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Abstract

An active contour model for parametric curve and sur-
face approximation is presented. The active curve or sur-
face adapts to the model shape to be approximated in an op-
timization algorithm. The quasi-Newton optimization pro-
cedure in each iteration step minimizes a quadratic function
which is built up with help of local quadratic approximants
of the squared distance function of the model shape and an
internal energy which has a smoothing and regularization
effect. The approach completely avoids the parametrization
problem. We also show how to use a similar strategy for
the solution of variational problems for curves on surfaces.
Examples are the geodesic path connecting two points on
a surface and interpolating or approximating spline curves
on surfaces. Finally we indicate how the latter topic leads
to the variational design of smooth motions which interpo-
late or approximate given positions.

1. Introduction

Curve and surface approximation is a central topic of
Computer Aided Geometric Design and there is a large
body of literature dealing with it. It is beyond the scope
of this paper to give an overview of the many available al-
gorithms. Thus we will just point to the work which is in
close connection with our algorithms and even there we will
mainly focus at the literature which comes not directly from
the CAGD community, but from areas like Computer Vision
and applications of partial differential equations.

At first, let us consider approximation with parametric
curves or surfaces, which are usually expressed by means of
B-splines [23, 44]. The usual approach uses a least squares
formulation with a regularization term that expresses the
fairness of the final result (see e.g. [23, 24]).

The principle, explained for surfaces, is as follows. Let
p �������
	����������� be the given data points or samples on
a given model surface. We are looking for an approximat-

ing B-spline surface or another parametric surface with a
representation of the form

x ����������� �� � ���! 
� ��������� d � � (1)

The basis functions  
� ��������� are usually polynomial, piece-

wise polynomial, or piecewise rational. We assume that the
functions  

�
are given or precomputed from the input data;

thus weights or knots are already determined. Then one es-
timates the surface parameters ��� � ��� � �"�#�$�%	����������� of
those points x ��� � ��� � � on the approximant which should be
close to the corresponding data points p � . The approximant
is computed as minimizer of a functional& � � �(' x ��� � ��� � �*) p � ' +-,/. &*0 � (2)

The first part is a quadratic function in the unknown control
points d

�
,� �(' x ��� � ��� � �*) p � ' + � � � 1 �� � ���2 

� ��� � ��� � � d � ) p �43 + �
The second part

&50
in (2) is a smoothing term (see e.g. [6]).

A frequently used example is the simplified thin plate en-
ergy, a quadratic function in the second partial derivatives,&*0 �76869� x +:;:<,/= x

+:;>?,
x
+>"> �A@��B@��C� (3)

It is also quadratic in the unknowns d

�
and thus the mini-

mization of
&

is the minimization of a quadratic function
and amounts to the solution of a linear system of equations.

It is a difficult task to estimate the parameters ��� � ��� � � .
This parameter choice largely effects the result (see e.g. [33]
and the references therein). Therefore, iterative parameter
correction procedures have been suggested [23]. The final
approximant should exhibit error vectors x ��� � ��� � �D) p �
which are orthogonal to the approximating surface x ��������� .



Fortunately, there is a way to overcome the parameteri-
zation problem. The idea comes from Computer Vision and
Image Processing, where so-called active contour models
are used in a variety of applications (see e.g. [3]). The ori-
gin of this technique is a paper by Kass et al. [27], where a
variational formulation of parametric curves, coined snakes,
is used for detecting contours in images.

An elegant formulation of curve and surface reconstruc-
tion and segmentation problems is the concept of geodesic
active contours [8, 9, 49]. There, the curve to be recon-
structed, e.g. from a medical image, is found as geodesic
in a Riemannian space whose metric is derived from the
input (image). Analogously, surface reconstruction is re-
formulated as minimal surface computation in a Rieman-
nian space. The literature on this highly interesting topic
is rapidly increasing. A good overview of the methods is
found in the book by G. Sapiro [49].

Instead of a parametric representation of a planar curve
or a surface, one may use an implicit form as zero set (level
set) of a bivariate/trivariate function [5]. A major advantage
of this approach is the simplicity with which one can model
arbitrary topologies. Often, the function which the level sets
are taken from is assumed to be polynomial. This yields al-
gebraic surfaces. For algebraic surface fitting, especially the
fitting of algebraic tensor-product spline surfaces to scat-
tered data, we refer the reader to the recent paper of Jüttler
and Felis [26]. Some approaches to surface reconstruction
via implicit surfaces define a signed distance function to the
data set and denote the zero contour of the signed distance
function as the reconstructed implicit surface [1, 4].

The formulation of active contour models via level sets
goes back to Osher and Sethian [42]. The level set method
[41, 53] has been successfully applied to the solution of a
variety of problems, e.g. for segmentation and analysis of
medical images [36]. There are also several extensions to
surfaces. An application to the surface fitting problem to
scattered data sets has been given by Zhao et al. [61, 62].
For further work on the level set method which is related to
surface reconstruction, see [17, 18, 60].

In the present investigation, we develop further a concept
for parametric curve and surface fitting which has recently
been developed by the authors [46]. We assume as input a
rather dense set of points or even a given curve or surface
representation. We refer to it as model shape. The first sit-
uation arises for example when we are processing data of
modern 3D scanners, or if we would like to fit a surface
to a dense mesh. A curve or surface � as input may arise
when the representation of � is not in the desired paramet-
ric representation. For example, we may have as input an
implicit representation or a B-spline curve/surface with a
too high degree or too many knots. Thus, we are also con-
tributing to the problems of spline conversion, degree reduc-
tion and knot removal [23, 44]. Moreover, surfaces derived

from a given surface in various ways might not be in the
desired form. A well-known example are offset surfaces of
NURBS surfaces, which are usually not NURBS surfaces
themselves. The present approach is very well suited for
offset surface approximation [35].

