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Abstract. We discuss the following problem which
arises in computer animation and robot motion plan-
ning: Given are N positions or keyframes Σ(ti) of a
moving body Σ ⊂ R

3 at time instances ti. Compute
a smooth rigid body motion Σ(t) which interpolates or
approximates the given positions Σ(ti), such that cho-
sen feature points of the moving system run on smooth
paths. We present an algorithm that can be considered as
a transfer principle from curve design algorithms to mo-
tion design. The algorithm relies on known curve design
algorithms, and on registration techniques from Com-
puter Vision. We prove that the motion generated in
this way is of the same smoothness as the curve design
algorithm employed.

Keywords. Motion design – Motion planning – Reg-
istration – Subdivision algorithm – Variational design

1 Introduction

Motion design is an important and widely studied
problem originating in robotics (cf. Latombe 2001,
Halperin et al. 1997, Sharir 1997). Today, this ac-
tive research field is concerned with e.g. cam-
era motion design in computer animation (cf.
Marchand, Courty 2002), designing the motion of
digital actors (cf. Kalisiak, Panne 2001), creating re-
alistic human and animal motions via keyframing and
motion capture (cf. Arikan, Forsyth 2002 ), motion plan-
ning in virtual environments (cf. Salomon et al. 2003),
designing molecular motions for folding and docking
of proteins (cf. Song, Amato 2002), motion design of
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deformable objects (cf. Bayazit et al. 2002) and many
more (cf. Latombe 1999).

In the present paper we are interested in smooth (and
fair) motions of one rigid body with interpolation or
approximation constraints. We confine ourselves to dif-
ferentiable one-parameter motions in Euclidean 3-space;
for an investigation of the geometric background we refer
to Pottmann, Wallner 2001. For applications it is impor-
tant to be able to control the smoothness level of a mo-
tion. Forces (and therefore vibrations) depend on second
derivatives and jumps in the velocity would be visible
in applications such as camera motions in virtual envi-
ronments, computer animated objects, or architectural
walkthroughs, thereby giving an unaesthetic effect.

1.1 Related work

Contributions to the solution of our type of mo-
tion design problem originated in Computer Graph-
ics, where Shoemake 1985 was among the first to ap-
ply the techniques of Computer Aided Geometric De-
sign for visualizing moving objects in Computer Ani-
mation. In Computer Graphics, the idea of interpolat-
ing rotations with quaternions was further developed
by e.g. Barr et al. 1992, Ramamoorthi, Barr 1997, and
Hanson 1998. Quaternion techniques separate the trans-
lational and rotational part of the motion. Then they can
employ a curve design algorithm to the translational part
in R

3, but the rotational part has to be designed on S3 ⊂
R

4. However, nonlinear extensions of spline construc-
tions in affine spaces to the sphere S3 are difficult to deal
with for optimization purposes. Dual quaternion curves
have also been used for the visualization of moving ob-
jects, see Jüttler 1994. Affine spline motions with min-
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imal distortion have been studied by Hyun et al. 2001.
A singular value decomposition projection method for
interpolation on the group of Euclidean motions SE(3)
has been presented by Belta, Kumar 2002. Part of our
work is closely related to this paper, although developed
completely independent. Algorithms for motion fairing
using the quaternion representation have been proposed
by Fang et al. 1998 and Hsieh, Chang 2003, where the
latter are using genetic algorithms for the solution.

To describe rigid body motions it is necessary to
use rational rather than polynomial representations (see
Röschel 1998 and the references therein). However, ra-
tional representations are much less suitable for varia-
tional design and efficient optimization techniques than
polynomial ones. For smooth motions that interpolate
or approximate given positions and that make use of
NURBS techniques see Jüttler, Wagner 1996. For a re-
cent survey on how techniques from Computer Aided Ge-
ometric Design are applied to Kinematics and Computer
Animation we refer to Jüttler, Wagner 2002. The prob-
lem of constraint motion design has been investigated by
Wallner 2003, who discussed gliding spline motions using
an active motion approach resulting in near-Euclidean
near-contact spline motions, and Hofer et al. 2003, who
study the design of rigid body motions constraint by a
contacting surface pair.

1.2 Contributions

The present paper provides the following new approach
to motion design: We show how to transfer any curve
design algorithm to motion design. Our algorithm first
chooses feature points that give a good representation
of the moving body. In the following steps we work with
this cloud of feature points: We apply the same curve de-
sign algorithm to the sequences of homologous positions
of those feature points. This yields a smooth path for
each of these feature points. They do not yet correspond
to a rigid body motion; however, for a linear curve de-
sign algorithm they determine an affine motion. To turn
the distorted motion into a rigid body motion we use
the so-called registration process from Computer Vision.
The new concept has several advantages over previous
approaches:

– Translational and rotational part of the motion are
not separated in the design process

– The properties of the used curve design algorithm are
transfered (within certain bounds) to the trajectories
of the points of the moving body

– It is possible to perform variational motion design in
an approximate way, and to deal with motion fairing
and motion optimization.

A rigid body motion is a curve in the Euclidean mo-
tion group, and the fairness of that curve can be ex-
pressed in an intrinsic way with respect to the motion

group (see Park, Ravani 1997). However, for the appli-
cations we have in mind, not the motion as such, but
its action on a certain rigid body is employed in fairness
criteria. Therefore, our formulation of ‘fairness’ is based
on fair trajectories of chosen feature points.

Besides curve design algorithms, our motion design
method uses registration (with known correspondences,
cf. Horn 1987). This is a special case of results recently
obtained by Wallner 2002, who has investigated the L2-
approximation of deformations by Euclidean motions in
d-space. Geometrically, the registration of a rigid body
motion to an affine motion corresponds to an orthogonal
projection of a curve in the 12-dimensional affine space
of affine transformations onto a 6-dimensional manifold,
which represents the Euclidean motions. Conditions on
the uniqueness of this projection and thus the feasibility
of our approach follow from Wallner 2002.

