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Abstract. We study semi-discrete surfaces in three dimensional euclidean space which
are defined on a parameter domain consisting of one smooth and one discrete param-
eter. More precisely, we consider only those surfaces which are glued together from
individual developable surface strips. In particular we investigate minimal surfaces
and constant mean curvature (cmc) surfaces with non vanishing mean curvature in the
setting of Koenigs nets and Christoffel duality. We obtain incidence-geometric charac-
terizations of the dualizability of Koenigs nets as well as for the Gauss image of cmc
surfaces. We also consider isothermic semi-discrete cmc surfaces and a specific type of
Cauchy problem in this regard.
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1. Introduction and Preliminaries

1.1. Introduction. We are investigating semi-discrete constant mean curvature (cmc)
surfaces within the framework of discrete differential geometry. The mathematical re-
search field of discrete differential geometry, which at a first glance seems to be self-con-
tradictory, discretizes notions, objects and methods from classical or smooth differential
geometry. A first systematical approach is [17, ]. Another textbook with the focus on in-
tegrable structures was written by [2]. Discrete differential geometry considers all kinds
of discrete objects such as polygons, polyhedral surfaces, non-polyhedral meshes, etc.
and has a long range of applications in pure mathematics, physics, computer graphics,
architecture etc. Also semi-discrete surfaces are included and can be looked at in differ-
ent ways – on the one hand as a discrete [or smooth] evolution of a curve [or polygon]
from the point of view of transformations of curves, and on the other hand as approxima-
tion or covering of a surface by a sequence of merged strips. [14] use the latter concept
in applications that have manufacturing of real world objects as architectural freeform
surfaces in mind. We will give a precise definition of semi-discrete surfaces in §1.2.

A special class of objects in differential geometry are surfaces of constant mean curva-
ture. Different notions of a discrete mean curvature may lead to different cmc surfaces.
There are approaches for triangle meshes, planar quadrilateral meshes and other poly-
hedral surfaces for example in [3, 6, 7, 10, 12, ]). It would be desirable that different
discretizations of notions, like the mean curvature in our case, converge to the smooth
counterpart in some appropriate limit. However, convergence results are rare and the
topic of current research.
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In our case we focus on semi-discrete cmc surfaces in the setting of Christoffel duality.
Thus, we obtain semi-discrete cmc surfaces whose parametrization is a semi-discrete
Koenigs net. The mean curvature is determined on the one hand by Christoffel duality
and at the same time by Steiner’s formula. Our main focus is on the characterization of
the corresponding Gauss images of cmc surfaces. We consider two situations, the case
where the mean curvature vanishes (Section 2) and the case where the mean curvature is
constant but different from zero (Section 3). In particular we consider the circular case
i.e., where the cmc surfaces are isothermic (Section 4). Finally, we investigate a semi-
discrete Cauchy problem for Gauss images of cmc surfaces in the setting of isothermic
surfaces (Section 5).

1.2. Semi-discrete surfaces. The present paper is about two-dimensional semi-dis-
crete surfaces. A semi-discrete surface is a map of one discrete and one smooth param-
eter into R3 (see Figure 1 left):

f : Z× R ⊃ U −→ R3

(k, t) 7−→ f(k, t).

Thus, a semi-discrete surface consists of surface strips or just strips which we obtain by
connecting corresponding points on successive curves by straight line segments:

(u, v) 7−→ (1− v)f(k, u) + vf(k + 1, u), where v ∈ [0, 1].

To make our formulas shorter we use the following abbreviations:

f = f(k, t), f−1 = f(k − 1, t), f1 = f(k + 1, t), f2 = f(k + 2, t), etc.

For all k ∈ Z we assume the one parameter function f(k, ·) to be sufficiently smooth and
denote its derivatives by

∂f =
∂f(k, t)

∂t
and ∂f1 =

∂f(k + 1, t)

∂t
etc.

The ‘discrete derivatives’, i.e., the first forward differences, are denoted by

∆f = f1 − f = f(k + 1, t)− f(k, t) etc.

1.3. Semi-discrete conjugate nets. Conjugate nets f : R2 → R3 are objects of pro-
jective differential geometry. They are characterized by the property that the mixed
derivatives are contained in the linear span of the first derivatives, i.e., fuv ∈ span(fu, fv).
Discrete analogs, namely discrete conjugate nets, are studied in the context of pure math-
ematics (see e.g., [2, 17, ]) as well as with respect to applications in computer graphics
and architecture (see e.g., [9, 13, ]). The common discretization is a polyhedral surface
with planar quadrilateral faces.

