Reliable Computing8: 43—-66, 2002. 43
(© 2002Kluwer Academic Publishers. Printed in the Netherlands.

Exact Minkowski Products oN Complex
Disks

RIDA T. FAROUKI
Department of Mechanical and Aeronautical Engineering, University of California, Davis,

CA 95616, USA, e-mail: farouki@ucdavis.edu
and

HELMUT POTTMANN
Institut fir Geometrie, Technische UnivegitWien, Wiedner Hauptstrasse 8-10, A—1040 Wien,
Austria, e-mail: pottmann@geometrie.tuwien.ac.at

(Received: 2 December 2000; accepted: 6 March 2001)

Abstract. An exact parameterization for the boundary of the Minkowski produkta@fcular disks in

the complex plane is derived. Whah> 2, this boundary curve may be regarded as a generalization
of the Cartesian oval that bounds the Minkowski product of two disks. The derivation is based
on choosing a system of coordinated polar representations faY iygerands, identifying sets of
corresponding points with matched logarithmic Gauss map that may contribute to the Minkowski
product boundary. By means of inversion in the operand circles, a geometrical characterization for
their corresponding points is derived, in terms of intersections with the circles of a special coaxal
system. The resulting parameterization is expressed as a produitgions, each involving the radius

of one disk, a single square root, and the sine and cosine of a common angular vansielea
prescribed domain. As a special case, hth Minkowski power of a single disk is bounded by

a higher trochoid. In certain applications, the availability of exact Minkowski products is a useful
alternative to the naive bounding approximations that are customarily employed in “complex circular
arithmetic.”

1. Preamble

Minkowski geometric algebrg 1], [12] is concerned with the complex sets

ADOB
ADOB

{a+tb|aDb0.A andb OB},
{axb|al.A andb OB}, (1.1)

populated by sums or products of pairs of complex numiaeend b, chosen
independently from given complex-set operapdand5. The scope of this algebra
may be profitably extended to encompass Minkowski powers, roots, sets defined
by bivariate functiond(a, b) beyonda + b anda x b, and other operations: see

[9], [11], [12] for further details, and a discussion of the diverse applications and
interpretations of Minkowski geometric algebra.

* Following [11], [12] we shall denote real numbers by italic characters, complex numbers by
bold characters, and sets of complex numbers by upper-case calligraphic characters.
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Conceptually, Minkowski geometric algebra is the natural generalization of real
interval arithmetic[22], [23] to complex-number sets. In the transition from real
to complex, however, the trivial geometry of real intervals (and their consequent
closure under addition and multiplication) must be relinquished. Even “simple” sets,
such as rectangles or circular disks in the complex plane, do not exhibit closure
under the Minkowski product operation.

Motivated by the study of polynomial root-finding algorithms, Gargantini and
Henrici [13] introducedcircular complex arithmeti@s a practical means to cope
with the increasing algebraic and geometrical complexity of successive complex-
set operations. Each element of this system is a circular disk in the complex plane,
specified by a center and radiusR. The Minkowski sum of two disksc{, Ry)
and €2, Ry) is exactly €1 + cp, Ry + Ry). However, instead of the exact Minkowski
product (which is not a circular disk), this approach employskibending disk
with center and radius

C = C10Cp, R= |Cl|R2+ |C2|R1+R1R2. (1.2)

Although this is not themallesdisk that contains the Minkowski product, it has the
virtue of being centered on the produgt, of the operand centers. Hauenschild
[16], [17] describes “optimal” circular arithmetic, based on the usenafimal
bounding disks (which entail solving a cubic equation). Further details on complex
circular arithmetic may be found in [1], [18], [26], [29].

Besides root-finding algorithms, the arithmetic of complex disks arises in the
investigation of robust stability of dynamic systems, whose characteristic polyno-
mials have uncertain coefficients given by disks in the complex plane [5], [27].
Another application is in the generalization of Bernstei@z®r curve representa-
tions to “uncertainty disks” as control points [20].

In the “standard” case; = c; = 1, expressions (1.2) clearly give= 1 and
R = Ry + R, + RiR,. This result can be extended to more than two disks: for
example, the product of three disks with center 1 and RdiR,, R; has center 1
and bounding radius

R=R +Ry+ R3 + RiRy + RoR3 + R3R; + RiRoRs. (1.3)

As seen in Figure 1, the bounding disks defined by this “circular arithmetic” are
sharp only for the maximum modulus of complex values belonging to the exact
Minkowski products. In some applications, replacing exact Minkowski products by
simpler bounding sets may be unsatisfactory (especially if these supersets become
increasingly loose as successive operands are introduced).

Consider, for example, the following simple problem. We are interested in
whether the polynomiaf(z) = z? can assume the value 0 when the argument is
selected from the complex disk defined by|z — 1| < 3/4. Circular complex
arithmetic (based on bounding disks) indicates that this may be a possibility, but
the exact Minkowski produat O C shows that it is impossible.
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Figure 1 The Minkowski products (shaded areas) of two disks \With= 0.9, R, = 1.2 (left),
and of three disks witfR, = 0.4, R, = 0.6, Rs = 0.9 (right); also shown are circumferences of
the bounding disks defined by (1.2) and (1.3).

The goal of this paper is to show that the Minkowski produdiafisks admits
an exact and relatively simple boundary description. Specifically, we shall derive
a closed-form parameterization for the boundary involving only arithmetic oper-
ations, trigonometric functions in a single angular variabldrestricted to an
appropriate domain), and square roots.

Our plan for the paper is as follows. In Section 2 we summarize some geometri-
cal properties of Cartesian ovals, the curves that bound the Minkowski products of
two complex disks. A coordinated parameterization for two circles is then derived
in Section 3, based on matching their logarithmic Gauss maps, that induces a
closed-form parameterization of their Minkowski-product boundary. In Section 4
we show that this approach admits a natural generalization (subject to some tech-
nical qualifications) to the Minkowski products df disks. The special case of
the N-th Minkowski power of a single disk is discussed in Section 5. Finally, in
Section 6 we make some concluding remarks concerning the practical significance
of these results, and identify some open theoretical problems.

