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Abstract

The most important guiding principle in computational methods for
freeform architecture is the balance between cost efficiency on the
one hand, and adherence to the design intent on the other. Key is-
sues are the simplicity of supporting and connecting elements as
well as repetition of costly parts. This paper proposes so-called cir-
cular arc structures as a means to faithfully realize freeform designs
without giving up smooth appearance. In contrast to non-smooth
meshes with straight edges where geometric complexity is concen-
trated in the nodes, we stay with smooth surfaces and rather dis-
tribute complexity in a uniform way by allowing edges in the shape
of circular arcs. We are able to achieve the simplest possible shape
of nodes without interfering with known panel optimization algo-
rithms. We study remarkable special cases of circular arc structures
which possess simple supporting elements or repetitive edges, we
present the first global approximation method for principal patches,
and we show an extension to volumetric structures for truly three-
dimensional designs.
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1 Introduction

Our work is motivated by the geometric challenges posed by free-
form architecture, and, in particular, by the problem of rational-
ization of a freeform design. This means its decomposition into
smaller parts, thereby meeting two competing objectives: feasibil-
ity, and consistency with the designer’s intentions. Depending on
what constitutes the design, there have been different approaches to
this problem which have led to different kinds of specific geomet-
ric and computational questions. Mostly these questions involve
replacing smooth surfaces (possibly with an additional curve net-
work on them) by other structures like meshes with special prop-
erties. The guiding thought in all considerations is the efficient
manufacturing of the surface parts and their respective necessary
supporting/connecting elements. Both simple geometry and repeti-
tion of elements contribute to this goal of efficiency.

Figure 1: Architectural freeform designs based on circular arc
structures exhibit smooth skin, congruent node elements, and sim-
ple shapes of beams. In special cases like for the cyclidic CAS
shown here, they also admit offsets at constant distance.

Much work deals with decomposing a freeform surface design into
flat panels with straight beams between them. However, this pro-
cess of approximating a smooth surface by a polyhedral surface
inevitably shifts complexity to the nodes (vertices): In general no
two nodes are congruent and, which is worse, a typical node ex-
hibits torsion, i.e., is a truly spatial object whose manufacturing
is challenging (see Figure 2). It is possible to optimize nodes to
make them torsion-free, which simplifies production and enhances
the aesthetic appearance (cf. [Liu et al. 2006; Pottmann et al. 2007]
for quad meshes and [Schiftner et al. 2009] for hexagonal meshes).

Often the faceted appearance of planar panels is not intended, and
as a natural next step, rationalization with single-curved panels has
been proposed by [Pottmann et al. 2008]. This method leads to a
surface which is smooth in one direction, but non-smooth in the
other. Setting aside the cladding of surfaces by bendable panels
(e.g. made of wood and useful for interior design, cf. [Pottmann
et al. 2010]), the faithful reproduction of a smooth outer skin ne-
cessitates very costly manufacturing of double curved panels.

Figure 2: Node complexity. Man-
ufacturing the connecting element
(yellow) via plasma cutting requires
much effort if the node has ‘torsion’,
because of its truly spatial shape.

This task can be rendered feasible by employing repetitive ele-
ments which recently have become a focus of study: Eigensatz
et al. [2010] show how a given smooth surface with given panel
boundaries may be decomposed into panels whose production re-
quires as few costly molds as possible, such that all changes to the
original design are within prescribed tolerances. Thus not the pan-
els themselves are repeated, but the auxiliary elements needed for
their manufacturing. During this panel optimization the given curve
network remains unchanged. The design of curve networks is not
addressed by [Eigensatz et al. 2010].

Both [Singh and Schaefer 2010] and [Fu et al. 2010] derive struc-
tures which aim at repetitive (i.e., congruent) panels. These panels
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Figure 3: Circular arc structures. (a) Quadrilateral CAS with an edge angle of 90◦ covering an architectural design. (b) Hexagonal CAS
(edge angle 120◦) covering the top of the Lilium Tower, Warszaw, by Zaha Hadid Architects. (c) Triangular CAS (edge angle 60◦) on the
Eindhoven “Blob” by M. Fuksas.

are triangular or quadrilateral, with the quadrilaterals not necessar-
ily planar. These papers show that repetitive panels impose limita-
tions: in the case of triangles, the aesthetic quality is reduced if the
number of repetitions increases. Fu et al. [2010] take fairness into
account, but in general significantly change the original geometry
to reach their goal.

Circular arc structures. This paper takes up the idea of repet-
itivity and applies it to panel boundaries and nodes. Our guiding
principle is: if we are to have a smooth surface and therefore can-
not avoid double-curved panels anyway, we are still very interested
in other significant contributions to manufacturing efficiency which
do not interfere with the manufacturing of panels.

We propose the class of circular arc structures which are built from
circular arcs meeting smoothly at congruent nodes. In particular
we think of two-dimensional structures of quad mesh or hex mesh
combinatorics and circular arcs as edges, but we also consider trian-
gular and three-dimensional combinatorics. This way we enhance
the state of the art concerning the realization of architectural free-
form designs:

(i) We provide structures with smooth appearance, congruent
nodes, and the simplest possible elements for the curved edges.

(ii) Our cost-effective construction of smooth curve networks
and supporting elements does not interfere with an optimized skin
panelization according to [Eigensatz et al. 2010].

Previous work. Work concerned with rationalization of architec-
tural freeform designs has been reviewed in the introduction above.
Our work specifically deals with structures composed of circular
arcs, which in the univariate case are well-studied in Computer-
Aided Geometric Design. There are many contributions to curves
made of circular arcs (arc splines). See e.g. [Leopoldseder 2001]
for space curves and numerous papers by D. Meek and D. Walton
for planar curves (cf. e.g. [Walton and Meek 1995]). Approxima-
tion with arc splines has been addressed by [Song et al. 2009].

Special arc structures can have panels which are part of a cyclide.
Introduced to Geometric Modeling by [Martin et al. 1986], they
play a role e.g. in the construction of blending surfaces. The most
general surfaces carrying circles which seem to have been consid-
ered for geometric modeling are the Dupin cyclides (whose princi-
pal curves are circles), and to a lesser extent some of their general-
izations. We do not give detailed references but refer to the survey
paper [Degen 2002] instead. We are not aware of any previous work
on general discrete structures with circular arcs as edges.