A semi-discrete conjugate net can be seen as the limit of an appropriate refinement
process of discrete conjugate nets where the refinement is applied to one coordinate
direction of the net. Thus, opposite edges of the quadrilaterals in one direction become
smaller and smaller whereas the edge lengths of the other direction stay away from
zero. Therefore, the limit surface of each strip has the same tangent plane along the
line segment connecting f and f1 and is therefore a developable surface. Thus, a semi-
discrete conjugate net is a semi-discrete surface where all strips are developable. It is
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Figure 1. Left: A semi-discrete surface. A discrete family of curves f−1, . . . , f2 is successively
connected by straight line segments. Right: A circular strip. In each point there is a circle which
makes tangential contact with the curves f and f1 at corresponding points.

easy to see that developability of a strip in terms of semi-discrete parametrizations is
equivalent to the linear dependence of {∂f, ∂f1,∆f}.

1.4. Integrability of conjugate nets. It is sometimes important to generate a semi-
discrete surface f which is parallel to a given semi-discrete surface s. That is, we
are looking for f such that both {∆f,∆s} and {∂f, ∂s} are linearly dependent for all
parameter values. The question of the existence of f can be restated as follows. Is there
a semi-discrete surface f such that

(1) ∂f = α∂s and ∆f = β∆s,

where α and β are real valued functions? The existence of f is equivalent to the semi-
discrete integrability condition ∆(∂f) = ∂(∆f), which using α and β turns into the
following lemma.

Lemma 1. There is a semi-discrete surface f parallel to s such that (1) holds if and
only if α and β fulfill

(2) α1∂s1 − α∂s− (∂β)∆s− β∆∂s = 0.

Let n denote a unit normal vector of the strip f, f1. After multiplying Equation (2)
by (∆s) × n, which is a vector in the tangent plane orthogonal to ∆s, we immediately
obtain a necessary but not sufficient local condition for a pair of parallel semi-discrete
surfaces f and s

(3) det(∆(α∂s),∆s, n)− det(∆∂s, β∆s, n) = 0.

A different derivation of Equation (3) (via the so called infinitesimal quadrilaterals) also
appears in [8, Lem. 1.8].

An example for Equation (3) being not sufficient as integra-
bility condition for the existence of f is the following. Let
α = α1 = 1, β = 2, and ∂s, ∂s1 symmetric with respect to the
perpendicular bisector of s, s1 as in the image at right. Then (3)
is fulfilled but (2) obviously not.

∂s ∂s1
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1.5. Semi-discrete Koenigs nets and duality. Semi-discrete Koenigs nets f : Z ×
R ⊃ U → R3 constitute a subclass of semi-discrete conjugate nets namely those which
permit dualization. f is dualizable if there exists another semi-discrete surface f∗ :
Z× R ⊃ U → R3 and a positive semi-discrete function ν : Z× R ⊃ U → R+ such that

∂f∗ = − 1

ν2
∂f and ∆f∗ =

1

νν1
∆f.

In that case f∗ is called dual to f . It is easy to see that f is the dual of f∗ up to
translation and scaling. It is important to note here that putting the minus sign in the
smooth equation was done arbitrarily and could as well be put in the discrete equation
instead, with the consequence f∗ → −f∗. Dualizability of f is equivalent to the existence
of a positive function ν such that the difference-differential equation (see also [11, ])

(4) ∆∂f =
ν1
ν
∂f − ν

ν1
∂f1 +

(∂ν
ν

+
∂ν1
ν1

)
∆f

holds, which we easily obtain by applying Lemma 1. Further, dualizability of f is
equivalent to the existence of a semi-discrete surface f∗ which is parallel to f such that

(5) det(∂f + ∂f1,∆f
∗, n) + det(∂f∗ + ∂f∗1 ,∆f, n) = 0

holds, where n is a unit normal vector of the strip f, f1.
If there is a family of circles for each strip of a semi-discrete surface such that there is

a circle which makes tangential contact with f and f1 for each t we call the semi-discrete
surface circular (Figure 1 right). It turns out that a circular semi-discrete surface is
dualizable if and only if it is isothermic in the sense of Definition 2. The proof of that
is given by [11, Thm. 4.3]. For more details on the motivation and discussion of the
definition of semi-discrete isothermic surfaces see [11, ].