2. Geometry of Cartesian ovals

Given complex domaingl and B with regular boundary curved4 andédB, the
boundary of their Minkowski product O B satisfies

(A D B) O (0.A) O (9B).

Thus, if A and B are circular disks, we are mainly concerned with Minkowski
products ofcircles. We also recall [12] that, for non-zero complex numbeiend
g, the Minkowski product satisfies

A0B={pg}0({p 0 AT {q"} OB



46 RIDA T. FAROUKI AND HELMUT POTTMANN

Hence, for circular disksAd and B with centers p # 0 andq # 0, we may always
consider the simpler equivalent problem of disks centered at the point 1 on the real
axis, and radii scaled by the factdpg—* and|q| 2.

We have shown [12] that the Minkowski product of two circles Co with
center 1 and radiR;, Ry is the region between the two loops oCartesian oval
an irreducible quartic curve [19], [21]. Moreover, as previously noted in [27], the
Minkowski product of the circular disk®;, D, bounded byC1, C, is the region
contained within theuterloop of the Cartesian oval.

Despite its key role in the Minkowski geometric algebra of complex sets, and
in other areas such as geometrical optics [7], [8], the Cartesian oval remains a
relatively obscure curve. Perhaps the most thorough description is given by Gomes
Teixeira [14]. Since a complete understanding of its subtle geometry is essential to
generalizing the Minkowski product of two circular disks to the cads disks, we
shall devote the remainder of this section to an elucidation of some key geometrical
properties of the Cartesian oval.

2.1. BPOLAR REPRESENTATION

The simplest characterization of Cartesian ovals employs bipolar coordinates. We
may take the origin as one pole, and either of the paints 1 - R? anda, = 1— R?
on the real axis as the other. Then, writing

po=\HY2,  p=Jx—a)2+y?, gy = [/(x—a)2+y?

for the distance of = x + iy from these poles, either of the bipolar equations
Rlpo TP = +ta1 Ry or Rzpo TP = +taoRy (21)

describes the Cartesian oval that bou@gs$] Co. A third bipolar description may
be given by choosing; anda, as poles—the equation is then

Ropy = Ripp = £(a1 — a). (2.2)

By squaring to eliminate radicals, one can verify that the Cartesian oval described
by each of the above bipolar equations is the quartic curve

(< +y? — 2x + agap)? — ARZR3(X? +y?) = 0. (2.3)

This curve has double points at each of the circular points at infinity, and is therefore
(in general) of genus 1. Degenerate instances of the Cartesian oval are as follows:
MHif R =1#R;, R #1 =Ry, or Ry = Ry # 1, we have a rational curve, the
limagon of Pascalthe two coincident poles corresponding to a node on the curve;
and (ii) if Ry = R, = 1, all three poles coincide and the node becomes a cusp,
yielding acardioid (see Figure 2).

* If (say) p = 0, the Minkowski productd O B is trivial—it is simply the disk centered at the
origin with radiusa(|q| + b), wherea andb are the radii of4 andB.
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Figure 2 A Cartesian oval (left, witiR; = 0.5, R, = 1.2), limagn of Pascal (center, with
R; = 0.7, R, = 1), and the cardioid (right, witR; = R, = 1).

(P, P2)

Figure 3 Bipolar coordinatesg, p,) with respect to polep, = (as1, 0) andp, = (a2, 0)—the
region of validp,, p, values is shown shaded on the right.

Now although equations (2.1) and (2.2) admit four sign combinations, only two
of them define real loci—the inner and outer loops of a Cartesian oval. To illustrate
this, consider equation (2.2) in which we assume, without loss of generality, that
R; < Ry. The quantitya; — a; = R3 — R? is then the distance between the two
poles, and the bipolar coordinatgs (0,) must satisfy

p1tp,>a;—ap and  |p;—py| <a—an. (2.4)

Equation (2.2) defines four lines in the,(p,) plane, only two of which possess
segments in the region (2.4), shown in Figure 3. Table 1 lists the appropriate
members from (2.2) that define the two loops of a Cartesian oval.
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Table 1. The appropriate members from equations (2.2) defining the
inner and outer loops of a Cartesian oval, assumingRh&, # 1 and

R: < Ra.
Cartesian oval equations
inner loop outer loop
Ri<l Ropy + Ripy = a1 — & Ropy — Ripy = a1 — &
Ri>1 Rop; —Rip, =@ — a1 Rop; —Rip =1 — &

2.2. CGEOMETRICAL CONSTRUCTION

The Cartesian oval (2.3) admits the following geometrical construction [14], [32]:
assuming?; < Ry, we consider two circular cones with axes perpendicular to the
(x,y) plane—the vertices of these cones are at heights

az a

= d = 2.5

4= —, an e —— (2.5)
above the pointsgg, 0) and @y, 0), and have half-angles

p=tant 22 and gp=tan 1R (2.6)

Ro Ry

Note that, since; : z = a; : ap, the line through the vertices passes through the
origin. The two cones intersect in a quartic space curve, and the Cartesian oval (2.3)
is the projection of this curve onto the, §) plane. This can be seen by noting that

a point at height above the plane and distangas p, from the cone axes lies on

both cones if

P and  tang, = —2

tany, = .
Y1 7 -z -z

Eliminatingz and substituting from (2.5) and (2.6) far, z, and tany,, tanys, then
results in the bipolar equation (2.2) for the projection of the intersection curve.
The case®; = 1# Ry or Ry #1 = R, defining a limaon of Pascal correspond

to configurations where the vertex of one cone lies on the other cone, inducing a
singular point in the intersection.