Our work constitutes a new type of discretization of surfaces, with
obvious relations to discrete differential geometry (see e.g. the
monograph [Bobenko and Suris 2008]). We employ a connection
between circular and conical meshes on the one hand, and smooth
surfaces consisting of cyclidic panels on the other hand, which has

been observed already by E. Huhnen-Venedey in his thesis [2007],
later published as [Bobenko and Huhnen-Venedey 2011].

The geometric structures considered in this paper belong to the con-
formal geometry of surfaces [Gu and Yau 2008]. In their construc-
tion we also make use of conformal mappings (e.g. the method of
[Zeng et al. 2009]).

Contributions of the present paper. Our contributions in detail
are the following:

• We introduce circular arc structures (CAS) which have circu-
lar arcs as basic elements and which possess congruent nodes.

• We show how freeform surfaces may be rationalized (for the
purposes of architectural design), using circular arc structures.
This rationalization preserves surface smoothness, and ex-
hibits properties which are key for efficient manufacturing:
planar and simple edge elements; repetition in the nodes.

• We consider repetitions not only in the nodes, but also in the
radii of circular edges. This in particular has applications for
freeform designs realized in concrete, and is furthermore rel-
evant to 5-axis CNC machining.

• We consider the subclass of cyclidic structures, thus provid-
ing the first real solution of freeform modeling with Dupin
cyclides. Cyclidic structures lead to derived structures which
can be very useful for freeform architecture, e.g. for support-
ing elements.

• We extend our constructions to fully three-dimensional struc-
tures (cyclidic cells, variable distance offsets, and others).

• These constructions have nice relations to discrete differential
geometry and to the sphere geometries: e.g. they provide a
discretization of orthogonal curve networks on surfaces.

2 Circular arc structures

2.1 Definition and computation of CAS

DEFINITION 1. A circular arc structure consists of 2D mesh com-
binatorics (V,E), where edges are realized as circular arcs, such
that in each vertex the adjacent arcs touch a common tangent plane.
We require congruence of interior vertices, and we consider the fol-
lowing three cases:

– Hexagonal CAS have valence 3 vertices. Angles between
edges equal 120 degrees;

– Quadrilateral CAS have valence 4 vertices. Angles between
edges have values α, π − α, α, π − α, if one walks around a
vertex;

– Triangular CAS have valence 6 vertices. Angles between
edges equal 60 degrees.

For boundary vertices appropriately modified conditions are im-
posed. The three cases are illustrated by Figure 3. A quadrilateral



CAS with an edge angle of 60 degrees is shown in Figure 5. For
quadrilateral CAS we only really consider the case that at each ver-
tex the two pairs of opposite edges are joined smoothly. Thus we
have smooth flow lines of edges (the definition would allow rather
irregular structures). Also in the triangular and hexagonal cases we
could allow different angles, but for aesthetic reasons we stick to
60◦ and 120◦.

The notion of ‘arc’ employed here includes the limit case of infi-
nite radius, i.e., straight line segments. Most images show arcs as
pipes with circular cross-section, which incidentally is also a way
of realization in practice.

Data structure. A circular arc structure is uniquely determined
by the combinatorics (V,E), the position of each vertex v ∈ V ,
and by the collection of edge vectors avw (see Figure 4): avw is
the unit vector attached to the vertex v which is tangent to the arc
_
vw. These variables are not independent, but for purposes of opti-
mization are treated as if they were – the constraints which apply
are built into the target functional. This target functional is a rather
straightforward collection of nonlinear least squares terms, which
turns out to be sufficient for our purposes. In the following we
describe the setup, numerical methods employed in optimization,
and how to initialize optimization. The computation of circular arc
structures with special properties which are introduced later is dis-
cussed in the respective subsections.

v

u

w
nv

nu

awv

avw
Figure 4: Quadrilateral CAS
with vertices u, v, w, nor-
mal vectors nu, . . . (red), and
edge vectors avw, . . . (blue).

Setting up a target functional. For optimization we employ a
composite target functional which has the general form

F = λ1fprox + λ2fpl + λ3fcons + λ4f∆ + λ5fang, (1)

where λ1, λ2 . . . are nonnegative weights. The individual contri-
butions to this target functional are as follows.

The term fprox penalizes deviation of vertices from a reference sur-
face Φ, and likewise deviation of the boundary vertices from the
reference surface’s boundary. We use the symbol π(v) for the point
in Φ which is closest to v, and similar π∂(v) for the closest point
to v in the reference surface’s boundary ∂Φ. The symbols Tπ(v),
Tπ∂(v) denote the tangent plane or tangent, respectively. We define

fprox =
X

v∈V
dist(v, Tπ(v))

2 +
X

v∈V∂

dist(v, Tπ∂(v))
2.

As for smoothness, the term fpl ensures that edges sharing a vertex
have a common tangent plane. This is expressed by linear depen-
dence of the initial tangent vectors of such edges:

fpl =
X

v∈V

X
_
vwi∈E

det(avwi−1 , avwi , avwi+1)2.

For geometric consistency we must deal with the fact that the vec-
tors avw, awv , serving as end tangent vectors of an arc, are not
independent. There exists a circular arc connecting vertices v, w
which fits these vectors if and only if the entire configuration of
vertices and edge vectors is mirror-symmetric:

ρvw(avw) = awv, where

ρvw(x) = x− 2
D v − w
‖v − w‖ , x

E v − w
‖v − w‖ .

Accordingly we define a contribution to the target functional, which
expresses this relation between vectors avw, awv , by

fcons =
X

_
vw∈E

‖ρvw(avw)− awv‖2.
u

v

suv

For regularization it is not enough to employ
second order differences of vertices; in order to
punish a wiggly sequence of arcs we use auxil-
iary points suv which are defined as the intersection points of end
tangents of the arc _

uv. We let

f∆ =
X

smooth union
_
uv, _

vw

‖u− 2v + w‖2 +
X

smooth union
_
uv, _

vw, _
wz

‖suv − 2svw + swz‖2. (2)

In a hexagonal CAS there are no smoothly joining edges, so the
contribution of f∆ is zero. We use the graph LaplacianX

v∈V

‚‚v − 1

deg(v)

X
u:

_
uv∈E

u
‚‚2

for regularization instead. Finally we deal with the various con-
straints on angles between edges. With the temporary notation
φuv,uw for the desired angle between edges _

uv and _
uw we let

fang =
X

angles φuv,uw

`
〈auv, auw〉 − cosφuv,uw

´2
.

