tangent
planes at the junction generators of the cone pairs, as well as the planes τ1 and
τ2, touch Σ along a circle.

Transferring this result via the map Λ : U → I3 we obtain

Theorem 3.2 Given two G1-elements (a1,p1), (a2,p2) in general position, there
is a one parameter family of isotropic biarcs c1, c2 interpolating this data. The
isotropic circles ci all lie on an isotropic sphere Σ which is uniquely determined
by (ai,pi). The junction point c varies on an isotropic circle c which lies on Σ
and passes through a1 and a2.
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Note that Theorem 3.2 is an analogue to the identical one in Euclidean 3-space
(see e.g. [6, 20]).

4 Spatial isotropic osculating arc splines

Let a1 and a2 be two points of a given curve g in I3 which is regular and has no
isotropic tangents. The oriented isotropic circles c1 and c2 osculating g in a1 and
a2 lie in the planes σ1 and σ2. Our aim is to find an isotropic circle c joining c1

and c2 with G1 continuity in the junction points c1 and c2 (see Figure 3). With

Figure 3: Isotropic osculating arcs

this method we are able to construct an isotropic arc spline approximating g so
that every second arc is an isotropic osculating circle of g in a point ai. Although
we use three arcs to join the two points a1, a2 the method produces an arc spline
with about the same number of arcs as the biarc method does. This is because
the next segment between a2 and a3 is continued with the isotropic arc c2.

The investigation of isotropic osculating arc splines is motivated by the fact
that it is the Λ-image of the osculating cone spline approximation scheme in [10]:
From a given developable surface Γ = Λ−1(g) we choose certain generators to
oriented tangent planes τi = Λ−1(ai) and join two consecutive oriented osculating
cones ∆i = Λ−1(ci) by a cone segment ∆ = Λ−1(c). Thus, every second of the
circular cone patches of the resulting G1-cone spline surface is an osculating cone
of the target surface Γ.

As curves are easier to handle than surfaces it is often preferable to work
with isotropic circles in I3 than with cones of revolution in E3. Therefore, in
section 4.1 we will first analyze geometrically how to find an isotropic arc c
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joining two isotropic circles c1, c2 which are osculating a curve g to parameter
values t1, t2. In general we obtain two solutions for c which need not be real.
In section 4.2 we will be able to prove, however, that there is a real and useful
solution arc c if the difference between the parameter values ti is sufficiently small.
In our proof we will simplify the geometric situation by applying an appropriate
isotropic Möbius transformation α : I3 → I3.

4.1 Method

The normal projection of c1, c, c2 into the xy-plane is an (Euclidean) arc spline
c̃1, c̃, c̃2 which we will examine first. Note that the pre-images u = Λ−1(x) and
ũ = Λ−1(x̃) of a point x ∈ I3 and its top projection x̃ are parallel planes and ũ

contains the origin o ∈ E3. The top view of the isotropic triarc c1, c, c2 therefore
is equivalent to a translation of the cones Λ−1(c), Λ−1(ci) so that they possess
the common vertex o.

It is well known that there is a one parameter set of circles c being in ori-
ented contact with c̃1, c̃2 (see for instance [14]). Quite recently the approximation
quality of planar osculating arc splines has been analyzed in [13].

We will define a control polygon for the arc spline and denote its points by
ã1, . . . , ã2 (see Figure 4). After choosing the first junction point c̃1(λ1), where λ1