The basic idea of our approach is the application of a
Newton type algorithm for the solution of the nonlinear
problem of curve and surface approximation. Thus we use
an iterative method, i.e., an active curve or surface which
adapts to the final model shape. Moreover, for a Newton
algorithm we require local quadratic (Taylor) approximants
of the function to be minimized. Since we want to mini-
mize the sum of squared distances to the curve or surface to
be approximated, we guide the shape change of the active
curve/surface with help of local quadratic approximants of
the squared distance function @ + of the model shape. The
local approximants help to move the active curve/surface
x ��������� to lower levels of @ + , without having to specify
which point x ��������� should move to which point of the
model shape. In this way we are avoiding the parametri-
zation problem.

Our method is applicable to approximation with any lin-
ear curve or surface scheme, even subdivision curves and
surfaces. In this paper we restrict ourselves to a B-spline
representation.

The organization of our paper is as follows. In section
2, we review our recent work on local quadratic approx-
imants of the squared distance function @ + of curves and
surfaces [45], since it forms the basis for the new approx-
imation technique. In section 3, the new concept is out-
lined for curve approximation and applied to degree reduc-
tion and offset approximation. In section 4, we describe
surface approximation and present some examples. Section
5 deals with curves on surfaces. It is shown how to compute
the shortest path (geodesic) between two points on a surface
and how to compute spline curves on surfaces. Moreover,
we describe how the new technique naturally leads to a vari-
ational formulation for the computation of smooth motions,
which interpolate or appoximate a given set of positions.
Finally, in section 6, we describe possible extensions and
indicate directions for future research.

2. Local quadratic approximants of the
squared distance function of curves and
surfaces

The algorithmic concept we are proposing heavily re-
lies on local quadratic approximants of the squared distance
function of the curve/surface � or point cloud to which we
would like to fit a B-spline curve/surface.

Let us first consider the distance function of a curve or
surface � , which assigns to each point p the shortest dis-
tance of p to � . A variety of contributions deals with the
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computation of this function; in many cases this computa-
tion aims towards the singular set of the function, i.e., to-
wards points where the function is not smooth since those
points lie on the medial axis (or skeleton) of the input shape.

Early work on the geometry of the distance function
comes from the classical geometric literature of the 19th
century. One looks at its graph surface, which consists of
developable surfaces of constant slope and applies results
of classical differential geometry, line and sphere geometry
(for a modern presentation, see e.g. [47]). For more recent
work on distance transforms and the closely related medial
axis transform, see [10, 11, 29, 40, 51, 52, 56].

The distance function is also the (viscosity) solution of
the so-called eikonal equation. Its numerical computation
is not trivial because the eikonal equation is a hyperbolic
equation and an initially smooth front may develop singu-
larities (shocks) as it propagates. Precisely the latter belong
to the medial axis and are of particular interest. The com-
putation of viscosity solutions with the level set method of
Osher and Sethian [42, 41] proved to be a very powerful
method (see e.g. [49, 54, 53]).

For our approach to surface approximation, not the dis-
tance function itself but the squared distance function is im-
portant. We are especially interested in local quadratic ap-
proximants of that function. For a derivation and proofs of
the following results we refer the reader to [45]. For a bet-
ter understanding, we first present local quadratic approxi-
mants of planar curves and then move to surfaces and space
curves.

2.1. Local quadratic approximants of the squared
distance function of a planar curve

In a Euclidean plane we consider a � + curve c ����� with
parameterization ��� � �����"��� + ������� . The Frenet frame at a curve
point c ����� consists of the unit tangent vector e � ���c � ' �c 'and its normal vector e + ����� . Those two vectors form a right-
handed orthonormal basis in the plane.

We are interested in the squared distance function @ +
which assigns to each point p in 	 the square of its short-
est distance to the curve c ����� . In the following we give the
formula for a local quadratic (Taylor) approximant of the
squared distance function with respect to a local Frenet co-
ordinate system. Note that the squared distance function is
not smooth in points of the medial axis. Thus, we will not
compute local quadratic Taylor approximants for points of
the medial axis.

Consider a point p in 	 whose coordinates with respect
to the Frenet frame at the normal footpoint c ����
 � are ��� ��@�� .
The curvature center k ���
 � at c ����
;� has coordinates ��� ����� .
Here, � is the inverse curvature 	���� and thus has the same
sign as the curvature, which depends on the orientation of
the curve (see Fig. 1).

PSfrag replacements
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Figure 1. Graph of the squared distance
function @ + to a planar curve c ����� .
With respect to the Frenet frame, the second order Taylor

approximant
&��

of the squared distance function @ + at ��� ��@��
is given by &�� ��� � ��� + �-� @@ )�� �

+ � , � ++ � (4)

For a derivation of this result and a discussion of the differ-
ent types of

&��
we refer the reader to [45]. We just point out

that the Taylor approximants may be indefinite. As shown
in [45], we can use as appropriate nonnegative quadratic ap-
proximant &��� ��� � ��� + �-� @@ , � �

+ � , � ++ � (5)

where @ ��� are taken as positive. Equ. (5) is not valid for
points beyond the curvature centers, but they will not arise
anyway when we consider global distances.

2.2. Local quadratic approximants of the squared
distance function of a surface

Consider an oriented surface s ��������� with a unit normal
vector field n ��������� � e ����������� . At each point s ��������� , we
have a local right-handed Cartesian system whose first two
vectors e � � e + determine the principal curvature directions.
The latter are not uniquely determined at an umbilical point,
but in that case we can take any two orthogonal tangent vec-
tors e � � e + . We will refer to the thereby defined frame as
principal frame �D��������� . Let �

�
be the (signed) principal

curvature to the principal curvature direction e

�
, � � 	�� = ,

and let �
� � 	���� � . Then the two principal curvature centers

at the considered surface point s ��������� are expressed in �
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as k

� � ��� ��� ��� � � . The quadratic approximant
&��

of @ + at��� ��� ��@�� is the following:

Proposition 1 The second order Taylor approximant of the
squared distance function of a surface at the point p ���� ��� ��@�� is given by&�� ��� � ��� + ��� �;��� @@ )�� � � + � , @@ )�� + � ++ , � +� � (6)

when coordinates are given with respect to the principal
frame at s ��������� .