The sum is taken over all edge pairs where an angle is prescribed.

Numerical optimization. To compute a minimizer of (1) we
employ a classical Gauss-Newton method. All required first or-
der derivatives are calculated exactly (i.e., are not approximated).
The linear systems to be solved in each round of iteration are
sparse, since the single contributions to (1) involve only local op-
erations defined in terms of small vertex neighborhoods. We em-
ploy Levenberg-Marquardt regularization [Kelley 1999], so the oc-
curring matrices are positive definite, and we can employ sparse
Cholesky factorization, using the TAUCS library [Toledo 2003]. In
order to enforce the geometric constraints, the weights of terms fpl,
fcons, fang, are increased in each round of iteration.

−−−−−−−−−−−−→
conformal mapping

and optimization

Figure 5: Sketch of initialization via
conformal mapping. Here a quadri-
lateral CAS with edge angle 60◦ cov-
ers a 3D scan of a piece of cloth.

Initialization. Most components of our target functional (1) are
highly nonlinear and there is no guarantee that standard numerical
methods like Gauss-Newton converge. Fortunately we are able to
start our optimization from a configuration which is already very
close to the solution. This is because any CAS on a reference sur-
face Φ can be seen as a discrete version of a curve network with
prescribed angles of intersection. We therefore construct a mesh in
a planar domain with the desired intersection angles between edges
and use a conformal mapping to transfer it to Φ. Optimization is
initialized from the resulting curve network in Φ (see Figure 5). We
tried various types of conformal mapping from a planar domain to



surfaces. One is the method of [Zeng et al. 2009], which has been
used for Figures 3c and 8. Another method is the as rigid-as-pos-
sible mapping of [Alexa et al. 2000], which is used for Figure 5,
because in this example the reference surface is isometric to a pla-
nar domain.

Another method of initialization, which from the abstract view-
point contains a discrete-conformal mapping, is to approximate Φ
by a mesh which enjoys the circle-packing property according to
[Schiftner et al. 2009]. Such a mesh can be directly used to initial-
ize optimization of a triangular CAS; a hex mesh dual to it can be
used to initialize optimization of a hexagonal CAS (this has been
done for Figure 3b). Just to mention yet another way: Figure 3a has
been initialized from the diagonals of a conical mesh whose faces
happened to be roughly square.

There are as many ways to initialize a CAS as there are ways to find
curve networks on surfaces which have the prescribed intersection
angles. For a quadrilateral CAS, which is initialized by two families
of curves, it is possible to choose the first family arbitrarily and find
the second one by the condition of constant intersection angle (this
method has been used for Figure 6, supported by the conformal
mapping of [Zeng et al. 2009]). Later we discuss CAS with special
properties whose initialization is different.

In any case the decision on how many CAS mesh elements to use in
each direction has to be made in the initialization phase. A typical
constraint which arises in applications is maximum panel size.

Figure 6: Quadrilateral CAS
with edge angle 90◦ which
covers the design by Zaha
Hadid Architects for the Na-
tional Holding Headquarters,
Abu Dhabi. This CAS exhibits
one family of ‘horizontal’ flow
lines, which implies either T-
junctions or a very uneven dis-
tribution of the second family
of flow lines (we decided for
the former). Note that in the
‘steep’ part, where no T-junc-
tions occur, load-bearing ele-
ments can follow the CAS.

2.2 Generalizations

Definition 1 is sometimes too restrictive. It is important in applica-
tions to extend the notion of CAS to slightly more general situations
such as combinatorial singularities (i.e., vertices which do not have
the same valence as the majority of other vertices, cf. Figure 6), or
other vertices where the edge angle condition is either modified or
is absent. They are otherwise treated in the same way as other ver-
tices and are easily incorporated into our optimization framework.
Another important generalization is quad meshes with T-junctions.
Those are usually avoided for load-bearing elements because of the
high bending stresses they cause. For pure panelization, however,
T-junctions make perfect sense, see Figure 6.

As regards computation, Figure 7 shows such a mesh together with
its geometric data. We still require that each face is bounded by
four circular arcs. This leads to the situation that we have circular
arcs (like _

vw in Figure 7) which contain certain smaller edges (like
_
uu′ in Figure 7). In our optimization we must take care of the fact

that the edge vectors of the edge _
uu′ are actually taken from the

bigger arc _
vw, which means

auu′ = ρwu(awv), au′u = ρvu′(avw).

An appropriate sum of squares, which expresses this condition for
every sub-edge adjacent to a T vertex is added to the objective func-
tion (1).

v

w

u

u′

avw

awv

auu′

au′u

Figure 7: CAS can have T-junc-
tions. Here T-vertices u, u′ sit on
a circular edge _

vw. Also shown
are normal vectors (red) and edge
vectors (blue). The edge _

uu′ is
part of the arc _

vw.

2.3 Geometry and curvatures of CAS

Recall the geometric data defining a circular arc structure (Fig-
ure 4): Each vertex v of a CAS is equipped with a unit normal
vector nv . For each edge _

vw, the unit vectors avw, awv are respec-
tively attached to vertices v, w and serve as initial tangent vectors
of that curved edge.

It is not difficult to obtain a smooth surface by filling each quadri-
lateral face by an appropriate surface patch (for methods to do this,
see e.g. [Farin et al. 2002]). Each such surface has the same normal
vectors as the CAS. However, there is in general no curvature-con-
tinuous surface which contains a given CAS if vertex valences are
4 or higher. This is because the curvatures of the arcs adjacent to a
vertex do not match. For a hexagonal CAS, where only three arcs
meet in a vertex, this is different and we can actually find, for each
vertex, not only a normal vector but a second fundamental form
(i.e., a curvature element) which matches the three arcs emanating
from this vertex. This is because in 2D any symmetric quadratic
form is uniquely determined by its values at three linearly indepen-
dent vectors.