The paper is organized as follows. In Sect. 2 we
summarize a technique from Computer Vision for the
registration of two point clouds with known correspon-
dences. In Sect. 3 we present a motion design algorithm
which uses curve design algorithms and registration with
known correspondences. In Sect. 4 we discuss motion de-
sign using variational subdivision algorithms for curves.
We conclude the paper in Sect. 5 with an outlook to-
wards future research.

2 Registration with known correspondences

Consider two finite sequences (‘point clouds’) X,Y of
corresponding points xk and yk for k = 1, . . . ,K. The
problem of applying to one cloud, say X, a Euclidean
motion m which brings each xk as close as possible to
yk is well studied. If the meaning of ‘as close as possible’
is to minimize the sum of squared distances

K∑

k=1

‖m(xk) − yk‖2 → min, (1)

then the solution amounts to an eigenvalue problem (see
e.g. Horn 1987, Eggert et al. 1997, Wallner 2002) which
we summarize below. A Euclidean motion

m(X) = RX + t (2)

consists of a rotational part, described by the orthogo-
nal matrix R with detR = 1, and a translational part,
described by the vector t. Let x̄, ȳ be the barycenters of
the point clouds X,Y , i.e.,

x̄ =
1

K

K∑

k=1

xk, ȳ =
1

K

K∑

k=1

yk. (3)

If we use the barycenter of each point cloud as the origin
of a new coordinate system, we get for k = 1, . . . ,K the
coordinates

xk′ = xk − x̄ = (xk
X

′

, yk
X

′

, zk
X

′

),

yk′ = yk − ȳ = (xk
Y

′

, yk
Y

′

, zk
Y

′

). (4)
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In Horn 1987 it has been shown that the rotation R

can be computed in the following way: Let M be the
symmetric 4 × 4 matrix

M =







Sxx + Syy + Szz Syz − Szy

Syz − Szy Sxx − Syy − Szz

Szx − Sxz Sxy + Syx

Sxy − Syz Szx + Sxz

Szx − Sxz Sxy − Syz

Sxy + Syx Szx + Sxz

−Sxx + Syy − Szz Syz + Szy

Syz + Szy −Sxx − Syy + Szz







(5)

where Sxx, . . . , Szz are the nine entries of the matrix
∑

k xk′(yk′)T , i.e.,

Sxz =
K∑

k=1

xk
X

′

zk
Y

′

(6)

and so forth. Now compute the maximal eigenvalue λm of
M and a corresponding unit eigenvector (a0, a1, a2, a3).
Then the 3 × 3 rotation matrix R is given by

R =





a2
0 + a2

1 − a2
2 − a2

3 2(a1a2 + a0a3)
2(a1a2 − a0a3) a2

0 − a2
1 + a2

2 − a2
3

2(a1a3 + a0a2) 2(a2a3 − a0a1)

2(a1a3 − a0a2)
2(a2a3 + a0a1)

a2
0 − a2

1 − a2
2 + a2

3



 . (7)

The translation t is the difference between the barycen-
ter ȳ of the point cloud Y and the rotated barycenter
R · x̄ of the point cloud X,

t = ȳ − R · x̄. (8)

Remark 1 The vector (a0, a1, a2, a3) is the representation
of a Euclidean motion by a unit quaternion a = a0+ia1+
ja2 + ka3, see e.g. Pottmann, Wallner 2001, p. 525.

Remark 2 The problem of finding the best transforma-
tion that minimizes the sum of squared distances be-
tween two point clouds with known correspondences
is a special case of the so-called registration problem
which originated in Computer Vision. In a more gen-
eral setting, registration deals with the problem that
partial scans of measurement points of an object have
to be aligned, or a cloud of measurement points of an
object has to be matched to a CAD model of that
object. A standard approach to the solution of such
problems is the iterative closest point (ICP) algorithm
which has been introduced by Chen, Medioni 1992 and
Besl, McKay 1992. It employs the previously discussed
registration with known correspondences in each itera-
tion step. A recent summary with new results on the
acceleration of the ICP algorithm has been given by
Rusinkiewicz, Levoy 2001. Pottmann et al. 2002a have
presented an alternative to the closed form solution
of the registration problem. This iterative algorithm

linearizes the motion using instantaneous kinematics
and can be used for industrial inspection or the si-
multaneous alignment of more than two geometric ob-
jects. For related research on registration of geometry
and texture during 3D model acquisition in Computer
Graphics we refer the reader to the recent survey of
Bernardini, Rushmeier 2002.

2.1 Dependency of registration on the choice of
corresponding points

In this section we discuss the dependency of registration
with known correspondences of two point clouds X,Y on
the choice of the involved points x1, . . . ,xK . We assume
that there is an affine transformation such that Y =
AX + a.

Definition 1 Given a finite number of points
x1, . . . ,xK of unit point masses, the matrix

J =

K∑

k=1

xkxkT , (9)

is called (in mechanics) the coordinate matrix of the in-
ertia tensor.

Proposition 1 If there is an affine transformation such
that Y = AX +a, with a 3×3 matrix A, then it follows
that, in the case of detA > 0, the rotation matrix R can
be determined by R = Q1Q2, when AJ = Q1DQ2 is a
singular value decomposition.

A proof of Prop. 1 can be found in Wallner 2002.

Proposition 2 Let X,Y be two clouds of correspond-
ing points xk and yk, k = 1, . . . ,K, and let Y be as in
Prop. 1. Then the registration of X to Y only depends
on the barycenter x̄ and the inertia tensor J of X.