2.3. BNVELOPEMETHODS

Since the Minkowski product of two circles can be regarded as a union of the
scalings/rotations of one circle by each point of the other circle, its boundary
amounts to the envelope of such a one-parameter family of circles. Let

f12d) = (x—1)2+y>—R2=0 (2.7)

* Cases wittR; = R, should be considered as the limRs — R of cases with distinct radii: in
such casesz]|, |z| — o andys, ¢» — 0, i.e., the cones degenerate into cylinders.
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(wherez = x + iy) be the implicit equation of1, and let
2,(6) =1 +Ryc0s0 + iR, sin6 (2.8)

be a parameterization @h. The scaling/rotation of; by each point ofC> then
yields the family of circles
hy(z,6) = f1(z/22(6))
= (x—1— Ryc0s6)? + (y — Ry sin6)? — (R3 + 2R, cos@ + 1)R? = 0,

whose envelope, obtained [2], [4] by eliminatiBgamong the equations
hi= — =
1= 55 =0
is found to be the Cartesian oval

f2(2) = (@ +y? — 2x+ a1ay)? — AR?R3(x% +y?) = 0, (2.9)

i.e., the boundary (2.3) @y O C». This method can, in principle, be extended to
the Minkowski product oN disks. Suppose, for example, that

z3(0) = 1 +R3cosO +iR3sin6
defines a third circl€s. Then the one-parameter family of Cartesian ovals

hz(Z, 9) = fz(Z/Zg(Q))
= [x%+y? — 2(1+Ra cosB)x— 2R3 sinBy + (RS + 2R3 cos6 + 1)as ap] ?
— AR?R3(R3 + 2R3 c0s0 + 1)(x2 +y2) = 0

corresponds to the scaling/rotation of (2.9) by each poirit;ofThe boundary of
the productC; O C, O C3 is thus (a subset of) the envelope of this family, obtained
by eliminatingd among the equations

hz = 0_hz =0.

00

Although this can be continued indefinitely, the method is of limited practical value.
ForN > 3, the resulting equations are very cumbersome, and offer no insight into
the geometry of the Minkowski product. We shall see in Section 4 that the implicit
equation of arN-circle product defines an irreducible algebraic curve comprising,
in general, 1 real loops. An explicit parameterization of the outermost loop,
derived in Section 4 below, is a much more useful result.

2.4. INVERSION IN CIRCLES

The Cartesian oval defined by equations (2.1), (2.2), or (2.3) has some remarkable
symmetry properties under certain mappings of the complex plane.
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DEFINITION 2.1. For a circleC with centerc and radiusR in the complex plane,
the mappingz — w defined by

2

R
W=C1W(Z—C) (210)

are known asnversionswith respect taC. The + and— sign choices in (2.10)
define, respectively, a “hyperbolic” and an “elliptic” inversion [30].

Geometrically, inversion is a one-to-one mapping of the interiaf ohto its
exterior; and vice-versa. Any poirtand its imagev lie on a diametral line through
the center, and their distances fromsatisfy the relation

|z—c||lw—c| =R

Note thatz andw lie on the same side afon the diametral line if we take the +
sign in (2.10), and on opposite sides if we take thsign.

Inversion, also known asteansformation by reciprocal radior reflection in a
circle, is clearly an “involutory”—i.e., self-inverse—mapping. Some well-known
properties are as follows (see [3], [24], [25], [30] for details):

Lines passing throughare mapped into themselves.

Lines that do not pass througimap into circles through.

Circles througlt map into lines that do not pass through

Circlesthat do not pass througmap into other circles that do not pass throagh
If p andq are the images gf andq, thenA §cp DA pcaq.

Angles are preserved in magnitude, but reversed in sense.

I S o

Note that the two poles; = 1—R?, a, = 1—R3 of the Cartesian oval introduced
in Section 2.1 are the images of the origin under inversion in the citles,.
Cartesian ovals exhibit some surprising symmetries under inversion:

PROPOSITION 2.1The Cartesian oval (2.3) maps ontatself under an inversion
in any of the circles defined by

1. c=0 andR? = gy a,
2.c=a; andR? =& (R3 — R?),
3. c=a andR? = a(R? — R)).

Among the three poldy a;, a the one that is the center of inversion remains fixed,
while the other two are swapped.

This can be readily verified by writing = x + iy andw = u + ivin (2.10), and
showing that , v) satisfies equation (2.3) if and only it,{/) satisfies it. Note that

* Circumferential points are invariant, and the poinndco are images of each other.
** Depending upon the valuesBf, R, and the chosen circle of inversion, the inner and outer loops
may be individually mapped onto themselves, or onto each other.
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the circles of inversion areeal* circles—whenR? > 0 we choose the + sign in
(2.10) and the radius i$'R?; and whenR2 < 0 we choose the- sign and the
radius isy'—R2. Exceptionally, the inversion (2.10) degenerates to the identity map
if R2 = 0 (and the Cartesian oval becomes a ljorgc

Curves that can be mapped onto themselves by inversion in a circle are known as
anallagmatic curve§g]. Any circle that cuts the circle of inversion orthogonally is
anallagmatic. Moreover, a family of circles, whose members all intersect the circle
of inversion orthogonally, has an envelope curve that is anallagmatic [6]. This is a
characteristic feature of the circles of inversion identified in Proposition 2.1—if we
regard the Cartesian ov@(C; O C») as the envelope of the family of circles obtained
by scaling/rotating’; by each point of’, (or vice-versa), then these scaled/rotated
circles are all orthogonal to each of the three specified circles of inversion.

3. Minkowski Product of Two Disks

In computing the Minkowski product of circleS;, Co with center 1 and radii

R, Ry it seems natural to use their polar representatipri8;) = 1 + R.e'®,

75(62) = 1 +Rx€'% with respect to the common center. However, we shall presently
discover that different representations are advantageous in deriving a closed-form
parameterization for the Minkowski product boundary.

3.1. IDENTIFICATION OF CORRESPONDINGPOINTS

Pairs of points onCy, Co that contribute to the Minkowski product boundary
d(C1 O Cy) must have matcheldgarithmic Gauss mapd1]—i.e., for some non-
zero real valuk they must satisfy

2)(61) _ | %(62)
z1(60) (&)

Geometrically, this condition states that pairs of corresponding points on the two
circles are identified by the fact that, at such poith® angles between the tan-
gent vectors and position vectors are equal mottula Consequently, the angles
between the normal vectors and position vectors are likewise equal (majulo
Since the position vectors pass through 0 and the normal vectors pass through 1,
one can readily see that the angles a, subtended by the interval [0] at cor-
responding pointg; O C1, z» O C, of the circles must satisfy either, = a, or
a1 = 1m— oy, according to whethezy, z, lie on the same side or opposite sides of
the real axis, respectively.