Hv = 0.2 Hv = 0.8

Figure 8: Soap films under pressure. A sequence of CAS was
produced by first covering a minimal surface by a hexagonal CAS
which is optimized for vanishing mean curvature (Hv = const. =
0). Subsequently we recursively initialize the computation of a
hexagonal CAS with mean curvature Hv = i

10
, i = 1, 2, . . . by

a hexagonal CAS with mean curvature i−1
10

. We require proximity
to the given boundary, but not to any reference surface.

Mean curvature. It turns out that we can find a nice formula for
the mean curvature which has an interesting interpretation in Möbi-
us geometry. This is the content of the following paragraphs which
have no direct relation to applications, but which are interesting
from the viewpoint of discrete differential geometry. We start with
a well known lemma.



LEMMA 2. Consider a regularly arranged collection of m direc-
tions tangent to aC2 surface in a common point. Using coordinates
w.r.t. the principal frame, these directions are indicated by vectors`

cosψj

sinψj

´
, ψj = φ+ j 2π

m
(j = 0, . . . ,m− 1).

Each direction having normal curvature κj,n, the mean curvature
of the surface equals 1

m
(κ1,n + · · ·+ κm,n), provided m ≥ 3.

Proof. Elementary surface theory implies that normal curvatures
can be expressed in terms of the principal curvatures κ1, κ2 as
κj,n = κ1 cos2 ψj + κ2 sin2 ψj [do Carmo 1976]. Observing
cos2 α = 1

2
(1 + cos 2α), we get 1

m

Pm
j=1 κj,n = κ1+κ2

2
.

LEMMA 3. For any curvature-continuous surface containing a
hexagonal CAS, the value of mean curvature in the vertex v equals

Hv =
1

3

X
e=

_
vw∈E

κn(e), where κn(
_
vw) = 2

D w − v
‖w − v‖2 , nv

E
.

Here nv is the unit normal vector in the vertex v. The symbol κn(e)
means normal curvature of the edge e.

Proof. We employ coordinates w.r.t. a principal frame attached to
the vertex v, with the normal vector nv as the third axis. Meusnier’s
theorem implies that the osculating circle of any curve in a sur-
face lies in the sphere with radius 1/κn and center (0, 0, 1/κn),
where κn is the curve’s normal curvature [do Carmo 1976]. We
now use the following geometric trick: The inversion mapping
ι(x) = x/‖x‖2 maps this sphere to the plane with equation
x3 = κn/2. Since the arc _

vw coincides with its own osculating
circle, we can read off its normal curvature from the third coordi-
nate of ι(w). This immediately yields the expression for the normal
curvature, and Lemma 2 concludes the proof.

Even for a quadrilateral CAS, where curvatures are not compatible
we may use the procedure suggested by Lemmas 2 and 3 to define
a mean curvature.

DEFINITION 4. If two edges _
uv, _

vw join smoothly in the vertex
v, having normal curvatures κ′, κ′′ there, we assign the average
normal curvature 1

2
(κ′+κ′′) to this pair. In a right-angled CAS the

arithmetic mean of the two occurring average curvatures is defined
to be the mean curvature of the CAS – resulting in the formula

Hv =
1

deg(v)

X
e=

_
vw∈E

κn(e).

Optimization involving curvatures. If we are to optimize a
hexagonal CAS such that the mean curvature assumes a given value
(see Figure 8), we create a sum of squares from Lemma 3 which
penalizes deviation from this value and add it to the target function
(1). Unfortunately this approach is capable only of small optimiza-
tion tasks like the one shown by Figure 8, where we successively
increment the value of Hv . It is not possible to solve more difficult
problems this way, such as the boundary value problem for surfaces
with constant mean curvature. It turns out that optimization needs
an additional regularization term. We used

w
v u

f∆,hex =
X

(u,v,w)
‖2(u− v)− (v − w)‖2,

where summation is over all triples u, v, w
which are arranged as the figure shows.

Möbius-geometric properties of CAS. Circular arc structures
are entities of Möbius geometry. This is because Möbius transfor-
mations preserve smoothness, angles, and the property of being a
circular arc. It turns out that even the average normal curvature
κ = (κ′ + κ′′)/2 according to Definition 4 is a Möbius invari-
ant, if it is encoded as the “Meusnier sphere” of radius 1/κ (cf. the
proof of Lemma 3). In the same sense the mean curvature, found
by a further round of averaging, is a Möbius invariant if geomet-
rically encoded as a sphere. This is an instance of a well known
Möbius-invariant construction with spheres, based on the fact that
three spheres which are in contact and which have radii 1/κ′, 1/κ′′,
1/(κ

′+κ′′

2
) together with their common point of contact (with ra-

dius 0), constitute a harmonic quadruple [Hertrich-Jeromin 2003].

2.4 Supporting elements

In building construction statics is essential, and freeform designs
require special care in this area. Even with straight load-bearing el-
ements, both the necessary analysis and the assembly under partial
load have to be done with care. The manufacturing of curved load-
bearing elements is more difficult and costly than making straight
ones, and it is therefore very important to know which kinds of sim-
ple shapes of support elements can be used. A closely related matter
is the manner of connection of support elements in the vertices: We
want to avoid torsion in the node (cf. Figure 2), which would entail
the manufacturing of truly 3D node elements.

Symmetric edges. We show that by insisting on ‘symmetric’
edges we can give a solution to this problem. We define:

DEFINITION 5. An edge _
vw is symmetric if and only if reflection

in the bisector plane of v, w maps the respective normal vectors
nv, nw onto each other:

ρvw(nv) = nw, ρvw(nw) = nv. (3)

v

w

_
vw

awv

avw

nv

nw

Figure 9: Symmetric edges (like _
vw

in this picture) can be supported by a
piece of right circular cone which is
shown in red.

Figure 10: Avoiding node torsion with symmet-
ric edges. Conical support elements intersect in
a node axis spanned by the surface normal.