Proof The registration of X to Y is performed by the
Euclidean motion m defined in (2). The translational
part t of m only depends on the barycenter x̄ of X.
According to Prop. 1, the rotational part R only depends
on the inertia tensor J. ⊓⊔

By a well-known result from mechanics, we can re-
place the points x1, . . . ,xK by the six special points

± x̃j := x̄ ±

√

λj

2
ej , j = 1, 2, 3, (10)

without changing the barycenter and the inertia tensor
of X. Thereby, λ1, λ2, λ3 and e1, e2, e3 are the eigenval-
ues and eigenvectors of J.

This implies that, if we have to perform the regis-
tration of X to several point clouds Yi (that result from
an affine transformation of X), then we only have to
compute (10) once, and then we can use these 6 special
points for all the individual registration computations of
X to Yi.
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3 The motion design algorithm

In the following we give a detailed discussion of the in-
dividual steps of the motion design algorithm and prove
that the smoothness of the generated motion is the same
as the smoothness of the used curve design algorithm.
Examples of motion design are presented in Sect. 4. The
first step of the algorithm creates a distorted motion,
which is an affine motion in the case of a linear curve
scheme. The second step of the algorithm computes a
Euclidean motion which fits the distorted motion best.
The input to the algorithm are N positions Σi := Σ(ti)
of a moving body Σ ⊂ R

3 at time instances ti. We
want to compute a smooth motion Σ(t) which inter-
polates (or approximates) the given N positions Σ(ti),
such that chosen feature points of the moving system
run on smooth paths.

3.1 Distorted motion via the curve design algorithm

Our algorithm starts by choosing a number of K > 4
feature points fk, k = 1, . . . ,K on the moving body Σ,
see Fig. 1. We compute their locations fk

i at the given
time instances ti, see Fig. 2a. Positions fk

1 , fk
2 , . . . , fk

N of
the same feature point fk at different time instances ti
are called homologous points. To each of the K sequences
of homologous points we apply the chosen Ck curve de-
sign algorithm. An interpolating (approximating, resp.)
curve design algorithm will later yield an interpolat-
ing (approximating, resp.) motion. We get K curves
f1(t), . . . , fK(t) which we refer to as feature curves, see
Fig 2b. For each t the K points f1(t), . . . , fK(t) may
be considered as image points of f1, . . . , fK under some
deformation.

In fact, the distortion is not determined on all points
of the moving body, but just on the feature points. How-
ever, it will be convenient to speak of a distorted copy
Σ′(t) of the moving body. By applying the same curve
design algorithm to all feature points we obtain a time
dependent family of distorted copies Σ′(t) of the body
Σ, a so-called distorted motion, see Fig. 2c. Since we
want to design a Euclidean motion, in the second step
of the algorithm we use registration to find the best fit,
in the least squares sense, of the rigid moving body Σ
to Σ′(t), see Fig. 2d.

Remark 3 If we use a subdivision algorithm we can ap-
ply several steps of the algorithm to create a sufficiently
dense set of discrete positions of the moving body. Those
might be sufficient for the application in mind, or they
can easily be interpolated with standard motion design
techniques without caring about desired properties of
the motion (interpolating, approximating, smoothness,
fairness, . . .) anymore.

If we use the same linear curve design algorithm for
all feature points, then it is not necessary to apply it

Σ fk

Fig. 1 A rigid body Σ with 16 feature points fk.

to all sequences of homologous points. This is so, since
we obtain affine copies of the moving body as interme-
diate positions. A proof of this property relies on the
linearity of the used curve design algorithm; it says that
each intermediate position fk(t) is a linear combination
of fk

1 , . . . , fk
N . Hence, at a time instance t the position

fk(t) of the k-th feature point fk is of the form

fk(t) =
∑

j

λj(aj + Aj · f
k). (11)

Here, we have already used the fact that the j-th homol-
ogous position fk

j results from an initial position fk by
an affine map. After reordering, we obtain

fk(t) =
∑

j

λjaj + (
∑

j

λjAj) · f
k

=: b + B · fk. (12)

We see that the inserted position results from the initial
one by application of an affine map α(t) with matrix B

and translational part b.
This property allows us to apply the curve design

algorithm to only four sequences of non coplanar ho-
mologous points. Using the affine maps, we then com-
pute intermediate positions also for the remaining fea-
ture points. This is necessary since the following regis-
tration depends on all feature points.

If we use a nonlinear curve design algorithm we do no
longer get affine copies and thus have to apply the curve
design algorithm to all sequences of homologous points.
In the subsequent registration step, it does not mat-
ter whether the curve design algorithm produces affine
copies of the original point cloud or not.

3.2 Euclidean motion via registration

So far we have computed a motion (by distortions) of
the moving body, which is an affine motion in the case
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f1
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f1
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f2
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f2
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f2
4

f3
1

f3
2

f3
3

f3
4

f4
1

f4
2

f4
3

f4
4

Σ1

Σ2

Σ3

Σ4

f1(t)

f2(t)

f3(t)

f4(t)

a b

Σ1

Σ2

Σ3

Σ4

Σ′(t)

Σ1

Σ2

Σ3

Σ4

Σ(t)

c d

Fig. 2 a The feature points fk in their homologous positions fk

i representing the moving body in the input positions
Σ1, . . . , Σ4. b Feature curves f1(t), . . . , fK(t) computed by the curve design algorithm. c Resulting distorted version Σ′(t) of
the moving body at a time instance t. d We compute the best fit of the Euclidean body Σ to Σ′(t) at each time instance t

via registration.

of a linear curve scheme. Now we discuss how to fit a
Euclidean motion to this distorted motion.

At each time instance t we register the moving body
Σ to the distorted version Σ′(t) in order to find an in-
termediate position resulting from a rigid body motion.
Registration with known correspondences (presented in
Sect. 2) computes a Euclidean motion m, which brings
the feature points f1, . . . , fK as close as possible to the
previously computed points f1(t), . . . , fK(t). Thereby
the sum of squared distances

K∑

k=1

‖m(fk) − fk(t)‖2 (13)

is minimized. In this way we compute the approximation
of a distorted motion by a Euclidean motion.