We can deduce from these observations that corresponding pgiatdie on a
circle passing through 0 and 1. Figure 4 illustrates this for theRaseR, < 1, with

(3.1)

* The sign choice in (2.10) can be omitted if we allow circles of inversion to have both real and
imaginary radii, but we prefer to deal with real circles only.
** Equality modulorris necessary, sindein (3.1) may be either positive or negative.
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Re

Figure 4 Pairs of corresponding points on the ciralesandC; are identified by the property

that the anglesr; and a2 subtended by the interval [0] at such points satisfy either

a1 = az OF a1 = m— oy, according to whether the points lie on the same side or on opposite
sides of the real axis, respectively. Such points therefore lie on a circle that passes through 0
and 1. Here, points above the real axis are labelled, and those below are labelled, v,.

N

=
X

Figure 5 The coaxal system of circles with common points 0 and 1, and the ope€ands
C, with center 1 and radiR;, R.. Corresponding points, whose products may li@@h O Cs),
correspond to intersections of members of the coaxal systenCwahdC,. This generalizes

to N operand<’y, ...,Cn.

points lying above and below the real axis labelledu, andvy, v, respectively—

the productsuiu, andvivs then yield points on the outer loop of the Cartesian
oval, whileujv, andv;u, are points on the inner loop. By considering the family of
coaxal circles with common points 0 and 1, we identify all pairs of corresponding
points onCy, C2 (Figure 5).
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Note that the characterization of corresponding point€Qrt, as their inter-
sections with the family of circles through 0 and 1 makes no reference to the radii
Ri1, Ro. Consequently, it is valid faanytwo circles, and it may also be generalized
to identify correspondingN-tuples of points in the Minkowski product &f circles
(an analytic proof will be given in Proposition 4.2 below).

3.2. ANGULAR PARAMETERIZATION

Condition (3.1) can be simplified to obtain the equation

sin, _ sing;
Ry +cosf; Ry +cos6,’

(3.2)

identifying corresponding points on the two circles. Settirngtan(1/2)8, gives
the quadratic equation

(Ry — 1) sinf; t2 — 2(Ry + cosby) t + (Ry + 1) sin6y = 0, (3.3)

which may by solved to obtaié, in terms of6; as

1 Ry +coséy + /(R +€0s;)2 + apSin? 6;
(R, — 1) sin6; '

If Ry, < 1, the discriminant of (3.3) is positive for &, and hence two values of
6, are associated with ead. If R, > 1, however,6; must be restricted to the
domain over which the discriminant remains positive (since, outside this domain,
the logarithmic Gauss map on the first circle cannot be matched to that of any point
of the second circle).

The two loops of the Cartesian oval that bouidds? C can, in principle, be
parameterized in terms of the an@geby substituting from (3.4) into

6, = 2tan (3.4)

21(91) 22(92) =1+ Rleiel + Rzeia2 + Rleei(Ql * 92). (35)

Similarly, eliminating6; and6, among (3.2) and the equations

X = 1+R;c0s6; + Ry cos6, + RiR, cos@r + 62),
y = 1+R;sinf; + Rysing, + RiR, sin(6y + 6,),

we can recover the implicit equation (2.3) of the Cartesian oval. However, this
is clearly a very cumbersome approach—especially if our goal is to achieve a
generalization to the Minkowski product bfdisks.

The complication stems from our insistence on parameterizing the circle
operands’y, C» in terms of angular positions about their common center 1. Based
on geometrical insight, we now show that a more tractable formulation (extensible
to the case oN disks) may be based upon a special “coordinated” polar parame-
terization of the circle operands, that automatically identifies corresponding points
with matched logarithmic Gauss maps.
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R,<1 R =1 R, >1

Figure 6 Intersections of the circlé;, with center 1 and radiuR;, and the line, through
the pointa; = 1 — RZ and at angle with the real axis, inthe casé§ < 1,R; = 1,Ry > 1.

In each case, the intersections can be expressed Bsel’+ where the polar anglé; satisfies
tang = sin6, /(Ry + cos6y).

LEMMA 3.1. LetC; andC, be circles with centell and radii R, and R, and let
L1 and £, be parallel lines through the points a1 -~ R? and & = 1 — R3 on
the real axis. Then the intersections&f with C; and £, with C, identify pairs of
pointsz; 0Cy, Zz OCo such thatzyz, may lie ond(Cy O Cy).

Proof. Let £ be the line througla; = 1 — R? at angle¢ with the real axis,
where we take-m/2 < ¢ < +m/2. If Ry < 1, the line£; has two intersections
with the circleC; (one above and one below the real axis) for @nyf R; > 1,
however,£; intersectsC; only when—sin~1(1/Ry) < ¢ < +sin~(1/R)—the
intersections are both above or both below the real axis. In the degenerate case
R; = 1, there is one intersection at the origin and another above or below the axis.
Figure 6 illustrates the geometry of these configurations.

Now supposeR; < 1, and let the intersections df; andC; be specified in
polar form as 1 4R.e'®1. Consider the right triangle with vertices = 1 — RZ on
the real axis, the point 1 R on Cy, and the projection 1 R; cosé; of the
latter onto the real axis. This triangle has angllat a;, and simple trigonometric
arguments applied to Figure 6 reveal that, for the intersection above the real axis
(0 < 61 < +m), we have

R;sinod siné
tang = 1 h 1

- = , 3.6
Ricosty +R? Ry +cos6; (50

while for the intersection below the real axisit < 6, < 0),

Ry sin(n+ 91) sin6;
tan¢ = 5 = .
Ricos@r+6;) —Rf Ry +cosf;

Thus, the two intersections are characterized by a common value for the ratio
sinBy / (R, + cos6y), equal to tarp.