Such a situation is illustrated in Figure 9. The condition of symme-
try of an edge _

vw means that the normals in vertices v, w intersect
each other, and that there is a right circular cone containing the arc
_
vw as well as both normals at the endpoints v, w (this manner of
speaking includes the limit case that normals are parallel and the
cone becomes a right circular cylinder). That cone serves as a sup-
port element of simple shape. Moreover, if such supports meet in a
vertex v, they are going to intersect in a common axis spanned by
the normal vector nv (see Figure 10). An actual construction which
is based on the existence of symmetric edges and conical support
elements is shown in Figure 11.

Remark. The cone of normals which is associated with a symmet-
ric edge defines a normal vector n in every point of that edge. As
we proceed along a flow line, having a unit tangent vector t at each
moment, the motion of the orthonormal frame (t, n, t × n) is the
natural or rotation-minimizing one [Bishop 1975], because the sur-
face traced out by the vector n is developable.



Figure 11: Supporting elements in the shape of cones along sym-
metric edges form part of this construction detail. This CAS is spe-
cial and has an accompanying planar quad mesh (cf. Section 4)
used for the mounting of glass panels. Construction and rendering
courtesy M. Reis.

Optimization towards symmetric edges. We add condition (3)
to our objective function (1) by adding the term

fsymm =
X

symmetric edges _
vw
‖ρvw(nv)− nw‖2.

However, if vertices v, w are contained in a curvature-continuous
surface, and their respective normals intersect, then the vector v −
w approximately follows a direction of principal curvature. This
is one of the guiding principles in discretizing principal curvature
lines, see e.g. [Sauer 1970] and [Liu et al. 2006]. We conclude:
in order to approximate a reference surface Φ with a CAS with a
family of symmetric edges, we must initialize optimization such
that these edges follow Φ’s principal curvature lines. Figure 12
shows an example where this rule has not been observed.

3 CAS with repetitive elements

Repetition is a key ingredient in all considerations of manufacturing
efficiency. Circular arc structures as given by Definition 1 already
have a repetitive feature, namely congruence of nodes. In the in-
terest of cost reduction we study further repetitions. It turns out
that the radii of edges are both easy to handle computationally and
important for manufacturing. This leads to the following definition.

DEFINITION 6. A quadrilateral CAS is radius-repetitive along a
flow line, if the radius of its edges is constant. It is transversely
radius-repetitive for a pair of neighbouring ‘parallel’ flow lines, if
the edges which connect these flow lines have constant radius.

Application: double-curved concrete. The repetitivity proper-
ties mentioned by Definition 6 contribute to simpler manufactur-
ing of edges. There is a particular application where it is hugely
beneficial to have the reference surface densely covered by arcs
of constant radius, namely the making of double-curved surfaces
in concrete. Figure 13 shows an example of this. A transverse-
repetitive CAS with a few dominant smooth flow lines and many

Zoom view:

Figure 12: Symmetric edges. A CAS with edge angle 60◦ (yellow, at
left, part of Figure 5) is optimized such that one family of flow lines
becomes symmetric. The result is shown at right, with symmetric
edges in blue. Since these flow lines did not follow the original
principal curvature lines, optimization entails a significant shape
change.

transverse edges of constant radius is optimized with relaxed an-
gle constraints (i.e., a low weight for all angle terms involving the
transverse edges). The many edges of constant radius now serve as
curved supports for the pouring of concrete.

Computational issues: Initialization. The condition of certain
edges having equal radii is easily incorporated into our objective
function (1). The main computational problem here is initializa-
tion. We show a method based on level sets which in itself is an op-
timization problem. The first repetitivity property implies that the
flow lines are arc splines of constant radius, i.e., curves of constant
curvature. We therefore have to initialize optimization with curves
of constant curvature which lie in the reference surface. A CAS
with the transverse repetitivity property (constant radii across flow
lines) is best initialized from a family of curves where the normal
curvature across that curve does not change as we proceed along
the curve.

For computational purposes the reference surface is represented as
a triangle mesh, and a real-valued function φ is defined by its values
on the vertices. We wish to find φ such that its level sets enjoy one
of the curvature properties mentioned above. We follow [Pottmann
et al. 2010] and express the normal curvature κn, the geodesic cur-
vature κg , and the total curvature κ of level sets by

κn =
II(J∇φ)

‖∇φ‖2 , κg = div
“ ∇φ
‖∇φ‖

”
, κ2 = κ2

n + κ2
g.

Here II is the second fundamental form of the reference surface, and
J is rotation by 90 degrees. The normal curvature across a level set
is given by the expression

κacross
n = II(∇φ)/‖∇φ‖2.

For the example of Figure 13, the function φ was constrained to
assume prescribed values in 2 vertices, and optimized such that the
L2 norm of κcross

n − κ0 is minimal (up to regularization; for more

Figure 13: A surface densely covered by arcs of constant
radius which stem from a transverse-repetitive CAS can
be made in concrete, with wooden supports along the
transverse edges (design surface by Mario Bellini Archi-
tects and Rudy Ricciotti, for the Museum of Islamic Arts,
in the Louvre, Paris; realized in steel/glass).



Figure 14: CAS which is radius-repetitive along flow lines (blue).

details of this optimization procedure we refer to [Pottmann et al.
2010]). The value κ0 has been chosen interactively such that we get
a suitable result. Note that in this special example the value κacross

n

is not only constant along flow lines, but constant for the entire
surface. The level sets of φ then yield one family of curves which is
needed for initializing CAS optimization. Other desired curvature
properties lead to similar optimization procedures (cf. Figure 14).

If necessary the second family can also be found as level sets of a
function ψ: The condition of constant intersection angle α reads
〈∇φ,∇ψ〉 = cosα · ‖∇φ‖ · ‖∇ψ‖. For the example in Figure 13,
however, the ‘transverse’ family has been found as orthogonal tra-
jectories of the first family which amounts to solving a first order
ODE. It would be possible to use ODEs to obtain curves with the
above-mentioned curvature properties, but this is rather unstable.

Computational issues: Optimization. Once initialization is
done, we must incorporate the desired radius constraints into our
optimization. Suppose all edges contained in some set E1 ⊆ E are
to have the same radius r1, and similarly for edge sets E2, . . . , Ek.
We introduce the inverse radii as new variables and augment our
target functional by

frad =
Xk

i=1

X
_
uv∈Ei

“ 1

ri
− 2
‖auv × (u− v)‖
‖auv‖ · ‖u− v‖2

”2

.