3.3 Smoothness of the resulting motion

3.3.1 Smoothness of the resulting motion in the general
case Although the registration usually only results in
small corrections, we get the following theoretical prob-
lem. If we use a curve design algorithm that produces
a Ck curve for each feature point, does our motion de-
sign algorithm produce a Ck motion? We formulate the
following theorem.

Theorem 1 If we use a Ck curve design algorithm, then
our motion design algorithm generates a Ck motion, pro-
vided that the maximal eigenvalue λm(t) of the matrix
M(t) in (5) has multiplicity one.

Proof The first step of our algorithm generates for all
t a distorted copy Σ′(t) of the moving body Σ. We al-
ready know that every feature point runs on a Ck path.
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Then, for all t we register the rigid moving body Σ to
Σ′(t). We have to prove that the registration, described
in Sect. 2, is a Ck operation. In order to find the Eu-
clidean motion that performs the registration we have
to compute the eigenvector xm(t) corresponding to the
maximal eigenvalue λm(t) of the matrix M(t) described
by (5).

The eigenvalues of M(t) are the zeros of the quar-
tic polynomial det(M(t) − λ(t) · I), with the identity
matrix I. Eigenvectors xm(t) corresponding to the max-
imal positive eigenvalue λm(t) are found by solving the
homogeneous linear system of equations (M(t)−λm(t) ·
I)xm(t) = 0. From a unit eigenvector xm(t) we find the
rotation matrix R(t) in (7). We have to show that all
these operations are Ck, from which we can then con-
clude that we get a Ck motion.

The symmetric matrix M(t) consists of entries that
are polynomial in the coordinates of the points xi and
yi. Thus the function M(t) is clearly Ck. Similarly, the
computation of R from (a0, a1, a2, a3) is polynomial. The
maximal eigenvalue of M(t) is smoothly dependent on
M(t) if we can solve the equation

det(M(t) − λm(t) · I) = 0 (14)

locally for λm. By the implicit function theorem this is
possible if

∂

∂λ
det(M − λ · I) 6= 0 for λ = λm, (15)

i.e., if λm is a single zero of the polynomial p(λ) =
det(M(t) − λ · I). Next we have to show the following
lemma:

Lemma 1 Suppose that A(t) and λ(t) are Ck functions.
If for all t in some interval [a, b], λ(t) is a single eigen-
value of the matrix A(t), then there is a Ck function
x(t), defined in the same interval, which is a unit eigen-
vector of A(t) to the eigenvalue λ(t).

This result is well-known and easy to show. For the
convenience of the reader we write down a proof.

Proof (of Lemma 1) Note that differentiability is a local
property. We consider t in a neighborhood of some t0.
The rank of the matrix (A − λ · I) equals n − 1. Thus,
by removing one row and one column of this matrix we
get a (n− 1)× (n− 1)-matrix B with det(B) 6= 0. Since
det(B(t)) is continuous it does not vanish in a neigh-
borhood of t0. Hence, for all t0 there is a neighborhood
where the same submatrix B is regular. Now we use
this matrix B to solve the linear system of equations
(A−λ · I)x = 0. Without loss of generality let B consist
of the first n − 1 rows and the first n − 1 columns of
(A − λ · I) =: (cij). We first solve for (x1, . . . , xn) with
xn = 1 which means that we have to solve

B(x1, . . . , xn−1)
T = (−c1n, . . . ,−cn−1,n)T . (16)

Hence the solution vector is found to be

(x1, . . . , xn−1)
T = B−1(−c1n, . . . ,−cn−1,n)T . (17)

This computation did not use the n-th equation of the
linear system, but that one is automatically fulfilled,
since we know that (A−λ · I) has rank n−1. The cofac-
tor formula for computation of B−1 shows that B−1 is
Ck if B is Ck. Thus, the eigenvector (x1, . . . , xn−1, 1) is
Ck. By normalizing we get a Ck unit eigenvector. This
was a local construction, and it could happen that the
ambiguity in the normalization x 7→ ±x/‖x‖ yields lo-
cally defined unit vectors x(t) which do not fit together.
This is easily remedied by replacing a finite number of
locally defined x(t)′s by their opposites −x(t). ⊓⊔

This completes the proof that, by using a Ck curve
design algorithm, our motion design algorithm generates
a Ck motion. ⊓⊔

3.3.2 Smoothness of the resulting motion for linear curve
schemes By applying the same linear curve design al-
gorithm to all feature points we obtain a time dependent
family of affine copies Σ′(t) of the body Σ, a so-called
affine motion. This special case allows a nice geomet-
ric interpretation and an even simpler derivation of our
smoothness result.

To each affine map in 3-space, or equivalently to each
affine image of the body Σ, we may associate a point in
12-dimensional affine space A12. To get its coordinates,
we may just collect the coordinates of the image points
of four independent feature points under the affine map-
ping under consideration. The image points of Euclidean
motions form a 6-dimensional submanifold M6 ⊂ A12.
The input positions Σ(ti) correspond to points si on
M6. The affine motion Σ′(t) corresponds to a curve c′(t)
which interpolates or approximates the points si, but
does not lie on M6 (see Fig. 3).

We can measure the distance between two affine
maps by means of the sum of squared distances between
the images of selected feature points. This is equivalent
to the introduction of a Euclidean metric in A12 (see also
Pottmann, Peternell 2000). Thus, we have an orthogo-
nality in A12. The way in which we compute a rigid body
motion Σ(t) from the affine motion Σ′(t) via registration
corresponds to an orthogonal projection of the curve c′

to a curve c ⊂ M6. Depending on the multiplicity of the
eigenvalues of M(t) (and therefore the dimension of the
eigenspaces) there are four different footpoints from a
point c′(t) on the manifold M6 or infinitely many.