WhenR; > 1, one can similarly see from Figure 6 that both intersections,
expressed in the form 1R,e', satisfy (3.6) regardless of whether they are above
or below the real axis. Finally, wheR; = 1, the intersection distinct from 0
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clearly satisfies relation (3.6) witR; = 1. We may also consider the intersection
at the origin to satisfy this relation, in the sense that right hand side of (3.6) is
indeterminate wheR; = 1 and6; = +m, indicating that O is an intersection gf
and(C; for any orientationg of the line.

Now exactly analogous arguments hold for the intersections'% oL, and
Co. Thus, if£1 and L, are parallel (i.e., make the same angleith the real axis)
we must have

siné; _  sinG
Ry +c0s8; R,+cos6,’
Hence, the intersections a@f; with C; and £, with C, satisfy the condition (3.2)
characterizing matched logarithmic Gauss maps on the two circles, and their prod-
ucts may therefore lie 0&(C1 O C>). O

tang =

(3.7)

From Lemma 3.1 we see that, to compute the Minkowski pro@uct C, it is
advantageous to employ polar forms of the cirdesC, with respect to the points
ay, ap (rather than their common center 1) as poles. Writing

2(9) = a + p(9) €7 (3.8)
with k = 1, 2 for C1, C», a straightforward calculation yields

p($) = RE cosp + oxRe\/1 — RZsin? ¢, o= +1 (3.9)

for the polar distance in terms of the polar angleWhenR¢ < 1, expression
(3.9) yields one positive and one negative value for epcthe negative value
corresponding te,(m— ¢). WhenRy > 1, on the other hand, we have two positive
values if| sing| < 1/Rx, andpy is undefined outside this domain.

Henceforth we shall assume, without loss of generality, Rat< R,. By
Lemma 3.1, expressions (3.8)—(3.9) wikh= 1,2 define parameterizations of the
circlesCy, C, such that, for eaclp, the pointz(¢) = z1(¢)z2(¢) may lie on the
Minkowski product boundary. Thus we may write

2(9) = [a1 + po(9) €][@2 + po(9) €] (3.10)
as a parameterization of (a superset &1 O C,). The interpretation of this
expression requires careful consideration of the combinations of signs chosen from
(3.9) and the appropriate domain fpras follows.

The Minkowski product of two circle€y, C; is the area between the two loops
of a Cartesian oval; the Minkowski product of the didkg, D, bounded by these
circles is the area within theuterloop of the Cartesian oval [12]. Wheé® < 1, it
is not necessary to invoke all four sign combinations implied by (3.9) in expression
(3.10): with—m < ¢ < +m, the outer loop is completely generated by either the ++
or —— choice, and the inner loogy either + or —+. WhenR, > 1, however, all
four sign combinations are necessary—withimax < ¢ < +@Pmax, Where

Pmax = Sin_l(llRZ),

* Note that, in the casR, = 1 > R, the inner and outer loops pinch together to form a liamac
of Pascal, while foR; = R, = 1 the inner loop vanishes to produce a cardioid.
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the ++ and + choices generate complementary segments of the outer loop, while
—— and—+ yield complementary segments of the inner loop. We may summarize
these observations as follows:

PROPOSITION 3.1LetD; andD, be two circular disks in the complex plane with
centerl and radii R, Ry, such that R < Ry. Then the boundarg(D1 O D5) of
their Minkowski product is either

1. the locus defined by (3.10) with = 0> = 1in (3.9), for—m < ¢ < +m, when
R, <1, or

2. the union of the loci defined by (3.10) with= 0, = 1ando; = —0> = 1in
(3.9), for—¢pmax < ¢ < +Pmax, When B > 1.

3.3. (GEOMETRICAL DERIVATION OF BIPOLAR EQUATION

The bipolar equation of the Cartesian oval bounding the Minkowski product of two
circles can be derived by elegant geometrical arguments, basedRiplemy’s
theorenrelating the sides and diagonals of a quadrilateral [15], [24]. The theorem
states that, for any quadrilater&BCD, we have

ABICD+BCIDA > ACBD,

where the equality holds only ABCDis acyclic quadrilateral.

Consider two circleg’1, C» with center 1 and radiR;, Ry. For simplicity, we
focus on the casB; < R, < 1 and choose the points 0 aagon the real axis as
poles—the appropriate equations from (2.1) describing the inner and outer loops
of the Cartesian oval are then

Ripg+p; = 1R and Ripg — p1 = — a1Re.

The argument can be readily adapted to other configurations. As in Figure 4, a circle
C through 0 and 1 is constructed with center on the linezRe(1/ 2, intersecting
C1 andCy in pairs of corresponding pointg, u, (above the real axis) and, v»
(below the real axis), such that the produaisi, andv1v, yield distinct points on
the outer loop of the Cartesian o{C1 O C»), while uyv, andvius; yield distinct
points on the inner loop.

Consider first the point = uju, on the outer loop, and lgt, = |c| = |u1] |uz]
andp; = |c — a| be its distances from the origin and po@ton the real axis. We
consider the quadrilateral inscribeddrwith 0, u,, 1,v; as the vertices\, B, C, D.
ThenAB = |uy|, CD = Ry, BC = Ry, DA = |v1|, AC = 1, BD = |uy — v1|, and by
Ptolemy’s theorem we have

Ru [uz| + Ry [va| = |uz — 4. (3.11)
Multiplying both sides byu;| and settinqus| |uz| = py then gives
R1p0+R2|U1| |V1| = |U2—V1| |U1|. (312)
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Now letC' be the image o€ under a reflection in the real axis, intersecting the
circlesC; andC; in the conjugates;, Vi andUy, V, of up, vi anduy, v». Thenu;
andv; lie on a line through the origin, and the prodiiet| [V, | is thepower of the
origin with respect to the circlé;, with value 1— RZ = a;. Thus, sincevy| = |v4|,
we can substituteus | |v1| = a1 in (3.12).