Figure 4: Planar Euclidean osculating arcs

is a homogeneous parameter on the oriented circle c1, the second junction point
c̃2(λ2) is uniquely determined. c̃1(λ1) 7→ c̃2(λ2) is a projective mapping. It is an

important property that the middle control point d̃ of c̃ has to lie on the chordal
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line d̃ of the two circles c̃1, c̃2 since d̃ contains all points whose tangential distances
to c̃1 and c̃2 are equal. The equation of d̃ in affine coordinates is

d̃ : 2x(m̃2 − m̃1) − (r2
1 − r2

2) + (m̃2
1 + m̃2

2) = 0 (11)

where ri denote the radii and m̃i the midpoints of c̃i. For the implementation
of the projective map c̃1(λ1) 7→ c̃2(λ2) it is helpful to be aware of the fact that
the connecting lines of matching points c̃1 and c̃2 always pass through a point z.
This property can be verified as follows: Let κ1 equal the homothety with center
z and κ1(c̃1) = c̃2, preserving the orientation of c̃i. z is given by

z =
r2

r2 − r1

m̃1 −
r1

r2 − r1

m̃2 (12)

where the radii ri of c̃i are oriented. Denote the c̃2-automorphic harmonic per-
spectivity with center z by κ2. Then the composition κ = κ1κ2 is a perspective
collineation with center z and axis d̃ because the points of c̃1 ∩ c̃2 are fixed under
κ. Now the restriction of κ to c̃1 gives the projective map c1(λ1) 7→ c2(λ2).

Furthermore, the midpoints m̃ of the one parameter family of joining arcs lie
on a conic with focal points m̃1 and m̃2 which directly follows from the basic
definition of conics. Another way to realize the projective map c̃1 7→ c̃2 is to
choose c̃1 and thus finding d̃ by intersecting the tangent in c̃1 with d̃. Laying
a tangent from d̃ to c̃2 one gets c̃2 which is unique because both circles c̃i are
oriented.

We will now return to the spatial problem in I3: a possible solution arc c̃ with
junction points c̃i of the planar problem does not necessarily lead to a solution
arc c of the spatial problem because the tangents ti in ci to ci generally lie in
different osculating planes σ1 and σ2 and need not have a point d in common.
As this point d cannot but lie on the intersection line s = σ1σ2 it is necessary for
d̃ to lie on both d̃ and the top projection s̃ of s. If d̃ lies outside of c̃1 and c̃2 one
gets two real solution arcs c. One just has to lay both tangents out of d̃ to c̃i and
thus determine the junction points while taking care of the circles’ orientation.

In the special cases of σ1 = σ2 and s̃ = d̃ there is a one parameter set of
isotropic solution arcs c joining c1 and c2. This happens exactly if c1 and c2 lie on
a common isotropic Möbius sphere, i.e. a non-isotropic plane or a paraboloid of
revolution. Reinterpreting with Λ−1, we confirm the existence of a one parameter
set of cones ∆ in oriented contact with two given cones of revolution ∆1, ∆2 if
both ∆i are in oriented contact with a common sphere Σ. This includes the case
of ∆i possessing the same vertex v since the common vertex can be interpreted
as sphere with radius zero.

4.2 Feasibility of the solution

In order to show the reality and usefulness of a solution arc c we will prove
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Theorem 4.1 Let g(t) be a piecewise C∞ curve in isotropic 3-space I3. To any
point g(t1) there exists a parameter interval U = ]t1, t1 + ∆t] ⊂ R such that the
points g(t1) and g(t2), t2 ∈ U can be joined with an isotropic triarc in the following
way: the first and the third arc of this triarc lie on the isotropic osculating circles
c1 and c2 of g(t) to parameters t1 and t2 The joining isotropic arc c is real and
joins c1 and c2 with G1-continuity while preserving the orientation of ci.

Via the transition of the isotropic model into the standard model of Euclidean
Laguerre geometry Theorem 4.1 is equivalent to

Theorem 4.2 Let Γ be a piecewise C∞ developable surface. To any osculating
cone ∆(t1) of Γ to parameter t1, there exists a parameter interval U =]t1, t1 +
∆t] ⊂ R such that the osculating cones ∆(t1) and ∆(t2), t2 ∈ U can be smoothly
joined with a cone ∆. The joining cone ∆ is real and joins ∆1 and ∆2 with
G1-continuity while preserving the orientation of ∆i.