Definition 2. A circular semi-discrete surface f is isothermic if there are positive scalar
functions ν, σ, τ : R→ R+ with

‖∆f‖2 = σνν1, ‖∂f‖2 = τν2, where ∂σ = 0, ∆τ = 0

(i.e., σ and τ depend on the discrete and the continuous variable only, respectively). A
complex valued isothermic semi-discrete function

f : Z× R ⊃ U → R2 ∼= C
is called holomorphic.

A Weierstrass type representation for semi-discrete isothermic parametrizations of
minimal surfaces was recently formulated in [16, ] using this definition of semi-discrete
holomorphic functions. We will return to that in §2.2 where we will give an example.

2. Semi-discrete minimal surfaces

In this section we focus on semi-discrete surfaces which discretize minimal surfaces.
We revisit the semi-discrete version [11, ] of the well known construction of minimal
surfaces by [4]. In the smooth setting it starts with an isothermic parametrization of the
sphere. Thus, in our case we need a semi-discrete Koenigs net f which approximates
the unit sphere. Here, approximation just means that f is ‘close’ to the unit sphere.
There are two common possibilities. First, the curves f(k, ·) are contained in the sphere
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Figure 2. Left: A developable strip s, s1. The rulings envelope the curve of regression r. These
are the singular points of the developable surface. It is allowed for singular points to vanish to
points at infinity. Right: For each strip s, s1 we introduce two curves p and q on the surface such
that p− s = s1 − q = (1− β)∆s for some function β and for all parameter values t.

(inscribed) as in Figure 5 left and second, the strips are tangent to the sphere (cir-
cumscribed). Other ways of approximation might be considered as well but one might
expect more geometric properties in the more special situations. For specialities of the
‘inscribed’ case see Section 4.

E. Christoffel’s construction of minimal surfaces can be translated into our semi-
discrete setting as follows. Let f be a semi-discrete surface approximating the unit
sphere. Then the dual f∗ can be consistently defined to be a semi-discrete minimal
surface. This construction is called the Christoffel dual construction. For details on
semi-discrete minimal surfaces see [11, ]. It turns out that a semi-discrete minimal
surface in the setting of Christoffel duality has vanishing mean curvature everywhere
for the semi-discrete mean curvature given later by Definition 8. Finally, we give a
novel example of semi-discrete minimal surfaces namely an isothermically parametrized
helicoid based on a semi-discrete version of z 7→ exp((i+ 1)z).

2.1. Geometric characterization of dualizability. We aim to characterize dualiz-
ability of a semi-discrete surface by means of incidence geometry. We therefore study
some special curves on the strips. Since we are in the setting of semi-discrete conjugate
surfaces all strips are developable surfaces. It is well known that all ruled surfaces which
are developable have a curve of regression (see e.g. [15, ] and Figure 2 left) which consists
of the singular points of the surface. These singular points are either in R3 or possibly
points at infinity. It is well known [15, ] that the curve of regression can be computed
as stated in the following lemma.

Lemma 3. Let f be a semi-discrete conjugate net. Then the curve of regression r of
the strip f, f1 is determined as

(6) r = f + v∆f, where v = − ∂f ×∆f

∆(∂f)×∆f
=
(

1− ∂f1 ×∆f

∂f ×∆f

)−1
.

Note that v is the quotient of two parallel vectors.
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Figure 3. Left: Illustration of the incidence-geometric property (∗)from Definition 5. A semi-
discrete surface has property (∗), if the three tangents f+R∂f , h+R∂h, and h−1+R∂h−1 intersect
each other in a point f + λ∂f or are parallel. Here, h is defined via the cross-ratio condition
cr(f, f1, h, r) = −1, where r is the curve of regression of the strip f, f1. Right: Illustration of
Equation (10). We decompose ∂h into the sum of two vectors

(
v−1
2v−1∂f + c1∆f

)
and

(
v

2v−1∂f1 +

c2∆f
)

which are both parallel to ∂h.

We also need the well known notion of the cross-ratio of four collinear points a, b, c, d,
which is defined by

cr(a, b, c, d) =
a− c
b− c

:
a− d
b− d

∈ R ∪ {∞}.