It is easy to see that the expression in brackets vanishes if and only
if the edge _

uv has radius ri.

Application: CNC machining. Covering a freeform surface by
circular arcs of constant radius is highly relevant for 5-axis CNC
machining of such surfaces as the arcs directly correspond to the
position of a flat-endmill. This application geometrically amounts
to finding a transverse-repetitive CAS, with a few additional con-
siderations specific to milling. We do not go into details.

4 Cyclidic structures

Dupin cyclides. The Dupin cyclides are an interesting class of
surfaces which have sufficiently many degrees of freedom to make
them useful for geometric design. This class is generated by ap-
plying Möbius transformations to tori (cf. Figure 15), and includes
the cylinders and right circular cones. By definition, it also in-
cludes the limit cases of spheres and planes. Introduced to geomet-
ric modeling by [Martin et al. 1986] and studied in many papers,
they have recently occurred in a discrete differential geometry con-
text: [Bobenko and Huhnen-Venedey 2011] show how a circular
quad mesh may be converted into a smooth surface consisting of
cyclide patches. That paper also contains proofs of the following
facts about cyclides (part of which are well known), and which are
relevant for our purposes.

Figure 15: Dupin cyclides. Three different shapes of Dupin cy-
clides which by applying a Möbius transform can be mapped to a
torus, a cylinder, or a cone. Left: The normals along a line of cur-
vature lie in a right circular cone (two cones are shown in red).

(a) The rectangular network of principal curvature lines consists
of circles (illustrated in Figure 15).

(b) The normals along such a principal circle constitute a right
circular cone, including the limit cases of cylinder and plane
(see Figure 15).

(c) The vertices of a principal quadrilateral, whose edges are
principal circles, possess a circumcircle (see Figure 16).

(d) A quadrilateral with circular edges is a principal quadrilateral
of a cyclide, if and only if edges intersect orthogonally and
each edge is symmetric in the sense of Definition 5.

(e) For each boundary edge of a cyclidic principal patch there is
a right circular cone which is tangent to the patch along that
edge (see Figure 20).

u

v

_
uv

auv

avu

nu

nv

Figure 16: A cyclidic patch. The
vertices have a circumcircle, and
all normal vectors are symmetric
w.r.t. reflections: nu = ρuv(nv).

Cyclidic CAS. Properties (b) and (e) above imply that the union
of two cyclidic principal patches with a common boundary arc and
common normal vectors in its endpoints actually is a single smooth
surface. Together with Property (d), this shows the following:

PROPOSITION 7. A quadrilateral CAS with an edge angle of 90
degrees and symmetric edges is converted into a smooth surface
by filling each face with its corresponding principal cyclidic patch.
Moreover, the vertices of this CAS constitute a circular mesh.

A freeform design whose skin is modelled as a cyclidic CAS pos-
sesses nicely shaped associated support elements: see Section 2.4
for the right circular cones orthogonal to the surface along edges,
and Figure 11 for a construction detail based on this fact.

Figure 17: Cyclidic
CAS which follows
the principal curva-
ture lines of a sur-
face Φ. Optimiza-
tion has been ini-
tialized from a cir-
cular mesh which
approximates Φ.



Figure 18: Cyclidic CAS and tangentially circumscribed
developable strip model. Left: Apart from isolated sin-
gularities, a freeform design is covered by principal
patches derived from a cyclidic CAS. Right: Using tan-
gent cones of cyclidic patches we obtain smooth devel-
opable strips consisting of right circular cones (the same
cyclidic CAS is used in Figures 1 and 24, where the holes
have been closed by non-cyclidic patches).

Computational issues. If a CAS with symmetric edges is to
cover a reference surface Φ we must let the flow lines follow the
principal curvature lines (cf. our previous remarks in Section 2.4).
If all edges are symmetric, the CAS itself is a discrete version of
the network of principal curvature lines, and we may initialize CAS
optimization from any other discrete version of the same geometric
entity. In particular a circular mesh or a conical approximating Φ
serves this purpose [Liu et al. 2006; Bobenko and Suris 2008]. This
is how Figures 17 and 18 have been produced.

Remark. The cyclidic CAS as a geometric object is essentially fully
discussed by [Huhnen-Venedey 2007] and [Bobenko and Huhnen-
Venedey 2011]. There it is also shown that taking the vertices
from a circular quad mesh and choosing two edge vectors avu,
avw uniquely determines a cyclidic CAS. The contribution of the
present paper is to solve the approximation problem and to identify
applications in freeform architecture.

Offsets and Lie geometry. It is well known that the offset at
constant distance of a cyclidic patch is again a cyclidic patch, so
the offsetting operation of cyclidic CAS is well defined. The con-
struction details of Figures 1, 11, and 19 are based on this fact.

The above-mentioned geometric result about offsetting is a spe-
cial case of a more general invariance property: Dupin cyclides
are objects of Lie geometry, if they are interpreted as a set of ori-
ented spheres which are in contact with the oriented surface. Any
contact-preserving transformation in sphere-space maps cyclides to
cyclides [Cecil 1992]. This is even true for cyclidic CAS, which
follows from [Bobenko and Huhnen-Venedey 2011]. Thus cyclidic
CAS are objects of Lie geometry.

Figure 19: Combining smooth and polyhedral elements. This con-
struction is based on 3 offset layers of a cyclidic CAS and exhibits
conical support elements. The boundary vertices of any cyclidic
patch are co-planar, which is exploited for the mounting of planar
glass panels (courtesy M. Reis).

Developable strip models circumscribed to cyclidic CAS. A
cyclidic patch possesses a right circular cone which is tangent to
the patch along a boundary edge (this includes the limit case of
cylinders and planes; see Property (e) above and Figure 20).

By joining the tangent cones of all edges of a smooth flow line we
get a smooth developable surface. Doing this for an entire family of
flow lines yields a semidiscrete surface – a developable strip model
in the sense of [Pottmann et al. 2008], see Figure 18:

PROPOSITION 8. A cyclidic CAS can be converted into a devel-
opable strip model, with each smooth developable being a union of
right circular cones tangent to the cyclidic surface, and such that
the common boundary of neighbouring strips consists of conics.