In Wallner 2002 the following result is shown: Con-
sider the matrix Aj in the description of the affine map
which generates Σ′(t) and has c′(t) as image point in
A12; if this matrix Aj has a positive determinant, we
can be sure that the conditions of Thm. 1 are fulfilled.
Geometrically this means that c′(t) is not on the medial
axis of M6 and thus it possesses a unique closest point
c(t) on M6.
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s1

s2

s3

s4

s5

M6

c′(t)

c(t)

A12

Fig. 3 An affine motion corresponds to a curve c′(t) in A12

and the designed motion c(t) is the orthogonal projection
of c′(t) onto the 6-dimensional manifold M6 of Euclidean
motions.

3.4 Remarks on the algorithm

The input data may be subject to measurement errors,
which of course depend on the device they have originally
been obtained with. If a CAD model of the moving body
is known, then the initial input positions may also be
corrected by using registration. If a precise model of the
moving body is unknown, the computation of a copy of
the moving body via registration of the positions against
each other has to be done in a preprocessing step. Note
also that the use of feature points may be advantageous
for the design of motions where the given positions have
been captured by methods of Computer Vision.

4 Motion design with variational subdivision

In this section we give several examples in which the pre-
sented algorithm is applied. We base motion design on a
variational subdivision scheme for curves which intends
to minimize the change in velocity. This is interesting for
applications in computer animation and robotics, where
sudden speeding up or slowing down is usually undesir-
able. Note that the resulting motions are only approxi-
mate variational.

First we review known interpolatory variational sub-
division for curves and extend these schemes to approx-
imating ones, where one can control the interpolation
or approximation of each input point by a parameter.
Then we use these curve design algorithms for the de-
sign of interpolating or approximating rigid body mo-
tions which we illustrate at hand of several examples.
Finally, we mention how to achieve shape modifications

such as tension effects and the use of local subdivision
schemes.

4.1 Interpolatory variational subdivision for curves

Interpolatory variational subdivision has been intro-
duced by Kobbelt, 1996 and involves the minimization
of some quadratic energy functional in order to con-
trol the fairness of the curves which are constructed.
Kobbelt, Schröder 1998 have extended variational sub-
division from the uniform to the non-uniform parameter
setting and discussed it in a multiresolution framework.

The subdivision scheme requires a sequence of points
(fi) as input data. In the first step these points are con-
nected to a piecewise linear curve. Then by minimizing
a quadratic fairness functional, we iteratively insert new
points, which results in a smooth limit curve. Let each
point fi of our polygon correspond to a parameter value
ti. In our application the ti’s will most likely be given,
since they are related to the timing of the motion. In case
we have to estimate ti, we may take it from a centripetal
parametrization, i.e.,

ti+1 − ti :=
√

‖fi+1 − fi‖. (18)

In order to obtain an estimate of the jump in velocity
at a certain time instance, the subdivision scheme we
are using is based on the following numerical differenti-
ation rule: Given are three values v0, v1, v2. Then the
coefficients c0, c1, c2 ∈ R of the quadratic interpolating
polynomial P2(t) = c0 + c1t + c2t

2 such that P2(ti) = vi

(i = 0, 1, 2) can be computed easily. The second deriva-
tive P ′′

2 (t) = 2c2 is constant and can be used as a nu-
merical estimate for the change in velocity at t1. The
coefficient c2 is found to be a linear combination of v0,
v1, v2,

c2 =
v0

∆0(∆1 + ∆0)
−

v1

∆1∆0
+

v2

∆1(∆1 + ∆0)
, (19)

where ∆i = ti+1 − ti. If we rearrange these terms we see
that c2 describes the second divided difference for a non-
uniform parametrization. For a uniform parametrization
with ∆i = 1, c2 corresponds to the second forward dif-
ference

2c2 = ∆2v0 = v0 − 2v1 + v2. (20)

By minimizing the function
∑

‖c2‖
2 → min (21)

we find the variational subdivision scheme in the uni-
form and non-uniform parameter setting presented in
Kobbelt, 1996 and Kobbelt, Schröder 1998.

Let us derive explicit formulae for the uniform setting
(the non-uniform case is completely analogous). In each
iteration step we insert new points qi between the given
points fi from the previous iteration step, see Fig. 4a.
In the uniform parameter setting for open polygons the
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fi−1

fi fi+1

qi−1

qi

1
2
(fi−1 + fi)

1
2
(qi−1 + qi)

1
2
(fi + fi+1)

fi−1

fi
fi+1

qi−1

qi

1
2
(fi−1 + fi)

1
2
(qi−1 + qi)

1
2
(fi + fi+1)

fn

i−1

fn

i

fn

i+1

a b

Fig. 4 Uniform a interpolatory and b approximating variational subdivision.

position of the new points qi is found by minimizing the
objective function

F (q1, . . . ,qN−1) =
N−1∑

i=1

‖fi − 2qi + fi+1‖
2

+

N−2∑

i=1

‖qi − 2fi+1 + qi+1‖
2. (22)

F is quadratic in the unknowns qi ∈ R
d. The minimiza-

tion of F can be computed by letting the partial deriva-
tives of F with respect to the unknowns qi equal to zero,
which leads to a tridiagonal linear system of equations,










5 1
1 6 1

. . .
. . .

. . .

1 6 1
1 5










︸ ︷︷ ︸

:=A

·






q1

...
qN−1






=










2 4
4 4

. . .
. . .

4 4
4 2










︸ ︷︷ ︸

:=B






f1

...
fN




 . (23)

The matrices A and B are of size (N − 1)× (N − 1) and
(N −1)×N , respectively. Non-bold qi and fi denote one
coordinate of qi and fi.

In the uniform parameter setting for closed polygons,
the position of the new points qi is found by minimizing
the objective function

F (q1, . . . ,qN ) =

N∑

i=1

‖fi − 2qi + fi+1‖
2

+
N∑

i=1

‖qi − 2fi+1 + qi+1‖
2, (24)

where we identify fN+1 ≡ f1 and qN+1 ≡ q1. Minimizing
(24) leads to solving the following linear system of N
equations:










6 1 1
1 6 1

. . .
. . .