Let us look at two important special cases.

� For @8� � we obtain&�� ��� � ��� + ��� �;��� � +� �
This means that the second order approximant of @ + at
a surface point p is the same for the surface s ��������� and
for its tangent plane at p. Thus, if we are close to the
surface, the squared distance function from the tangent
plane at the footpoint is a very good approximant. At
least at first sight it is surprising that the tangent plane,
which is just a first order approximant, yields a sec-
ond order approximant when we are considering the
squared distance function @ + , to surface and tangent
plane, respectively.

� In the limit @ ��� we obtain&�� ��� � ��� + ��� �4�-� � + � , � ++ , � +� �
This is the squared distance from the footpoint on the
surface.

We see that distances from footpoints yield good approxi-
mations if we are in the ‘far field’ of the surface s ��������� . In
the near field it is much better to use other local quadratic
approximants. The simplest one is the squared distance
from the tangent plane at the footpoint.

Analogous to the curve case, we may have an indefinite
Taylor approximant. Then we can use as appropriate non-
negative quadratic approximant&��� ��� � ��� + ��� �4�-� @@ , � � � + � , @@ , � + � ++ , � +� � (7)

Here, @ ��� � ��� + are taken as positive. Equ. (7) is not valid for
points beyond the principal curvature centers. Such points
do not arise anyway when we consider global distances.

2.3. Local quadratic approximants of the squared
distance function to a space curve

Given a point p in
� � , the shortest distance to a � + space

curve c ����� occurs along a normal of the curve or at a bound-
ary point of the curve. The latter case is trivial and thus
we exclude it from our discussion. At the normal footpoint
c ����
 � we define a Cartesian coordinate system with e � as
tangent vector and e � in direction of the vector p ) c ���
 � .
This canonical frame can be viewed as limit case of the
principal frame for surfaces, when interpreting the curve as
pipe surface with vanishing radius. By this limit process,
we can also show the following result.

Proposition 2 The second order Taylor approximant of the
squared distance function of a space curve c ����� at the point
p � ��� ��� ��@�� is given by&�� ��� � ��� + ��� �4�-� @@ )�� � � + � , � ++ , � +� � (8)

where coordinates are given with respect to the canonical
frame. Here, ��� ��� ��� � � are the coordinates of the intersec-
tion point of the curvature axis of c ����� at the footpoint c ����
;�
with the perpendicular line pc ���
;� from p to c ����� .

As expected, with @ � � we obtain&�� ��� � ��� + ��� �;��� � ++ , � +� �
This means that the second order approximant of @ + at a
curve point is the same for the curve c and for its tangent.

3. Approximation with an active curve in the
‘squared distance field’

Our approach to curve approximation has as input a
model shape � . This can be a sufficiently dense point set
along a curve. It can also be a curve in

� +
or
� � which

is given in any mathematical representation. For the sake of
simplicity in our explanation, we confine ourselves at first to
planar curves, but the concept works in higher dimensions
as well.

From the model shape � , we compute — for exam-
ple by means of second order Taylor approximants — lo-
cal quadratic approximants of the squared distance function@ + of � . Thus, for any point p 	 � +

, we have a way to
compute such a local quadratic approximant

& ��

p. In its

simplest formulation, the method outlined below further as-
sumes that

&���

p is a nonnegative quadratic function.

The active curve model we are using is of the following
nature. It is governed by control points d

� � � � 	�������� ,
and there is a linear relation which computes from the con-
trol point set a larger set of curve points s � ��� � 	�����������
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or points on a refined model. For example, we may have a
Bézier or B-spline curve of the form

c �����-� �� � ���2 
� ����� d � � (9)

We now evaluate the curve at parameters � � and get curve
points

s � � c ��� � �"�
We could also work with a subdivision curve: The points
d

�
can be the vertices of a coarse subdivision level and the

points s � can be vertices of a refined model, after applica-
tion of a few steps of the subdivision rule [59]. The set of
points s � must be large enough to capture the shape of the
active curve well. In the following we use the notation

s � ��� � � d � ������ d � � (10)

to express the linear computation of s � from the control
points d

�
.

The key idea is to iteratively change the input control
points d

�
so that the active curve deforms towards the model

shape � . We do not use the gradient flow in the squared
distance field but in each step solve a minimization problem
which ensures that we quickly move to lower levels of the
function @ + .

The method now proceeds in the following steps.

1. Initialize the active curve and determine the boundary
conditions. This requires the computation of an ini-
tial set of control points d

� � �<� 	�������� , the proper
treatment of boundaries (such as fixing end points of a
curve segment) and the avoidance of model shrinking
during the following steps. More details on that are
described in section 4.

2. Repeatedly apply the following steps a.–c. until the ap-
proximation error or change in the approximation error
falls below a predefined threshold:

a. With the current control points d

�
, compute, for� � 	��������� , the active curve point s � �

� � � d � ����� d � � and a local quadratic approxi-
mant

&���

s � ��� & �� of the squared distance func-

tion of the model shape � at the point s � .
This has to be a nonnegative quadratic function,& �� � x ��� � ��� x 	 � + .

b. Compute displacement vectors c

� ���-� 	�������5�
for the control points d

�
by minimizing the func-

tional& � 	�� ��� & �� �
� � � d � , c � ����� d � , c � ��� ,�. &*0 �
(11)

Thus, our goal is that the new curve points

s �� ��� � � d � , c � ������ d � , c � �"�
which are linear combinations of the new control
points d �

� � d

� ,
c

�
, are closer to the model shape

than the old active curve points s � . The func-
tional

&*0
is a smoothing functional which shall

be quadratic in the control points of the active
curve. Thus,

&50
is a quadratic function in the

new control points d

� ,
c

�
, and also quadratic in

the unknowns c

�
.