Proof: (of Theorem 4.1)

We apply an isotropic Möbius transformation α : I3 → I3 to the curve g such
that the first isotropic osculating circle c1 is mapped to the x-axis. As the order
of contact between g and c1 is not changed by α the x-axis is an inflection tangent
to α(g).

Without loss of generality we can restrict ourselves to a curve g = g(t) which
has an inflection point g(0) to parameter t = 0 at the origin o. Let its inflection
tangent be the x-axis and g(0) + λ1ġ(0) + λ2g

(3)(0) be the xy-plane. A Taylor
expansion of g(t) up to the fourth derivative is then given by

g(t) =




a1t + a2t
2 + a3t

3 + a4t
4 + O(t5)

b3t
3 + b4t

4 + O(t5)

c4t
4 + O(t5)


 , a1, b3, c4 ∈ R

+; ai, bi, ci ∈ R (13)

with derivatives

ġ(t) =




a1 + 2a2t + 3a3t
2 + 4a4t

3 + O(t4)

3b3t
2 + 4b4t

3 + O(t4)

4c4t
3 + O(t4)


 (14)

and

g̈(t) =




2a2 + 6a3t + 12a4t
2 + O(t3)

6b3t + 12b4t
2 + O(t3)

12c4t
2 + O(t3)


 . (15)
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We will compute the control points c1,d, c2 of an isotropic arc c which is in
oriented contact with the x-axis and the isotropic circle c2(t) which osculates g

in g(t) (see Figure 5, where the connecting arc c has been omitted as it lies too
close to the curve g). The middle control point d is the intersection point of

Figure 5: g(t) with inflection point g(0)

the osculating plane σ2 at g(t) with the x-axis. The junction point c2 can be
computed by laying a tangent from d to c2(t). The last control point c1 on the
x-axis is determined by

di(c1,d) = di(c2,d). (16)

We will now calculate c1,d, c2 in dependency on t and will show that for t → 0,
i.e. the touching point g(t) to c2(t) converges to g(0), we will obtain a useful arc
c.

Defining the normal vector

n(t) = ġ(t) × g̈(t) =




12c4b3t
4 + O(t5)

−12a1c4t
2 + O(t3)

6a1b3t + 6(2a1b4 + a2b3)t
2 + O(t3)


 (17)

of σ2(t), one gets
σ2(t) : n(t) · x = n(t) · g(t)

and easily verifies

d(t) = σ2(t) ∩ x-axis =




1
2
a1t + O(t2)

0

0


 . (18)

The following calculations will be made for the top projection g̃ of g. The top
view of c2(t) is the (Euclidean) osculating circle c̃2(t) of g̃ at g̃(t). Its radius
equals

r̃ =
‖ ˙̃g‖3

det
(

˙̃g, ¨̃g
) .
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Formulae (14) and (15) give

r̃2(t) =
1

t2

(
a4

1

36b2
3

+
5a3

1a2b3 − 2a4
1b4

18b2
3

t + O(t2)

)
. (19)

The midpoint m̃(t) of c̃2(t)

m̃(t) = g̃(t) +
‖ ˙̃g(t)‖2

det
(

˙̃g(t), ¨̃g(t)
) · ˙̃g

⊥

(t)

simplifies to

m̃(t) =




1
2
a1t + O(t2)

1

t

(
a2

1

6b3

+
5a1a2b3 − 2a2

1b4

6b2
3

t + O(t2)

)

 . (20)

The square of the distance R̃(t) between d(t) and m̃(t) equals

R̃2(t) = (m̃(t) − d(t))2 =
1

t2

(
a4

1

36b2
3

+
5a3

1a2b3 − 2a4
1b4

18b2
3

t + O(t2)

)
. (21)

Using coefficients of higher order in t, which have been omitted in formulae (19)
and (21), one verifies for the power p̃(t) of the point d(t) with respect to the
circle c̃2(t)

p̃(t) = R̃2(t) − r̃2(t) =
1

12
a2

1t
2 + O(t3). (22)

The value of p̃(t) is positive if t is sufficiently small. Thus, d(t) lies outside of
c̃2(t) and c̃2(t) and c2(t) are real.