. . .

1 6 1
1 1 6










︸ ︷︷ ︸

N×N






q1

...
qN




 =






4 4
. . .

. . .

4 4






︸ ︷︷ ︸

N×(N+1)








f1

...
fN

f1








.

The presented refinement scheme for open and closed
curves is global, i.e., every new point depends on all
points of the polygon to be refined. Interpolation is guar-
anteed since the old points belong to the newly calcu-
lated finer version. Kobbelt, 1996 has shown that these
schemes generate at least C2 curves. Thus, according to
Thm. 1, we can use these schemes for variational mo-
tion design of a C2 motion. The variational subdivision
scheme in the non-uniform parameter setting also leads
to the solution of a linear system of equations.

4.2 Approximating variational subdivision for curves

The previously discussed variational subdivision scheme
is an interpolating one. The given points fi remain un-
changed. However, we can pick some or all of these points
and allow a change as well. For those points which may
be changed, we add a term λi(fi − fn

i )2 to the functional
(22) to be minimized. It may be seen as placing a spring
between the given point fi and the new location fn

i , see
Fig. 4b. The influence of the spring is governed by the
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f
(0)
1

f
(0)
2

f
(0)
3

f
(0)
4f

(0)
5

a b c d

Fig. 5 Uniform approximating variational subdivision for curves. Shown are the input polygon (thin) consisting of 5 points

f
(0)
1 , . . . , f

(0)
5 and the refined polygon (bold) after 4 subdivision steps consisting of 65 points. a λi = 0.01 for i = 1, . . . , Nm. b

λ1 = λNm
= 108, λi = 0.01 for i = 2, . . . , Nm − 1. c λ1 = λ2·2m+1 = λNm

= 108, λ2m+1 = 0.1, λ3·2m+1 = 2.2 and λi = 1 for
all other i. d λi = 108 for i = 1, . . . , Nm; m = 1, 2, 3, 4.

real number λi > 0. The functional to be minimized
is again quadratic, namely a discretization of the func-
tional used for smoothing splines, see e.g. Wahba 1990.
If all fi are allowed to change their position correspond-
ing to a parameter λi > 0, then the functional to be
minimized is given by

F (q1, . . . ,qN−1, f
n
1 , . . . , fn

N ) =
N−1∑

i=1

‖fn
i − 2qi + fn

i+1‖
2

+

N−2∑

i=1

‖qi − 2fn
i+1 + qi+1‖

2 +

N∑

i=1

λi‖fi − fn
i ‖

2.(25)

The minimization of (25) leads to a linear system of
equations Aax = b, where we collect the unknowns in
a 2N − 1 vector x = (q1, . . . ,qN−1, f

n
1 , . . . , fn

N )T . The
(2N − 1) × (2N − 1) symmetric coefficient matrix Aa

has a band structure, is sparse and can be described as
a block matrix, b is a 2N − 1 vector:

Aa =

(
A −B

−BT L

)

, b = (0, . . . , 0
︸ ︷︷ ︸

N−1

, λ1f1, . . . , λNfN )T .

(26)
Non-bold fi denote one coordinate of the vector fi. The
block matrices A and B in (26) are the (N−1)×(N−1)
and (N − 1)×N matrices of (23), and the N ×N block
matrix L is given by

L :=










1 + λ1 1
1 6 + λ2 1

. . .
. . .

. . .

1 6 + λN−1 1
1 1 + λN










. (27)

In the remainder of this section we denote the N0

points of the input polygon by f
(0)
1 , . . . , f

(0)
N0

. After m
subdivision steps we have Nm := (N0 − 1)2m + 1 points

f
(m)
1 , . . . , f

(m)
Nm

, and the input point f
(0)
i corresponds to

the point f
(m)
(i−1)2m+1 of the refined sequence.

Note that, if a spring is weak, i.e., if we let λi →
0, then this point is ‘neglected’ and only the remaining
points are taken into consideration for the shape of the
final curve. Thus, if we let λi → 0 for all i, then the
limit curve will just be a straight line approximating the
input points, see Fig. 5a.

For λi → ∞ the corresponding input point f
(0)
i is

interpolated by the final curve. It is common use in ge-
ometric curve design that the first and last input point
are interpolated by the final curve. Thus the first and the
last spring are assumed to be very strong (λ1, λNm

→ ∞)
in every subdivision step. If all other springs are weak
in every subdivision step (λ2, . . . , λNm−1 → 0), then the
limit curve is a straight line connecting the first and last
input point, see Fig. 5b.

If the intermediate springs λ(i−1)2m+1 corresponding

to the given points f
(0)
i are chosen constant in every sub-

division, we get interpolation of f
(0)
i for λ(i−1)2m+1 → ∞

and approximation of f
(0)
i if 0 < λ(i−1)2m+1 < ∞,

i = 2, . . . , N0 − 1. For all other λj in every subdivision
step we assume 0 < λj < ∞. Fig. 5c shows an example

where f
(0)
1 , f

(0)
3 , f

(0)
5 are interpolated and f

(0)
2 , f

(0)
4 are ap-

proximated by the refined polygon.
If we let λi → ∞ for all i, then we get in the limit an

interpolating curve, see Fig. 5d. In that case we recom-
mend to use the original interpolatory variational sub-
division scheme.

Fig. 6 illustrates an example where we show the first
to fourth subdivision step of the approximating varia-
tional subdivision algorithm for curve design applied to 8

input points. The input points f
(0)
1 , f

(0)
4 , f

(0)
8 are interpo-

lated and the remaining input points f
(0)
i , i = 2, 3, 5, 6, 7

are approximated by the refined polygon with λi = 5.