We see that step b. requires the minimization of a
quadratic function

&
in the displacement vectors

c

�
of the control points. This amounts to the solu-

tion of a linear system of equations. Note that the
factor

.
in Equ. (11) determines the influence of

the smoothing term
&50

in the optimization. In all
our examples we started with a high value of

.
in the first iteration and let the influence of the
smoothing term fade out in the later iterations
(
. � � ). In this way unwanted foldovers or

loops of the active curve can be avoided in the
beginning of the deformation process. As the ac-
tive curve comes closer to the model shape the
smoothing term gets less important.

c. With c

�
from the previous step, we replace the

control points d

�
by d �

� � d

� ,
c

�
.

PSfrag replacements
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Figure 2. One step in the curve approxima-
tion procedure. The curve � is approximated
by a B-spline curve.

Fig. 2 illustrates the algorithm. The model shape � is
a curve which is to be approximated by a B-spline curve.
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Fig. 2 shows an initial position of the B-spline curve c ����� ,
with control points d

�
, and the updated B-spline curve, with

control points d �
�
, after one iteration step. For one of the

sample points s � � c ��� � � the local quadratic approximant& �� of the squared distance function is indicated by three of
its level sets, which are concentric ellipses.

Let us briefly discuss the choice of the initial curve. In
all our tests it turned out to be not critical. Apparently the
choice of the initial curve c 
 is safe if c 
 lies close enough
to the model curve � so as not to intersect the medial axis
of � . This implies that for each point of c 
 there is a
unique closest point on � . The squared distance function
is smooth in a tubular neighborhood of � , which includes
c 
 . In such a case, the initial shape rapidly deforms towards
the final solution. However, it is not guaranteed that the so-
lution is a global optimum. The landscape of the function&

to be minimized needs to be investigated in more detail
in future research. We need to get more information about
the typical distribution of local minima. For a first result in
this direction, see [12].

PSfrag replacements
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Figure 3. Active curve flow of the B-spline
curve c 
 towards target curve � .

Even if the initial curve intersects the medial axis of � ,
we obtain good results in most cases. For an example see
Fig. 3 and Fig. 4. In both figures the model shape � is the
same curve (bold solid line), but different initial positions
c 
 (bold dashed line) of the active curve c have been cho-
sen. Both of the initial curves are very rough approximants

PSfrag replacements

s 
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�

Figure 4. Active curve flow of the B-spline
curve c 
 towards target curve � .

of � and have intersection points with the medial axis of
� (which is not plotted). Nevertheless, our iterative algo-
rithm converges to a practical solution in both cases. The
final position c � of the approximating curve c is obtained
after eight iterations (dashed curve near � ) and its devia-
tion from � is hardly perceptible in the figures.

The two solutions of Fig. 3 and 4 differ from each other,
which can be best observed by means of the control poly-
gons (thin dashed lines) of the final approximating curve
c � . The fact, that we obtain different approximating curves
is to be expected because the final result depends on the ini-
tial position c 
 of the active B-spline curve c. In general,
we have to expect a certain number of local minima which
are difficult to avoid.

In Fig. 3 and 4 also the paths of several sample points
s � � c ��� � � are depicted, from the initial position s 
 � to the
final position s � � . It can be observed clearly that the sample
points s � of the active curve are not simply moved towards
their closest point on � . Many of the sample points move
tangentially to � , especially in later steps of the iterative
algorithm.
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3.1. Degree reduction

As a first example of an application of this method
we deal with the problem of approximate degree reduc-
tion. There are several contributions on this topic, see
e.g. [12, 15, 16]. For Bézier curves, the best degree reduc-
tion by one degree with respect to ��� -norm (�/� 	�� = � � )
has been derived by Eck [16]. In that paper explicit solu-
tions are given, also for the degree reduction with ��� end-
point interpolation conditions. See Fig. 5 for the degree re-
duction of a Bézier curve �c of degree six by a Bézier curve
c of degree four. The control points are denoted by �d

�
and

d

�
, respectively. In this example the � + -norm was used, i.e.,

' c )��c ' + � � 6 �
	� c �����*)��c ����� � + @ ��
 �� +
was minimized with � 
 boundary constraints (endpoint in-
terpolation). Note that because of the reduction of the de-
gree by two, Eck’s best approximation scheme had to be
applied twice (degree � ��� ��� ) and we obtain only a
suboptimal solution.
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Figure 5. Best degree reduction accord-
ing to Eck [16]. Bézier curve �c of degree 6
(solid line) is approximated by Bézier curve c
of degree 4 (dashed line).

The general curve approximation scheme outlined in the
present paper does not use the information that �c is a Bézier
curve, or any other ‘additional’ information. If we are inter-
ested in the distance between curves as sets (not in the � +
difference as functions), our algorithm yields much better
results than the method of [16].

Fig. 6 and Fig. 7 show the result of our active curve ap-
proximation scheme applied to the example of Fig. 5. In
Fig. 6 the control points d

�
of the approximating Bézier

curve of degree four have been chosen to lie on the target

PSfrag replacements
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Figure 6. Bézier curve �c of degree 6 (solid
line) and initial position c 
 of approximating
Bézier curve of degree 4 (dashed line).

curve �c. In general this yields a sufficiently good initial po-
sition c 
 of the active Bézier curve c. Fig. 7 shows the final
result after just five iterations of the active curve flow.

Let us define the distance of the point set c to the point
set �c by @ c


 �
c ������� � ' c �����*)��c ���5������� ' �"� (12)

where �c ���5������� is the point of �c closest to c ����� . Compared
to the result of Eck’s approximation the distance @ c


 �
c is re-

duced from 0.0985 (Fig. 5) to 0.0186 (Fig. 7), i.e., by a fac-
tor of 0.189. Similar results have been obtained for several
other examples.
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Figure 7. Bézier curve �c of degree 6
(solid line) and final position of approximat-
ing Bézier curve c of degree 4 (dashed line).
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3.2. Offset curve approximation

The present concept of an active curve under the influ-
ence of the squared distance function of a model curve is
also well suited for offset curve approximation. This is a
widely investigated topic since offset curves have many ap-
plications (NC machining,. . . ), see e.g. [23, 35] for surveys
on offset curves.