The power p̃(t) is the square of the distance of d(t) and c̃2(t) and together
with (16) we have

p̃(t) = (d(t) − c̃2(t))
2 = (d(t) − c̃1(t))

2.

(18) and (13) show that the squares of the distances of d(t) to o = g̃(0) and g̃(t)
simplify to

(d(t) − g̃(0))2 = (d(t) − g̃(t))2 =
1

4
a2

1t
2 + O(t3) (23)

which is greater than p̃(t) in formula (22). This shows that for small t the x-
coordinate of c1(t) is positive and the x-coordinate of c2(t) is smaller than the
x-coordinate of g(t) (see Figure 5).
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5 Spatial Euclidean Arc Splines

In 3-dimensional Euclidean space E3 the approximation of twisted curves with
spatial (Euclidean) biarcs is well understood (see e.g. [6, 8, 15, 20]). Approxi-
mation schemes with osculating arc splines have been analyzed for the planar
Euclidean case [13], and recently also for the 3-dimensional Euclidean case [12].

Figure 6 (a) shows the approximation of a helical curve (thin curve) by one
triarc segment (thick curve) in top view and front view. Figure 6 (b) shows the
approximation of the same curve with two triarc segments. The big octahedrons

(a) (b)

Figure 6: Approximation with (a) one, (b) two triarc segments

indicate the curve points whose osculating circles were computed. The smaller
octahedron are the joining points of different arc segments. In order to better
illustrate the spatial position of the arc segments their end points are connected
to their midpoint with thin lines. For further information of approximation errors
and practical segmentation algorithms of the given curve the reader is referred
to [12].

It is natural to introduce 3-dimensional Euclidean Möbius geometry in sec-
tion 5.1 since the set of Euclidean Möbius circles is comprised of straight lines
and Euclidean circles. Speaking of a G1 circular arc spline one tacitly allows
degeneration of circular arc segments to straight line segments.
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Similar to section 4.2 we will use a Möbius transformation in order to simplify
the proof of Theorem 5.1 in section 5.2: two osculating circles c1, c2 of a curve g

can be joined by a real and useful arc c as long as the difference of parameters
t1, t2 associated with c1, c2 is small enough.

5.1 3-dimensional Euclidean Möbius geometry

Let E3 be real Euclidean 3-space, P its point set and M the set of spheres and
planes of E3. We obtain the so-called Euclidean conformal closure EM

3 of E3 by
extending the point set P by an arbitrary element xu 6∈ P to PM = P ∪ {xu}.
As an extension of the incidence relation we define that xu lies in all planes but
in none of the spheres. The elements of M are called Euclidean Möbius spheres
and the intersection of two Möbius spheres is a so-called Euclidean Möbius circle.
Euclidean Möbius geometry is the study of properties that are invariant under
Euclidean Möbius transformations. A Möbius transformation is an incidence
preserving composition of a bijective map of PM and a bijective map of M .

Another model of this geometry we obtain by embedding E3 in Euclidean
4-space E4 as plane t = 0. Let σ : Σ\{z} → E3 be the stereographic projection
of the unit hypersphere

Σ : x2 + y2 + z2 + t2 = 1 (24)

onto E3 with center z = (0, 0, 0, 1). Extending σ to σ̄ with σ̄ : z 7→ xu gives a
new model of Euclidean Möbius geometry. The point set is that of Σ ⊂ E4 and
the Möbius spheres are the hyperplanar intersections of Σ since σ is preserving
spheres. It is a central theorem of Euclidean Möbius geometry that all Euclidean
Möbius transformations of this model are induced by an automorphic linear map
P 4 → P 4 of Σ, where P 4 denotes the projective extension of E4.