Consider also the triangle with vertices\@, u,. Multiplying this triangle by
the complex valuel; maps it into the triangle with vertices &, c. The mapping
of 0 to 0 and ofu, to ¢ = ujuz is obvious: to see that;v, = a;, we use the result
|ug| |v1| = &1, proved above, and that avg} = — arg{’1) = — arg(1), sinceu; and
V1 lie on a line through the origin. By similarity of the two triangles, we have

[c—a| _ |uz — Vi
c] |uz|

and thuguz — v1| |u1| = p; sincep; = |c — a1| and|c| = |uy||uz|. Substituting this
and the resulfu| |v1| = & into (3.12) and re-arranging, we obtain

Ripg — p1 = —a1Re

as the equation of the outer loop. The same result is obtained if we choasel D,
u; asA, B, C, D and apply similar arguments to= vyVva.

Consider now the poirtt = u1v, on the inner loop. Applying Ptolemy’s theorem
to the quadrilateral with vertices @;, v1, 1 we obtain

Ry |V2| + |V1 — V2| =R |V1|.
Multiplying both sides byus| and settinqus| |v2| = p, then gives
Ripg + [us| V1 — V2| = &uRy

where we use the resylis| |v1| = a;, derived above, that also holds in this case.
Finally, to interpret the quantity; | [v1 — V2|, we consider the triangle with vertices

0, v1, vo. Multiplying this triangle byu; maps it to the triangle with vertices &,

c. The mapping of 0 to 0 and @b to ¢ = u1Vv» is obvious; and the resuliyv, = ay,
proved above, also holds in the present case. Thus, by similarity of these triangles,
we have

lc—af _ [vi— Vo
c] \F

and henceus| |v1 — v2| = pq, sincep; = |c — a| and|c| = |ug| [v2|. Thereby we
arrive at the equation of the inner loop,

Ripg + o1 = a1Ro.

* Recall [25] that the power of a poiptwith respect to a circl€ is the product of the distances
from p to the two points of intersection @fwith any line througtp.
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The same result will be obtained by choosing the quadrilateral with vertiags O,
u1, 1 and applying similar arguments to the paint vius.

4. Minkowski Product of N Disks

The method used in Section 3.2 to compute the boundary of the Minkowski product
of two disks is motivated by the fact that, as we shall now see, this approach admits
direct generalization to the casefdisks. As usual, we assume that the disks all
have center 1, and their radii satigty < --- < Ry.

LEMMA 4.1. Let(Cq, ...,Cn be circles with centefl and radii R, ...,Ry, and let
L1, ..., Ly be parallel lines through points;a= 1 - R?, ...,ay = 1 — R on the real
axis. Then for k= 1, ...,N the intersections ofy with Cy identify pointszy O Cx
such that the product®; - - - zy may lie ond(C1 O - - - O CN).

Proof. The caseN = 2 of this result, established in Lemma 3.1, arose from the
identification of pairs of pointg;, z, with matched logarithmic Gauss maps on the
two circles, as expressed by condition (3.2). The Minkowski product boundary is
generated by the products= z;z, of such points. Furthermore, the logarithmic
Gauss map of the Minkowski product boundary at the ppistmatched to that of
the circles at the pointg, z, generating it [11].

By virtue of this “preservation of logarithmic Gauss map” property, we can argue
by induction that we need not proceed sequentially—introducing one operand at a
time—when computing the Minkowski product Nfdisks. Instead, we can deduce
an a priori necessary condition for the product Kfpoints z(6) = 1 + Ree'%,
k=1, ..,Ntobelong tod(C1 O - -- O Cy) as the obvious generalization

sing, Sinéy
tang=——— =..= > 4.1
¢ Ry + cos6; Ry + cos6y @

of (3.7). Geometricallyg is the common inclination angle of the parallel lines
L1, ...,Ln with the real axis, and fok = 1,...,N the two solutionsgy to (4.1)
identify the intersections of the lin€ and circleCy. O

Lemmas 3.1 and 4.1 can also be proved by geometrical arguments, as follows. A
circleC among the coaxal system with common points 0 and 1 intersects the family
of circlesC1, Co, ... with center 1 and different radiy, Ry, ... in pairs of points that
define parallel chords (since, by symmetry, these chords must be orthogonal to the
line joining 1 and the center @f). One can easily show that these chords cut the
real axis in the pointay, ay, ...

Note that (3.7), and its generalization (4.1), can be solved to obtain

6 = ¢ + sin"}(R¢sing)
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Figure 7. Examples of the curves defined by (4.2) wih= 3 and the choices., 05, 09
(left), 0.2, 05, 10 (center), and @, 04, 12 (right) for Ry, Rz, Rs.

for the angular position on each ciralg, in terms of the common anglge By the
same reasoning as in the ca¢e 2, we may now write

N
2(9) = [ ] [ax + pu(9) €] (4.2)
k=1

as an explicit parameterization of (a supersetf)y O --- O Cy). Assuming that
R; < .-+ < Ry, the domain of expression (4.2)ismt < ¢ < +mwhenRy < 1,
and—¢max < ¢ < +dmaxWhenRy > 1, where

Pmax = SINH(1/Ry).

Allowing for all possible sign choicesk = +1 fork =1, ...,N in (3.9), the curve
defined by (4.2) comprises, in generdl, 2 real loops. WheiRy < 1, it suffices to
fix o1 = +1 and vary the other signs to generate 8it2 loops: the outermost loop,
in particular, corresponds tey = --- = oy = 1. If Ry > 1, however, all ¥ sign
combinations are required—withgmax < ¢ < +Pdmax, €Xercising the two choices
g, = +1 and fixingoi for all k # r generates two complementary segments of a
single loop (the outermost loop is definedday= - - - = oy 1 = 1 andoy = £1).