For a point p 	 � +
, we have Eq. (4) to describe a

quadratic approximant of the squared distance function of
a curve c ����� , expressed in the principal frame e � � e + at the
normal footpoint. Let us consider c’s one-sided offset curve
c � ����� � c ����� ,���� e + ����� at distance

�

. In corresponding
points c ����� and c � ����� the principal directions e

� ��� �%	�� = ,
and the curvature center k are the same. If points have co-
ordinates p � ��� ��� ��@��"� k � ��� ��� ����� with respect to the
principal frame at c ����� , then these points have coordinates
p �%��� ��� ��@ ) � � , and k � ��� ��� ��� ) � � with respect to
the principal coordinate frame at c � ����� . The second order
Taylor approximant of the squared distance function of the
offset curve c � ����� at a point p is expressed (with respect to
the principal frame at the normal footpoint) via& �� ��� � ��� + �-� @ ) �@ )�� �

+ � , � ++ �
With the quadratic approximant (4) of the squared distance
from c ����� it is therefore simple to derive the corresponding
quadratic approximant for its offset curve c � ����� at distance
�

.
Fig. 8 shows an example where a closed curve is given

as input shape. Two of its inner and three of its outer off-
set curves have been approximated by active cubic B-spline
curves. These offset curve approximations and their respec-
tive control polygons are depicted in Fig. 8.

If an offset curve intersects the medial axis of the original
shape, it develops a corner point, i.e., a tangent discontinu-
ity, at this intersection point. This situation arises in our
example for the outer two of the offset curves (see Fig. 9 for
a closeup). In the implementation of the example of Fig. 8
and 9 the corner points have not been treated in any partic-
ular way. The computed offset curves just develop points
of very high curvature where the corner points should lie.
It is straightforward to detect such points of high curvature
and enforce a tangent discontinuity via multiple insertion of
an appropriate knot value. In this way corner points can be
modelled exactly.

Note that our active curve approach as presented here
uses parametric curves and does not allow topological
changes. Thus it is not possible to approximate those in-
ner offsets of our model curve which consist of two closed
curves. Detection of a topology change and the correspond-
ing adaption of the active curve is possible [13].

Figure 8. Closed planar curve and five
of its offset curves approximated by active
B-spline curves.

3.3. Approximation of a helix segment by a B-spline
curve

For the illustration of space curve approximation by ac-
tive B-spline curves we have chosen a helix segment as
model shape � , see Fig. 10. A helix has constant curvature
and torsion and possesses many applications in computer
aided geometric design, kinematics, and computer graph-
ics. Despite its geometric simplicity a helix segment cannot
be exactly represented as a polynomial or rational curve.
Thus there are many contributions on the approximation of
a helix segment by (rational) Bézier or B-spline curves (see
e.g. [38, 50]).

Figure 9. Detail of Fig. 8.
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Fig. 10 shows the approximation of a helix segment by
an active B-spline curve composed of four cubic segments.
The initial position of the active curve was chosen as the
straight line connecting the endpoints of the helix segment.
The deviations of the approximating B-spline curve from
the helix are depicted in Fig. 10, exaggerated by a factor of
500.
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Figure 10. Approximation of a helix with
a cubic B-spline, and visualization of error
vectors of the approximation, exaggerated by
a factor of 500.

4. Approximation with an active surface

Our approach to curve approximation has a straightfor-
ward extension to surface approximation.

The active surface model we are using shall be of the
form (1), so that surface points to given parameter values
depend on the control points in a linear way. Thus, we could
also use a subdivision surface.

The quadratic function we are minimizing in each itera-
tion step again consists of a distance part, set up via local
quadratic approximants of the squared distance function,
and a regularization term. Instead of repeating the algo-
rithm, let us have a look at some details, improvements,
and refinements, which are important for a successful im-
plementation of the proposed method.

1. There are similar considerations about the choice of

the initial shape as in the curve curve case. One differ-
ence concerns topology. For curves, even in parametric
representation, the detection of a topology change and
the corresponding adaption of the active curve is pos-
sible [13]. For surface approximation, the initial shape
must already exhibit the correct topology. A change in
topology is hardly possible with a parametric surface.
It is simple, however, if one views the active surface
as level set of a trivariate function; this is the approach
taken in the level set method [53] which has been ap-
plied to surface approximation by Zhao et al. [61, 62].

2. One has to impose appropriate boundary conditions.
For example, we may want to fix the vertices of a sur-
face patch or want to approximate boundary curves of
the model shape. One way to do this is to apply the
curve analogue of the present method in a first step;
then we keep corresponding control points fixed in the
surface approximation procedure. However, it can be
possible to reach an overall better surface quality by
sacrificing some accuracy at the boundary. In this case
it is better to add the functional for boundary approx-
imation as a penalty term to

&
of equation (11). An

example is shown in Fig. 12.

3. With totally unrestricted flow, the active surface may
shrink to a single point of the model surface and then
in a trivial way yield zero approximation error. Strate-
gies for shrinking avoidance depend on the special
situation, and usually involve appropriate boundary
conditions which avoid shrinking, or an appropriate
quadratic penalty function

& � added to
&

in equation
(11). For a closed surface, we can start with an ini-
tial shape which lies entirely outside the model shape
� . The active surface then deflates towards the model
shape, if we forbid that it enters the interior of � .

4. If we have an active B-spline surface or another para-
metric surface and get model points s � by evaluation, it
is not necessary to keep the parameter values ��� � ��� � � ,
at which we evaluate, fixed. An adaptive evaluation
which guarantees a nearly uniform distribution over
the active surface, or one which emphasizes especially
important regions with help of more model points, will
be useful. Moreover, we can introduce further knots
and thus more control points during the algorithm if
the desired accuracy cannot be achieved with a coarser
model. One sees that the method naturally supports a
multiresultion modeling strategy.