5.2 Feasibility of the solution

Completely analogous to the isotropic case in 4.2 we state

Theorem 5.1 Let g(t) be a piecewise C∞ curve in Euclidean 3-space E3. To any
point g(t1) there exists a parameter interval U = ]t1, t1 + ∆t] ⊂ R such that the
points g(t1) and g(t2), t2 ∈ U can be joined with a Euclidean triarc in the following
way: the first and the third arc of this triarc lie on the Euclidean osculating circles
c1 and c2 of g(t) to parameters t1 and t2. The joining Euclidean arc c is real and
joins c1 and c2 with G1-continuity while preserving the orientation of ci.

Proof: We apply a Euclidean Möbius transformation to the curve g such that
the first osculating circle c1 is mapped to the x-axis. Thus, we can restrict our
calculations to curves g = g(t) with an inflection point at g(0) = o.
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We will compute the control points c1,d, c2 of an arc c which is in oriented
contact with the x-axis and the osculating circle c2 of g to parameter t. The
middle control point d can be found as intersection point of the osculating plane
σ2 with the x-axis (Figure 7). The junction point c2 can be determined by laying

Figure 7: g(t) with inflection point g(0)

a tangent from d to c2 and c1 follows from

‖c1 − d‖ = ‖c2 − d‖. (25)

The only difference to section 4.2 is that c2 is a Euclidean circle and the distances
in (25) are Euclidean ones.

We can use (13) to (15), (17) and (18) for the Taylor expansions of
g(t), ġ(t), g̈(t),n(t) and d(t). The radius r(t) of the (Euclidean) osculating circle
c2(t) of g at g(t) equals

r =
‖ġ‖3

‖n(t)‖

and with (14) and (17) simplifies to

r2(t) =
1

t2

(
a4

1

36b2
3

+
5a3

1a2b3 − 2a4
1b4

18b2
3

t + O(t2)

)
. (26)

The midpoint m(t) of c2(t)

m(t) = g(t) +
‖ġ(t)‖2

‖n(t)‖2
· (n(t) × ġ(t))

possesses Taylor expansions

m(t) =




1
2
a1t + O(t2)

1

t

(
a2

1

6b3

+
5a1a2b3 − 2a2

1b4

6b2
3

t + O(t2)

)

a2
1c4

3b2
3

+ O(t)




. (27)
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The square of the distance R(t) between d(t) and m(t) equals

R2(t) = (m(t) − d(t))2 =
1

t2

(
a4

1

36b2
3

+
5a3

1a2b3 − 2a4
1b4

18b2
3

t + O(t2)

)
(28)

which, similar to the proof of Theorem 4.1, leads to

p(t) = R2(t) − r2(t) =
1

12
a2

1t
2 + O(t3)

for the power of d(t) with respect to c2. If t is small enough the value of p(t) is
positive but smaller than

(d(t) − g(0))2 = (d(t) − g(t))2 =
1

4
a2

1t
2 + O(t3).

Therefore, a real and useful solution arc c exists which provides a triarc connection
of g(0) and g(t).

6 Summary and future research

Classical sphere geometric models can be used to provide a point representation
of (oriented) planes, thus a curve representation of developable surfaces. Most
importantly, cones of revolution are mapped to circles with respect to an isotropic
metric in a 3-dimensional space.

A topic for future research are other Hermite-like approximation schemes of
developable surfaces with cone spline surfaces. One might, for example, interpo-
late two tangent planes plus rulings and points of regression (τi, ei,vi) with three
cone segments. There is a two-parameter set of solutions for this triple: One
can choose the first circular cone patch Λ1 with vertex v1 such that it touches
tangent plane τ1 along e1 and do the same for the third cone patch Λ3. Then,
there are two complex circular cone patches Λ2 that smoothly join Λ1 and Λ3 (see
section 4).

Appropriate selection algorithms for the free parameters and theorems on the
existence of real joining cones Λ2 should be easier to derive, as one makes use of
the isotropic model of Euclidean Laguerre geometry as described in this paper.
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