Proof. Let us recap the well known rational Bézier representation
of cyclidic patches. We use the symbol Bki (t) =

`
k
i

´
(1 − t)k−iti

(0 ≤ i ≤ k) for the degree k Bernstein polynomials. With control
points bij and weights wij , a rational degree (m,n) Bézier surface

reads f(s, t) =
P

i,j wijbijB
m
i (s)Bn

j (t)P
i,j wijB

m
i (s)Bn

j (t)
, where i ∈ {0, . . . ,m},

j ∈ {0, . . . , n}, and s, t run in the inveral [0, 1]. Cyclidic patches
have degree (2, 2), with control points according to Figure 20. For
the weights, see e.g. [Pratt 1995]. The control mesh with vertices
bij has planar faces, with b11 as the intersection point of tangent
planes in the boundary vertices b00, b20, b22, b02.

It follows from elementary properties of Bézier surfaces that the
lines passing through f(0, t) spanned by the derivative vectors
∂
∂s
f(0, t) generate a rational degree (1, 2) Bézier surface, which

shares control points {bij}i=0,1;j=0,1,2 and corresponding weights
with the cyclidic patch. An analogous surface is tangent to the patch
along the curve f(1, t). Obviously these two surfaces are the right
circular cones tangent to the cyclidic patch.

From the Bézier representation we know that their intersection is
a rational Bézier curve defined by control points b10, b11, b12 and
corresponding weights (i.e., a conic, see Figure 20).

b00

b10

b20

b01

b11
b21

b02

b12

b22

Figure 20: Left: Two right circular cones tangent to a cyclidic
patch along opposite edges. Right: Control points {bij} of the
rational Bézier representation of a cyclidic patch. Note that
b10, b11, b12 serve as control points of the intersection curve of tan-
gent cones.
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Figure 21: Cyclidic cell and cyclidic 3D structures. (a) A combinatorial cube where each of the 12 edges is symmetric, with cyclidic patches
as faces. (b) Derived families of orthogonally intersecting cyclides. (c) Cyclidic 3D structures consist of cyclidic cells and can be interpreted
as variable-distance offsets of a cyclidic CAS. (d) A construction detail of a variable-distance offset based on part of (c).

Remark. Since symmetric edges of a CAS follow the principal cur-
vature lines of the underlying surface, it does not make too much
sense to consider right-angled CAS where only one family of edges
is symmetric.

5 Three-dimensional structures

Volumetric meshes in connection with freeform architecture play an
important role in offset constructions and more general multilayer
constructions [Liu et al. 2006; Pottmann et al. 2007]. The rigidity
of the occurring geometric constraints, such as constant distances,
makes truly three-dimensional geometric modeling difficult. This
paper shows how cyclidic CAS may be extended to three-dimen-
sional geometric structures, and that we are able to do geometric
modeling to a limited extent.

Cyclidic cells and 3D cyclidic structures. It is well known that
a Dupin cyclide can be non-uniquely embedded into three families
of cyclides which mutually intersect at right angles, the intersection
curves being the principal circles. Figure 21 shows a cyclidic cell
bounded by 6 principal cyclidic patches which occur in this way. It
has been observed by [Huhnen-Venedey 2007] that a combinatorial
cube whose edges are orthogonally intersecting circular arcs is a
cyclidic cell if and only if each edge is symmetric, i.e., the three
edge vectors at either end are mapped into each other by a reflection
(cf. Definition 5). Figure 21a illustrates such a symmetric collection
of 24 edge vectors (two to each edge of the cube, and three to each
vertex).

A 3D cyclidic structure is a combinatorial cube mesh where each
face is a cyclidic patch, serving as a common boundary of two ad-
jacent cyclidic cells. Figure 21 illustrates an example alongside a
construction detail.

Computational issues. Apart from the 3D combinatorics, the
optimization of a three-dimensional cyclidic structure is not differ-
ent from the case of cyclidic CAS. If the 3D structure is an ex-
tension of a 2D cyclidic CAS which is to approximate a reference
surface Φ, then we propose to initialize optimization from principal
curvature lines of Φ together with those of appropriate offsets.

Available degrees of freedom. Unfortunately there are only few
degrees of freedom in 3D cyclidic structures. We derive this infor-
mation as follows. The vertices of such a structure constitute a 3D
circular mesh (each 2D face has a circumcircle). Conversely a 3D
circular mesh can be interpolated by a cyclidic structure, which is
determined by the choice of a single orthonormal frame of edge
vectors (by edge symmetry we can propagate the edge vectors to

the remaining vertices). The known degrees of freedom of circular
meshes (cf. [Bobenko and Suris 2008]) show, for instance, a d.o.f.
count for 3 +m+ n for m× n cyclidic cells which extend a given
cyclidic CAS consisting of m× n patches.

Remark. Any orthogonal 3D CAS consisting of combinatorial
cubes is a discretization of three families of orthogonally intersect-
ing surfaces. By Dupin’s theorem their intersection curves are prin-
cipal curvature lines. So it makes sense to consider only such right-
angled three-dimensional CAS which are cyclidic.

6 Discussion

On the approximation problem. Throughout this paper we ad-
dress fitting or approximation problems with CAS. It is essential
for solving such problems that we do not try to find vertices first
and subsequently interpolate them by arcs. To see that interpola-
tion would be a bad idea, we perform sample d.o.f. counts: For a
cyclidic CAS we can choose one edge vector and normal vector
and propagate these data by reflection, which determines all edges.
Thus, interpolating vertices by a cyclidic CAS has only 3 d.o.f. in
total. For the weaker condition of orthogonally intersecting edges
in a quadrilateral CAS, it is not difficult to see that there are in total
4 d.o.f. (because edge vectors in 2 neighbouring vertices determine
the remaining edge vectors).

The degrees of freedom at our disposal are therefore essentially
the vertex positions. Optimization moves both vertices and edges,
thereby penalizing the vertices’ deviation from the reference sur-
face Φ. It does not seem to be necessary to penalize the edges’
deviation from Φ as well; regularization by (2) proved sufficient.
We emphasize again that the conceptually simple minimization of
(1) succeeds only because we pay special attention to geometri-
cally meaningful initialization. Once this is done, Gauss-Newton
optimization has to move the vertices only a little bit.