5. The assumption of nonnegativity of the approximants& �� of the squared distance function of � can be
avoided if the change of control points (and thus model
points) is restricted. This can be achieved by adding
a term to

&
which expresses the distance of the new
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control points to the old ones, e.g.
� ' c

�
' + . To make

sure that the corresponding model points s � do not
move outside the region where their respective local
quadratic approximants are positive, we have to solve
a constrained minimization problem. Such algorithms
are known in optimization as trust regions algorithms
[28].

6. For
&*0

we can use any quadratic smoothing functional,
which may change in each iteration step. Thus we can
also build Greiner’s method for the minimization of
nonlinear fairness functionals [19] into our surface ap-
proximation technique.

4.1. Approximation with B-spline surfaces

In the following we give an example for the approxima-
tion of a given surface by a B-spline surface. In this example
the initial position of the active B-spline surface patch (dark
gray) is chosen as the bilinear patch connecting the bound-
ary vertices of the model surface (light gray), see Fig. 11.
The result of our algorithm after only 7 iterations is shown
in Fig. 12. As a boundary condition, the vertices of the
model patch have been fixed. The objective function that
guides the active surface flow has been chosen as a weighted
sum of the quadratic functionals for boundary and surface
approximation together with a quadratic smoothing term.

Figure 11. Model shape (light gray) and
initial position of approximating B-spline sur-
face (dark gray).

Figure 12. Model shape (light gray) and
final position of approximating B-spline sur-
face (dark gray) with boundary curve approx-
imation.

4.2. Approximation of offset surfaces

Offset surface approximation is a widely investigated
topic, see e.g. [23, 35, 43]. It has been noted in section 3.2
that our present concept of active curves is applicable to
offset curve approximation. The same holds true for the ap-
proximation of offset surfaces by active surfaces.

Let us consider s’s one-sided offset surface s � ���������8�
s ��������� , � � e ����������� at distance

�

. In corresponding points
s ��������� and s � ��������� the principal directions e

� ��� �
	�� = ��� ,
and the two principal curvature centers are the same. If a
point p 	 � � has coordinates p � ��� ��� ��@�� with respect
to the principal frame at s ��������� , then this point has coordi-
nates p � ��� ��� ��@ ) � � with respect to the principal coordi-
nate frame at s � ��������� .

The second order Taylor approximant of the squared dis-
tance function of the offset surface s � ��������� at a point p is
expressed (with respect to the principal frame at the normal
footpoint) via& �� ��� � ��� + ��� �;��� @ ) �@ )�� � � + � , @ ) �@ )�� + � ++ , � +� �
5. Variational problems for curves on surfaces

Let us now discuss the computation of surface curves
which are solutions to certain variational problems. The
general idea here is to use the embedding space for the evo-
lution of the active contour. In an iterative procedure, we
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solve the given variational problem for a curve on a sur-
face � by minimizing a functional

&
which is composed of

two essential components. The first component
&�0

is the
functional to be minimized within the variational problem.
For example, in case of a geodesic curve, it is the total arc
length. The second component expresses the distance of
the curve to the surface � with help of local quadratic ap-
proximants of the squared distance function to � . Thus, as
long as

&*0
is quadratic in the unknowns, or can be replaced

by a quadratic function in the unknowns, we are within the
framework discussed before. We will present three exam-
ples, the third of which — concerning motion design — is
a higher dimensional one and is just briefly outlined. It will
be described in more detail in a subsequent paper.

In our algorithms, the final curve will be given as a para-
metric curve c which lies very close to the surface. Thus,
our algorithm computes, within the desired accuracy, the
shape of the curve. This may be sufficient. If one wishes
to have the preimage curve in the parameter domain of the
surface � , we can project a sufficient number of points of c
onto � , compute their preimages in the parameter domain
and then fit a B-spline curve c � to the resulting point set.
The image of c � under the surface parameterization then is
the final result.

5.1. Geodesics

The computation of the shortest path (geodesic) between
two points on a surface is a classical one, and also of impor-
tance in various problems of CAD and geometric modeling
(see e.g. [43]). Typically, one uses the second order differ-
ential equations for geodesics known from differential ge-
ometry, and then solves the corresponding boundary value
problem. Boundary value problems, however, are not so
simple to solve and numerical strategies, such as shooting
methods, have to be employed [43]. In Computer Vision
and Image Processing, geodesics have been considered not
only on surfaces in 3-space, but also on general Rieman-
nian manifolds. The metric then depends on the applica-
tion, e.g. on the texture in an image. Recent algorithms
for the fast computation of the distance function from a
point p in a manifold, a tringulation or even a point cloud
[30, 31, 32, 37], are used to compute the shortest path be-
tween p and any other point q in the manifold; one just
follows the gradient flow of the distance function. Clearly,
this requires the computation of a bivariate function (at least
in some neighborhood of the expected geodesic). Concep-
tually, this is similar to a shooting approach.

Within our framework, we can proceed as follows. Given
two points p and q on a parametric surface, we take an ini-
tial shape c ����� of an active contour, e.g., a B-spline curve
representing the straight line segment between p and q, or
a B-spline curve which approximates a surface curve from

p to q. The curve c ����� is evaluated at a sequence of param-
eters � � and we obtain points

s � � c ��� � �"�
Now, nonnegative quadratic approximants

& �� of the
squared distance function of � are computed at the points
s � . Displacement vectors c

�
for the control points d

�
are

computed as minimizers of& � 	�� ��� & �� �
� � � d � , c � ������ d � , c � ��� ,/. &*0 � (13)

As before, � � � � � expresses the linear dependence of s � on
the control points d

�
.
&*0

could be taken as the arc length&*0 �76 ' �c ����� ' @ �"� (14)

This would not yield a quadratic function in the unknown
displacement vectors c

�
of the control points. The Cauchy-

Schwartz inequality shows easily that minimization of&*0 �76 ' �c ����� ' + @ � (15)

yields precisely the geodesics, but parametrized with con-
stant velocity (cf. [7], p. 307, or [39], p. 70). This func-
tional now is quadratic in the unknowns c

�
and thus our

concept is fully applicable to the approximate computation
of geodesics.
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Figure 13. Geodesic curves from p to
several points q

�
on a given surface � .