Remark 4 It is straightforward to extend this approx-
imating scheme to closed polygons and to the non-
uniform case. All presented algorithms can be employed
to input points in R

d.
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f
(0)
1

f
(0)
4

f
(0)
8

a b c d

Fig. 6 Uniform approximating variational subdivision of the input polygon (thin) consisting of 8 points f
(0)
1 , . . . , f

(0)
8 . a-d

show the refined polygon after m = 1, . . . , 4 subdivision steps (bold) with λ1 = λ3·2m+1 = λNm
= 108 and λi = 5 for all other

i.

4.3 Interpolatory and approximating design of rigid
body motions

In this section we employ in several examples the curve
design algorithms of Sect. 4.1 and Sect. 4.2 in the mo-
tion design algorithm presented in Sect. 3. Given are
N input positions of the moving body Σ at time in-
stances ti, i = 1, . . . , N . Since both, the interpolatory
and the approximating variational subdivision algorithm
for curve design are linear schemes, we use the following
strategy (see also Fig. 2): Given a moving body Σ repre-
sented by K feature points f1, . . . , fK , choose 4 affinely
independent points, denoted by f̂1, . . . , f̂4, and compute
in a preprocessing step

– the barycenter f̄ of f1, . . . , fK

– the inertia tensor J of f1, . . . , fK , see (9)
– the 6 special points f̃1, . . . , f̃6 using f̄ and J, see (10)
– the barycentric coordinates of f̃1, . . . , f̃6 with respect

to f̂1, . . . , f̂4.

For the actual motion design employ several steps of the
variational subdivision algorithm to the points f̂1, . . . , f̂4

in their homologous positions f̂1
i , . . . , f̂4

i . This gives the

four feature curves f̂1(t), . . . , f̂4(t). At every time in-

stance t, the four points f̂1(t), . . . , f̂4(t) determine the

affine map αt : f̂k 7→ f̂k(t), k = 1, . . . , 4. The affine im-
ages f̃ j(t) := αt(f̃

j), j = 1, . . . , 6, are then found using
the barycentric coordinates (computed in the prepro-

cessing) with respect to f̂1(t), . . . , f̂4(t). Finally, at every
time instance t we register the point cloud f̃1, . . . , f̃6 to
the point cloud f̃1(t), . . . , f̃6(t) which results in a discrete
sequence of Euclidean positions Σ(t) of the moving body
Σ. After the m-th subdivision step 2m − 1 intermediate
positions have been inserted between each two adjacent
given positions Σi and Σi+1. Given N input positions,
the total number of positions F for the resulting motion
after the m-th subdivision step is given by

– open motion: F = 2m(N − 1) + 1
– closed motion: F = 2mN .

If the time instances ti corresponding to the input po-
sitions Σi are chosen uniformly as ti = i, then, after

the m-th subdivision step, we know a position of the
final motion every 1/2ms. Fig. 7 shows for m = 5 a
C2 uniform open and closed rigid body motion of the
Stanford bunny interpolating 6 given positions. The em-
ployed curve design algorithm is the uniform variational
subdivision scheme in the open (22) and closed (24) case.

If we want to minimize the change in velocity of our
motion we apply the variational subdivision scheme in
the non-uniform parameter setting. The parametrization
we use is a centripetal parametrization (18) derived with
help of the image points si in A12. Fig. 8 presents a non-
uniform C2 rigid body motion of the Utah teapot in-
terpolating 5 input positions. Fig. 9a shows a Euclidean
body motion of a rigid body computed with interpo-
latory variational subdivision in the uniform and non-
uniform parameter setting. The acceleration of these two
motions has been estimated by the arithmetic mean of
the squared acceleration of the feature curves used in the
computation. In Fig. 9b we compare the acceleration of
the two motions and see that the acceleration varies less
in the non-uniform parameter setting.

Using the approximating variational subdivision al-
gorithm for curves introduced in Sect. 4.2, we construct
motions that interpolate or approximate the given input
positions according to the choice of the parameters λi.
Fig. 10 shows four different choices of the smoothing pa-
rameters λi to the same 6 input positions Σi of a robot
gripper arm. If an input position Σi is approximated,
then the corresponding position in the final motion is
denoted by Σ∗

i . Note that the same values of λi are used
for all feature curves.

Remark 5 The present approach at first constructs fea-
ture paths with a variational scheme and then corrects
the resulting affine distortions of the moving body in or-
der to get a rigid body motion. In our geometric model
in A12, we can say that we are computing via variational
subdivision a curve in A12 which interpolates the given
points si on M6. The variational method yields a curve
c′ in A12 and not in M6. Projecting that curve c′ onto
M6 results in a curve c, which is usually not far away
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Σ4Σ5
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a b

Fig. 7 a Open and b closed uniform C2 rigid body motion of the Stanford bunny interpolating 6 input positions (dark).

from c′. It is not the minimizer of the chosen functional
under the constraint that the curve lies on M6. In a re-
cent paper by Pottmann et al. 2002b an active contour
model which is capable of handling the variational design
of c on M6 has been outlined. A closely related subdivi-
sion method which simultaneously inserts new positions
so that the change of velocity at the feature points is
minimized, has been presented by Hofer et al. 2002.

4.4 Numerical results and discussion

All numerical results have been obtained with a proto-
typic Matlab 6.5 implementation on a 1.8GHZ PC with
1GB RAM running under the Windows 2000 operating
system. We have performed 7 subdivision steps of the
motion design algorithm described in Sect. 4.3 to get
the numerical results shown in Table 1.

Table 1 Numerical results for m = 7 subdivision steps of
the motion design algorithm.