Figures 7 and 8 show examples of the curves defined by (4.2)Nvith3 and
N = 4. The generic case ha¥ 2! loops, although degenerate (singular) loci occur
if any of Ry, ..., Ry are coincident or equal to unity—these are generalizations of
the limaon and cardioid (see Section 5). A noteworthy difference between these
curves and Cartesian ovals is that, fér> 3, the outermost loop of (4.2) may
self-intersect (as seen in Figure 8). Thus, to obtain a faithful parameterization of
d(C1 O --- O Cn), it is necessary to determine tipevalues corresponding to the
self-intersection, and restrict the domaim < ¢ < +m0r —Pmax < ¢ < +Pmax SO
as to exclude the portion of this loop lyimgsidethe Minkowski product. We now
generalize Proposition 3.1 as follows:

PROPOSITION 4.1Let Dy, ...,Dy be N circular disks in the complex plane
with centerl and radii R, ...,Ry such that R < --- < Ry. Then the boundary
(D1 O --- O Dy) of their Minkowski product is (a subset of) either
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Figure 8 Examples of the curves defined by (4.2) with= 4 andRy, ...,Rs = 0.2, 04, 06,
15 (left); 0.3, 05, 0.8, 12 (center); and @, 0.3, 12, 13 (right).

1. the locus defined by (4.2) with = --- = oy = 1in (3.9), for—m < ¢ < +m,
when R < 1, or

2. the union of the loci defined by (4.2) wth=--- = oy =1andog; = --- =
—on =1in (3.9), for —¢max < ¢ < +¢Pmax, When R > 1.

The qualification “a subset of” reflects a possible need to trim the outermost
loop of (4.2) at values op (if any) corresponding to its self-intersection. With the
appropriateos, ..., oy these can be identified as distigcvalues that give the same
real part and vanishing imaginary part in (4.2).

We conclude this section by demonstrating the equivalence of the methods used
to identify corresponding points in Section 3.1 and in Lemmas 3.1 and 4.1. These
lemmas employ a family of parallel line§ through the pointsy = 1 — R to
construct coordinated polar representations for the cir€les.,Cn—a closed-
form parameterization fod(C; O --- O Cy) is then derived, in terms of the
common inclination angley of the lines. By inversion of each lingy in the
corresponding circléy, we can show that this approach is equivalent to establishing
correspondence by the intersection€gf..., Cy with members of the coaxal system
of circles that pass through 0 and 1.

PROPOSITION 4.2Let (4, ...,Cn be circles with cented and radii Ry, ..., Ry,
whose Minkowski product we wish to compute. FurtherC(gf) be the system of
coaxal circles with common poinisaandl, parameterized such th&(¢) has center
c = (1/2)(1 +icot¢) and radius R= (1/2)|csce| for —m/2 < ¢ < +m/2. Then,
for eachg, the intersectiong€(¢) n Cx identify sets of pointgy OCyx, k=1,...,N
such that the produd; - - - zy may lie ond(C1 O - - - O CN).

Proof. Consider the lineCy throughay = 1 — RE at angle¢ to the real axis.
From Section 2.4 we know that its image under inversiofirs a circle through 1
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(the center of inversion), and the poiat is mapped to 0. Furthermore, the two
intersections oLy with Cy, given by 1 +R¢e'%* wheregy satisfies

tang = ﬂ (4.3)

are invariant under inversion @. Hence, the image afx under inversion ity is
a circleC(¢) passing through these two intersections points, dependeg and
the fixed points 0 and 1. One can verify tlidt) has the equation

2 2 2
2 2sing 2singy 4

Note that this depends only on the ratR ¢ coséy)/ sin6 which, by virtue of

equation (4.1), has the same valuegdbr eachk. Hence, fokk = 1, ..., N the lines

Ly are all mapped by inversion in the corresponding cir€lemto thesamecircle

C(¢), given by

1)\? 1 21
(x 2) + (y 200t¢) 405(,24; =0 (4.4)
(where we setRx + cos6y)/ sin6c = cotg). For —m/2 < ¢ < +m/2, equation
(4.4) defines a coaxal system of circles with common points 0, 1 and radical
axisx = 1/2. Each membe€(¢) of this system cuts the operands, ...,Cn in
corresponding pointg = 1+Ree'%, k=1, ..., N satisfying the necessary condition
(4.1) for the product; - - - zy to lieond(Cy O - - - O Cn). O

5. N-th Minkowski power of a disk

As a special instance of the Minkowski productdilisks, consider the case where
the operands are identical, i.e., we are interested iNttieMinkowski poweof a
single disk. Now leC be the circlez(6) = 1 +Re® for 0 < 6 < 27 In computing

the Minkowski poweidN C, it is obvious that the condition of matched logarithmic
Gauss maps is satisfied when we choosestmepoint on each of th&l copies of

C, as anN-tuple of corresponding points. Hence, we may expect the locus defined

by

N
NE)=[1+RIN =) (':) Rek®  0<e<2n (5.1)
k=0

to contribute to the boundag(ON C) of the N-th Minkowski power. However, for
each¢ between- sin~1(1/R) and +sim%(1/R), the condition
siné

tang = ———
¢ R+ cos6

* We assume that ¢max < ¢ < +Pmax, Wherepmax = sin 1 1/Ry if Re > 1.
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Figure 9  Generation of the limam of Pascal as a trochoid by: rolling motion of a circle of
radiusR on a fixed circle of radiu® (left), and a two-bar linkage with links of lengtiRzand
R? and angular velocities in the ratio 1:2 (right).

identifies a secondistinctcorresponding poin@' for any chosen poin, such that
products of the fornzN—"(6") z(6) for 0 < r < N may also contribute té(0N C).

In general, such products define a number of closed loops, among which (5.1) is the
outermost. Henceforth, we shall focus on the locus defined by expression (5.1),
since (a subset of) this locus defines the boundary dittie Minkowski power of

the circular diskD bounded by.