An example of our algorithm is given in Fig. 13. Several
geodesic curves emanating from a surface point p to surface
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points q

�
have been computed. For each of the geodesics

the initial position of the active curve has been chosen as
the straight line connecting p and q

�
. The function (13) has

been minimized with
&50

from (15).
It is important to note that our method of minimizing

(15) under the constraint that c lies within a given toler-
ance to the given surface � is a penalty function approach.
We usually obtain a good approximation of a geodesic, but
we can improve it as follows: We replace c by a polygo-
nal approximation. This polygon is now considered active
and moves such that its vertices remain on � or close to

� and also a discrete version of (14), (15), or any equiv-
alent functional is minimized. One particular example is
the following: We consider the polygon as a rope and ex-
ert equal forces at both ends. The forces in each segment
will be of the same magnitude, and unless the vector sum
of the two forces acting in a vertex is orthogonal to the sur-
face, this vertex will be moved tangentially to the surface. A
simple iterative procedure will produce a discrete geodesic
polygon, which fulfills a discrete version of the differential
equation of geodesics.

5.2. Spline curves on surfaces

Spline curves in
� �

which interpolate or approximate a
sequence of points are often computed as solutions of a vari-
ational problem. The most famous example is that of natu-
ral cubic splines which minimize the � + norm of the second
derivative, &*0 �76 ' �c ����� ' + @ �"� (16)

subject to the given interpolation conditions p � �
c ��� � �"����� 	������� � . Other well-known examples are cu-
bic smoothing splines, splines in tension and � -splines [23].

We now discuss interpolating or approximating spline
curves c on a given surface � . Thus, also the given points
p � lie on � . Unlike in the classical case, the solution cannot
be described anymore in an explicit way (see e.g. [57]).

The solution concept is simple: we will work with an
active curve from a space of curves all of which satisfy the
given interpolation constraints. With curves of this space,
we then minimize a function as in (13), however with

&�0
from (16) or with an

&50
which appears in another varia-

tional spline formulation (smoothing spline, splines in ten-
sion, . . . ).

We still have to describe the choice of an appropriate
space of splines. One may simply compute a cubic spline
interpolating the points p � at (estimated or given) parameter
values � � . This spline c 
 is completely determined by this
input and there would be no flexibility anymore to move it
towards the given surface � . There are several simple ways
to achieve more flexibility:

1. We may formally raise the degree of the segments. For
example, we can raise the degree to five and express
them in Hermite form. The unknowns are then the first
and second order derivative vectors at the given points
p � . In the original position they are in such a special
position that the spline curve is a cubic � + spline, but
this will change during the optimization algorithm.

2. We may split each segment of c 
 between consecu-
tive points p � � p � � � into several segments (knot inser-
tion). If we stay with cubics, it is convenient to use a
B-spline representation. For such a B-spline curve be-
tween two input points, the end points d

�

 � d � � are fixed

(the given input points p � � p � � � ). The control points

next to the end points, d
� � � d � ��� � depend linearly on the

(unknown) first derivative vectors in the endpoints, and
the remaining B-spline control points can move freely
(are unknowns). For � + join at p � , also the control

points d
� + and d

� ��� + of the B-spline depend linearly
on the unknown first and second derivative vectors at
p � � p � � � .

3. We can combine splitting and degree elevation.

For an example of the construction of a spline curve on a
surface � see Fig. 14. The initial curve c 
 is a natural cu-
bic spline through the surface points p � and does not lie
on the given surface. By knot insertion each cubic segment
between p � and p � � � has been splitted into three cubic seg-
ments. The resulting free parameters have been used in the
active curve flow of the cubic � + spline curve c towards the
surface � .
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Figure 14. Initial position c 
 and final
position c of a cubic spline curve which lies
very close to the surface � and interpolates
given surface points p � .

It is possible that the initial cubic spline is far away from
the given surface. In that case it is advisable to start with
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another curve. A simple choice is the restriction to a spline
which is tangent to the given surface at the given points p � .
Using a basis � q� � r ��� of the tangent plane of p � , the first
derivative vector �c� is of the form

�c � � . � q � ,�� � r � �
The dependence of �c on the unknowns

. � � � � is linear. We
then minimize

&50
within the space of quintic � + splines

with these first derivative vectors and unknown second
derivative vectors at p � . This is again the minimization of a
quadratic function and yields an appropriate starting shape
for active contour propagation towards a spline curve on the
given surface � .

A fine tuning of the shape analogous to the computation
of geodesics is possible, but may be unnecessary. Since
a functional such as (16) is just an approximation of the
bending energy, we minimize a simplified version anyway.
However, the minimization of a geometric functional with
a method as in Greiner’s work [19] can also be included in
the present method. Then, fine tuning of the shape might
be more interesting. We will report on such algorithms in a
subsequent paper.

5.3. Motion design

The following problem appears in computer animation
and robot motion planning: Given a set of positions �

�
of a moving rigid body � , compute a smooth motion of
the body which assumes the given positions �

�
at given

time instances �
�
. This problem has received a lot of atten-

tion in various scientific communities (Computer Graphics,
CAGD, Robotics, Computational Geometry). We do not re-
view the literature, but just point to a survey paper [48] and
to a recent paper [21], where a new concept is presented
which is based on the following idea.