Bunny Teapot Gripper Window

N/F 6/768 5/513 6/641 4/385

Ac CUI ONI OUA OUI

Tc 0.16s 0.20s 0.38s 0.06s

Tr 0.55s 0.34s 0.43s 0.29s

We explain the obtained results at hand of the bunny
example: given N = 6 input positions the computation

of 7 subdivision steps in the closed case results in F =
768 final positions, including the 6 input positions, of the
moving body. The curve design algorithms Ac we use are
the variational subdivision schemes, abbreviated in the
following way:

– CUI: Closed Uniform Interpolatory
– ONI: Open Non-uniform Interpolatory
– OUA: Open Uniform Approximating
– OUI: Open Uniform Interpolatory.

In the bunny example CUI has been applied to
f̂k
1 , . . . , f̂k

6 , k = 1, . . . , 4, resulting in a total computation
time Tc for the curve design algorithm of 0.16s. The to-
tal computation time Tr for the registration of Σ to the
computed 6 · 127 = 762 positions is 0.55s. Note that
registration has to be performed only for the computed
intermediate positions in the interpolatory setting, but
for all positions in the approximating case. The motions
corresponding to the numerical results shown in Table 1
are illustrated for m < 7,

– Stanford bunny: Fig. 7b with m = 5,
– Utah teapot: Fig. 8 with m = 3,
– robot gripper arm: Fig. 10c with m = 4
– window: Fig. 11f with m = 6.

If the time instances ti corresponding to the input
positions Σi are chosen uniformly as ti = i, then after 7,
6, 5, and 4 subdivision steps we have 127, 63, 31, and 15
intermediate positions which corresponds to a position
every 1/128 ≈ 0.0078s, 1/64 ≈ 0.0156s, 1/32 ≈ 0.0312s,
and 1/16 = 0.0625s, respectively. To generate a com-
puter animation of the moving body, 5 resp. 4 subdivi-
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Fig. 8 Open non-uniform C2 rigid body motion of the Utah teapot interpolating 5 input positions (blue).
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a b

Fig. 9 a Open C2 rigid body motion in the uniform (dotted) and non-uniform (solid) parameter setting applied to the same
input positions (solid bold). b Average squared acceleration as a function of time for the uniform and non-uniform motion.
The peaks correspond to the input positions Σ2, Σ3, and Σ4, respectively.
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Fig. 10 Some intermediate positions (silver) of a uniform rigid body motion of a robot gripper arm interpolating or
approximating given input positions (blue). Intermediate positions Σ∗

i in light blue correspond to the input positions Σi

that are approximated by the final motion. a λi = 0.001 for all i. b λ1 = λNm
= 108, λi = 0.001 for all other i. c

λ1 = λ3·2m+1 = λNm
= 108, λ1·2m+1 = 0.5, λ2·2m+1 = 1.5, λ4·2m+1 = 0.9, and λi = 1 for all other i. d λi = 108 for all i;

m = 1, 2, 3, 4.

sion steps are sufficient, since these already allow us to
generate 32 resp. 16 frames per second.

All employed curve design algorithms lead to the so-
lution of a linear system of equations. Since in the non-
uniform interpolatory and the uniform approximating
curve case the coefficient matrix of the linear system
is slightly more complicated (but it is still sparse and
has a band structure), the computation takes slightly

longer than in the uniform interpolatory case. Neverthe-
less, even with our prototypic Matlab implementation
our algorithm for uniform or non-uniform, interpolating
or approximating motion design is fast enough for inter-
active design of a rigid body motion.
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Fig. 11 Open C2 rigid body motion of the ‘window’ shown in Fig. 1: a-f show 1 to 6 steps of uniform interpolatory variational
subdivision for motion design applied to 4 input positions Σ1, . . . , Σ4.
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4.5 Local and global shape modifications of the designed
motion

The present approach is well suited for modifications of
the designed motion. This is so since there is a large va-
riety of shape modification techniques for curves which
have been developed in CAGD in the past decades. It
would lead too far to discuss the possibilities in detail.
For example, if we would like to increase tension, then
we may use splines in tension or any other curve de-
sign scheme with tension parameters. The definition of
tension for a motion which is based on a set of feature
paths is appropriate for our purpose. Another example is
motion fairing by employing a curve fairing algorithm.

We would like to add another remark. Here we mainly
discussed a subdivision strategy based on insertion of
new positions, see Fig. 11 for an illustration of the first
to sixth subdivision step of uniform interpolatory vari-
ational motion design applied to the rigid body shown
in Fig. 1. One can combine the presented global vari-
ational algorithms with local subdivision schemes (cf.
Warren, Weimer 2001). This allows the following strat-
egy: Perform a few iterations with the global variational
subdivision algorithm and then switch to a local subdi-
vision scheme in the following steps, which will yield a
good result.

5 Conclusions and future research

We have presented a transfer principle from curve de-
sign algorithms to motion design and proved that the
such generated motion is of the same smoothness as the
employed curve design algorithm. In several examples
we have demonstrated the effectiveness of our algorithm
for the design of a rigid body motion that interpolates
or approximates given input positions. The implemen-
tation of the algorithm is straightforward. Since it is a
transfer principle from curve design algorithms to mo-
tion design, it can be applied with the wide variety of
curve design algorithms that have been developed over
the past decades to generate a wide variety of rigid body
motions in a computationally efficient way.

It is an interesting topic for future research to ex-
tend the presented method to the animation of articu-
lated bodies (kinematic chains of rigid bodies linked with
certain joints). One idea is to add constraints associated
with joints, another method is to animate multiple rigid
bodies and coordinate their relative motions. Another
direction of our current research is the extension of the
present algorithm to the design of smooth rigid body mo-
tions in the presence of obstacles.

We will also investigate splines on manifolds in more
detail. An outline of the idea has recently been given in
Pottmann et al. 2002b, but much more work still needs
to be done. The approach we are taking is a so-called ac-
tive contour model, see Blake, Isard 1998, and relies on

the squared distance function to the manifold M6 in A12.
The singular set of this function has been investigated
by Wallner 2002. We need more work on local quadratic
approximants of the squared distance function of M6

and on the differential geometry of M6 in A12 since this
governs the active contour models we are dealing with.
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