Design problems. The two-stage process consisting of initializa-
tion and optimization moves interactive design to the initialization
phase. We have mentioned to ways: For cyclidic CAS which are
initialized e.g. from a circular or conical mesh, we propose to de-
sign the latter, e.g. using [Liu et al. 2006]. General CAS are ini-
tialized from a curve network in the reference surface, and design
of the CAS amounts to design of this network, e.g. making use of
conformal mappings.

Further constraints related to architecture. As usual, real-
world applications may entail creative extension and modification
of the methods described above. Often the freedom provided by
the initialization phase allows us to introduce further constraints.
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Figure 22: Flexibility of CAS optimization. We show a sequence of deformed reference surfaces and circular arc structures approximating
them.

An example is Figure 6 where one family of flow lines in a quadri-
lateral CAS should correspond to floor levels and is therefore con-
strained to be ‘horizontal’. The other family is orthogonal to the
first. Optimization includes a term which tries to make equal the z
coordinates of vertices which belong to the same level.

Fig. |V | sprox spl scons ssymm sang s∆,v s∆,e T

3a 6008 0.01 1·10−5 1·10−6 — 7·10−5 0.3 0.6 1200

3b 2304 0.004 7·10−6 2·10−7 — 1·10−4 — — 100
22a 2304 0.003 7·10−6 3·10−7 — 1·10−4 — — 100
22b 2304 0.007 7·10−6 3·10−7 — 1·10−4 — — 100
22c 2304 0.02 2·10−5 1·10−6 — 1·10−4 — — 100

3c 486 0.04 0.16 2·10−3 — 0.09 2.2 2.4 60
5 649 0.01 3·10−6 7·10−7 — 2·10−5 0.07 0.07 10
6 3845 0.01 2·10−4 7·10−7 — 9·10−6 1.3 1.5 450

12 312 0.3 2·10−13 2·10−7 3·10−7 1·10−6 0.06 0.08 5
13 3054 0.007 3·10−2 5·10−4 — — 0.13 0.09 600
17 2091 .008 2·10−2 1·10−3 5·10−2 2·10−3 0.1 0.06 500

1,18 1535 — 3·10−4 2·10−6 2·10−5 2·10−5 1.4 1.7 200
25 3097 0.002 1·10−4 5·10−5 — 2·10−4 0.01 0.007 225

Figure 23: Optimization details. This table uses the symbols sprox,
scons, ssymm, sang, which mean the respective maximum values of
terms whose squares form the contributions fprox, fcons, fsymm, fang

to the target function (1). We define spl = max |π
2
−^(avw, nv)| as

a smoothness measure (given in degrees). As to the regularization
terms, we give s∆,v = max ‖u − 2v + w‖, s∆,s = max ‖suv −
2svw+swz‖ in the notation of (2). Objects are scaled for bounding
box size 1. T means computing time in seconds on a laptop with a
dual core CPU with 2.4 GHz and 3GB memory.

Computation details. Figure 23 gives a detailed account of CAS
quality. One can clearly see that optimization of triangular CAS
does not work as well as the quad and hex cases, but still well
enough for purposes of freeform architecture. For each CAS, opti-
mization took 10–20 iterations. The weights of the individual con-
tributions to (1) equal 100 for fprox, f∆, while the other weights,
which correspond to geometric constraints, are set to 1 in the first
round of iteration and are multiplied by 10 in every round.

Limitations. The main limitation in computing CAS is the loss
of shape flexibility when additional geometric conditions are im-
posed. While general CAS can approximate general curve networks
in surfaces, provided they have the right connectivity and the right
intersection angles, edge symmetry implies that flow lines of the
CAS must follow principal curvature lines. This can lead to uneven
panel sizes or alternatively to the introduction of T-junctions (for a
similar problem, see Figure 6). 3D cyclidic structures have only a
few more d.o.f. than 2D cyclidic CAS, so their ‘spatial’ component
is rather too inflexible to allow freeform modeling.

In order to demonstrate the flexiblity of circular arc structures, we

study a deformation sequence (Figures 3b and 22abc). We cover
each surface by a triangle mesh combinatorially equivalent to the
others and optimize it for the circle-packing property [Schiftner
et al. 2009], which defines a discrete conformal mapping between
those surfaces. By dualizing we generate hexagonal meshes which
serve as initial values for circular arc structure optimization. The
quality of these CAS, as seen in the table of Figure 23, is almost
constant. In the final stage of deformation the surface exhibits
curvature radii comparable to mesh edgelength and approximation
quality reaches only 2% of the bounding box diameter, as opposed
to the previous 0.4%.

Conclusion and future research. We have shown the applica-
bility of circular arc structures in freeform architecture (congruent
nodes, smooth skin, simple edge elements) and we have demon-
strated that certain special circular arc structures have even more
properties which are relevant for freeform building construction
(support elements, offsets, derived developable strip models). Com-
putation of circular arc structures is done by nonlinear optimization
with geometrically meaningful initial guesses.

As to future research, we are convinced that circular arc structures
represent an interesting object of discrete differential geometry,
since they provide a discrete Möbius-invariant version of orthog-
onal parametrizations. CAS represent a certain kind of ‘surfaces of
circles’, which have already proved their geometric capability (see
e.g. [Bobenko and Schröder 2005]). Regarding applications and ge-
ometry processing, the architectural aspects have not yet been fully
explored (we mention better initialization, design, further repeti-
tions). The connection to CNC milling mentioned above definitely
deserves further study.

Figure 24: Cyclidic CAS with offset, interior view. This CAS is also
employed by Figures 1 and 18. Here the combinatorial singulari-
ties have been closed by non-cyclidic patches (courtesy H. Schmied-
hofer).



(a) (b)

Figure 25: Statics properties. (a) Panel boundaries (as built) of Dongdaemun Design Plaza (Seoul) by Zaha Hadid Architects, have been
optimized to become an orthogonal CAS. (b) Directions of panel boundaries suggested by statics properties [Schiftner and Balzer 2010]
agree with (a) apart from the obvious notch disturbance.
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