For N = 2, the curve (5.1) is a liman of Pascal, which may be interpreted
kinematically as the trajectory of a point carried by a circle that rolls on a fixed base
circle of equal radius—an exampteof trochoidal motion(in the present instance,
the point that traces the limagon is at distaféefrom the center of the rolling
circle). From the form

2’(0) =1+ R +R%6?®,  0<e6<2nm (5.2)

we see that the lima@n can also be generated by a two-bar linkage: the first bar
has length R and rotates with angular velocity 1 about the point 1 on the real axis,
while the second bar has leng® and rotates with angular velocity 2 about the
end point of the first bar(see Figure 9). WheR = 1, we obtain a limaan with a
cusp—namely, a cardioid.

Now for arbitraryN > 2, expanding (5.1) gives

. N . .
ZN(B) = 1 +NRe'® + <2> R%€%%+...+RVeN?  0<e@<2m (5.3)

* WhenN = 2, one can easily verify thafo') z(6) = 1— R? for all ¢—i.e., the inner loop collapses
to a single point on the real axis, which is a singular point of the locus (5.1).
** For a general trochoidal motion, the base circle and rolling circle have different radii.
¥ The angular velocities are all measured relative to the fixed coordinates.
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This can be interpreted as the locus generated N-bar linkage, with bar lengths

NR (';)RZ, ...,RN—the first bar rotates with angular velocity 1 about the point 1,
the second rotates with angular velocity 2 about the end point of the first bar, etc.
Finally, theN-th bar rotates with angular velocily about the end of the\(— 1)-th

bar, and its free end traces the trajectory (5.3). This is an examplehwfhar
trochoidal motion and the locus (5.3) is thus callechimher trochoid Trochoidal
motions, and the loci they generate, have been extensively studied by Wunderlich

[31].
The ratios of (relatively prime) successive angular velocities, in the present case
1:2:---:N,is called theharacteristicof a trochoidal motion. Note also that the

curve (5.3) can be generated Wydifferent higher trochoidal motions. Different
orderings of thé\ termsin (5.3) correspond to different physibabar linkages. We
may regard the firdfl — 1 bars as defining a “moving system,” in which the last bar
rotates with uniform angular velocity. Clearly, the moving system is independent of
the ordering of the initiaN — 1 bars, but the final motion does depend on which of
the N terms was chosen as the last. Tidold generation of a higher trochoid by

N distinct higher trochoidal motion is a generalization of the well-known double
generation of a trochoid by the rolling motion of a circle on another circle.

If all entries of the characteristic are integers, the resulting higher trochoid is
a rational curve—the algebraic order is, in general, twice the maximum absolute
value in the characteristic. Hence, our curves are of ortlerfF=2om [31] we may
also infer that these curves haMefold points at the circular points at infinity,
(W, X,Y) = (0,1, i), as their only points at infinity.

In the theory of higher trochoids, the so-callegtloidal trochoidsplay a dis-
tinguished role. These curves can also be generated as the envelope of a line that
executes a higher trochoidal motion. We mention just a few of their remarkable
properties: their evolutes and all their offsets are also cycloidal trochoids, and their
arc lengths admit closed-form expressions in terms of trigonometric functions.
Since higher trochoids with only integer entries in the characteristic are rational,
cycloidal trochoids with integer characteristics are examplestmial curves with
rational offset428].

Cycloidal trochoids witiN = 2 are called epicycloids and hypocycloids. In the
case of the Minkowski square of a circle that passes through the origirR(=el,)
we obtain the cardioid as a special instance of the epicycloid. It is not difficult to see
that, wherR = 1, the curve (5.3) is a cycloidal trochoid for aNyIf c(¢) = r(¢)e'?
is the polar form (with respect to the origin) of the circle 1'%, eve haved = 2¢,
and the angle between the nornagilh) to the circle and its position vectof¢) is
also¢ (Figure 10). Upon forming thé&l-th power,z(¢) = cN(¢), the polar angle
becomedN¢, and the normal at(¢) is thus at angleN + 1)¢ with the real axis
(Figure 10). Hence, the tangent line at “tim¢’can be parameterized by a real
variableA as
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Figure 10  Left: polar formc(¢) of the circle 1 + & with respect to the origin—the normal
makes angle with the position vector. Right: the normal to tNeth powerc"(¢) of this circle
makes angleN + 1)¢ with the real axis.

N
N\ . o
zZA)=>" ( )e‘z""’ +ia e(N+19, (5.4)
k=0 \K
This shows that the tangent is executing a trochoidal motidd #f1 steps, with
characteristic 2 :-- : 2N : N + 1. However, choosing a suitable function
eim¢ o e—im¢

A(¢) =asinmg =a o ,
we can eliminate one of the firbt terms in (5.4), and thus obtain a generation of
Z(¢) as the envelope of a line undergoing a trochoidal motioN efeps.

The description oN-th Minkowski powers of circular disks as sets bounded
by higher trochoids offers an elegant counterpart to the characterization [9] of
N-th Minkowski roots of circular disks as sets bounded by generalizations of the
well-knownoval of Cassin[19], [21]—see [9] for complete detalils.

6. Closure

An exact parameterization for the boundary of a general Minkowski produst of
circular disks in the complex plane has been derived, that is sufficiently tractable to
be of practical use in applications wheneactoperations (rather than containment
results) on complex sets are required. Apart from rational arithmetic, evaluating this
parameterization entails only the sine and cosine of a single angular variable and
the extraction oN real square roots. Many basic set operations (point membership,
union and intersection, etc.) become feasible by means of this representation. How-
ever, the detailed elaboration of such algorithms warrants a separate substantive
study.
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Since Cartesian ovals may 8efinedas the boundaries of the Minkowski product
of two circles [12], the loci given by (4.2) are natural “higher-order” generalizations
of Cartesian ovals. This perspective raises several interesting questions concern-
ing the manner in which the subtle geometry of Cartesian ovals, summarized in
Section 2, generalizes to the curves (4.2). For example: are the curves (4.2) also
anallagmatic—and, if so, with respect to which circles of inversion? One might
also expectthese curves to admit simple descriptions, analogous to (2.1)—(2.2), in
terms of a system ahultipolar coordinate$10] with respectto poles at @y, ..., a.
However, preliminary investigations reveal that such equations cannot be linear or
quadratic.
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