It is simple to solve the problem with an affine motion,
i.e., to at first admit affine distortions of the moving body.
This is so since we may choose any linear curve interpola-
tion or approximation scheme. Moreover, we choose a set
of four independent points (called feature points f

�
hence-

forth) on the body � and compute their locations f
��

at time
instances �

�
. This results in 4 sequences of homologous

points to which we apply the curve scheme. Thereby, we
obtain four curves f

� �����"����� f � ����� . For each � , the four
points f

� �����"����� f � ����� may be considered as image points
of f

� ����� f � under an affine map
� ����� . Applying

� ����� to �
we obtain an affinely distorted copy �D����� of the body � and
thus an affine motion which interpolates or approximates
the given positions �

�
. By the linearity of the chosen curve

scheme, it does not matter at all which four feature points
we select. Another choice would lead to the same affine
motion.

What we eventually want, however, is a rigid body mo-
tion. In [21] it is suggested to proceed as follows: For each
� , approximate the affine map

� ����� by a Euclidean motion
(rigid body transformation) �-����� . As a quality measure for
the fit, the chosen feature points (or more points on the
body) are considered. The sum of squared distances be-
tween the images of these points under

�

and � is mini-
mized. This is a special case of a well-known registration
problem in Computer Vision [22], and has been recently in-
vestigated in depth by J. Wallner [58]. Thus, one knows
exactly how to explicitly compute the best approximation
of
� ����� by a Euclidean motion �-����� and under which cir-

cumstances the solution is unique.
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Figure 15. The affine motion corresponds
to a curve a ����� in � � + and the designed motion
b ����� is the orthogonal projection of a ����� onto
the 6-dimensional manifold � � of Euclidean
motions.

Let us view the approach to motion design which has
been just outlined in a more geometric way (Fig. 15). To
each affine map

�

in 3-space we may associate a point in
12-dimensional affine space � � + . For example, we may just
collect the coordinates of the image points of the four cho-
sen feature points under

�

. The image points of Euclidean
motions form a 6-dimensional submanifold � �	� � � + .
The input positions �

�
correspond to points

�
�

on � � . The
affine motion

� ����� corresponds to a curve a ����� which inter-
polates the points

�
�
, but does not lie on � � . The mea-

surement of distances between two affine maps with help
of the sum of squared distances between the images of se-
lected feature points is equivalent to the introduction of a
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Euclidean metric in � � + . Thus, we also have an orthogo-
nality in � � + . The way in which we compute a rigid body
motion �-����� from the affine motion

� ����� outlined above cor-
responds to the orthogonal projection b ����� of the curve a �����
onto � � . However, if the original affine motion has been
obtained with a variational formulation, the new solution
b ����� is in general not the minimizer of that functional under
the constraint of lying in � � .

This view shows immediately how to apply the concepts
of the present paper to motion design. We have an active
curve in � � + moving towards the manifold � � in a way
such that a given functional

&50
is minimized. For a solu-

tion, one needs local quadratic approximants of the squared
distance function to � � , e.g. squared distances to tangent
spaces at normal footpoints. The remaining algorithm is
pretty much the same as in the previous subsection.

As an example, Fig. 16 shows a motion computed via
minimization of the cubic spline functional (16).
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Figure 16. Cubic spline motion interpolat-
ing given positions �

�
.

6. Conclusion and future research

We have presented an active contour model for curve
and surface approximation which avoids the parametriza-
tion problem. According to the nonlinearity of the approx-
imation problem, this model yields an iterative method: In
each iteration step we solve a linear system of equations,
which arises from the minimization of a quadratic function.
The new idea is that in this quadratic function we use lo-
cal quadratic approximants of the squared distance function
to the model shape which shall be approximated. In the
present paper, we just outlined the concept and applied it
to a few typical problems such as offset approximation, de-
gree reduction and conversion of arbitrary representations
into B-spline form. Moreover, we showed how the com-
putation of geodesics, of spline curves on surfaces and of
interpolating or approximating smooth rigid body motions
can be handled. There are many possibilities for extensions
and future research:

� The convergence behaviour of the present method,
conditions on the choice of the initial shape and — if
possible — conditions for reaching a global optimum
should be investigated.

� We need more research on quadratic approximants of@ + . In particular, an appropriate space partitioning
structure with cells carrying the approximants needs
to be developed. Also, a hierarchical representation of
the squared distance function with such a spatial data
structure would be important.

� The concept is applicable to approximation with sub-
division surfaces. One can use an initial shape as in
[34], but other choices and an appropriate handling of
details require a lot of future research.

� An interesting extension concerns the incorporation of
shape constraints such as convexity. For example,
we can use the sufficient linear convexity conditions
which have been derived by B. Jüttler for surface fit-
ting with convex tensor product splines [24, 25]. In our
framework, we would then have to solve a quadratic
programming problem in each iteration step.

� Special interpolation and approximation problems
which appear in geometric modeling, for example the
design of skinning surfaces, may be addressed with the
new concept.

� The new approach to motion design needs to be stud-
ied in more depth. Moreover, we want to investigate
motions constrained by a gliding surface pair and we
would like to compute motions which avoid given ob-
stacles. This can then be used for motion planning in
connection with 5-axis NC machining.
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� The present active contour model and its deformability
form the lower levels of a so-called artifical life model
[55]. The evaluation points s � can be seen as ‘sen-
sors’, and the control structure is the layer above that
which allows us to coordinate the action of the sensors.
Including phyiscal modeling and on top of that behav-
ioral, perceptual and cognitive modeling yields an ar-
tificial life model. Those models play an increasingly
important role in Computer Graphics [55] and Medical
Imaging [20]. We expect that this is also a promising
research direction for the creation of ‘intelligent’ mod-
eling and reverse engineering systems, which include
shape understanding abilities.
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[38] Mick, S., Röschel, O., Interpolation of helical patches
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Figure 11. Model shape (yellow) and ini-
tial position of approximating B-spline sur-
face (blue).

Figure 12. Model shape (yellow) and fi-
nal position of approximating B-spline sur-
face (blue) with boundary curve approxima-
tion.

Figure 13. Geodesics on a given surface.

Figure 14. Initial (red) and final (blue)
position of an interpolating cubic spline curve
which lies very close to the given surface.

Figure 16. Cubic spline motion interpolat-
ing given positions (marked in red).
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