Lemma 4. For four collinear points p, q, g, r with r = p+λ(q− p) and g = p+µ(q− p)
we have

cr(p, q, g, r) = −1 ⇐⇒ µ = λ(2λ− 1)−1.

Proof. This is easy to verify as cr(p, q, g, r) = p−g
q−g : p−rq−r = µ

1−µ : λ
1−λ . �

Next, we introduce a curve h on each strip such that for all parameter values t the
four points f , f1, h, r are harmonic conjugate (cf. also [11, Def. 6.1.]), meaning that
their cross-ratio equals −1, i.e., we have

(7) cr(f, f1, h, r) = −1.

Definition 5 (Property (∗)). We say that a conjugate semi-discrete surface f has prop-
erty (∗) if and only if the three tangents

f + R∂f, h+ R∂h, h−1 + R∂h−1,

are intersecting in a common point or are parallel. For an illustration see Figure 3 (left).

Note that we called property (∗) differently in [11, ], namely property H. We changed
the notion to avoid confusions with the notion of H-surfaces which can be used as an
alternative for cmc surfaces.
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In [11, ] we showed that every dualizable conjugate semi-discrete surface has property
(∗). Further, we showed the reverse direction with the restriction of circularity: Any
circular surface with property (∗) can be re-parametrized to become dualizable (i.e.,
isothermic). We now improve the latter result by dropping the property of circularity.

Theorem 6. A conjugate semi-discrete surface f is a Koenigs net (i.e., dualizable) if
and only if f has property (∗).

Proof. The implication which yields property (∗) from dualizability is covered by [11,
Th. 6.2]. Thus it remains to show the other implication by verifying Equation (4) for
some function ν. The proof is rather technical and involves some identities which we
have to derive first. We start by considering the strip f, f1. The curve of regression is
given by Lemma 3 and reads

r = f + v∆f, where v =
(

1− ∂f1 ×∆f

∂f ×∆f

)−1
.

Thus, using Lemma 4, the curve h with cr(f, f1, h, r) = −1 is determined by

(8) h = f +
v

2v − 1
∆f or equivalently by h = f1 +

1− v
2v − 1

∆f.

Further, property (∗) yields the existence of functions λ for each curve f such that

f + λ∂f = (h+ R∂h) ∩ (h−1 + R∂h−1).
For an illustration see Figure 3 (left). We write down the proof only for the case λ <∞.
The reader can easily verify that the proof in the case of λ = ∞ (parallelity of ∂h and
∂f) works just as well after some slight modifications mainly concerning the notation
(e.g., 1/∞ = 0 or c1 = 0 in Equation (10)). We compute

(9) ∂h =
v − 1

2v − 1
∂f +

v

2v − 1
∂f1 −

∂v

(2v − 1)2
∆f.

We can decompose ∂h into a sum of two vectors which are both parallel to ∂h in the
following way (see Figure 3 right)

(10) ∂h =
( v − 1

2v − 1
∂f + c1∆f

)
+
( v

2v − 1
∂f1 + c2∆f

)
,

with c1 + c2 = − ∂v
(2v−1)2 . Since both

(
v−1
2v−1∂f + c1∆f

)
and λ∂f + f − h, are parallel

to ∂h by construction, respectively, we obtain the following equality of ratios of parallel
vectors

(11)
( v − 1

2v − 1
∂f
)

: (λ∂f) = (c1∆f) : (f − h) and thus
1

λ
= −c1

(2v − 1)2

v(v − 1)
,

using (8). Analogously, parallelity of
(

v
2v−1∂f + c2∆f

)
and λ1∂f1 + f1 − h yields( v

2v − 1
∂f1

)
: (λ1∂f1) = (c2∆f) : (f1 − h) and thus

1

λ1
= c2

(2v − 1)2

v(v − 1)
.

We immediately obtain

(12)
1

λ
− 1

λ1
= (−c1 − c2)

(2v − 1)2

v(v − 1)
=

∂v

v(v − 1)
=

∂v

v − 1
− ∂v

v
= ∂ log

v − 1

v
.
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We set ν := exp(−
∫

1/λ) meaning ν(k, t) := exp(−
∫ t
t0

1/λ(s) ds) and conclude

(13)
ν

ν1
=

exp(−
∫

1/λ)

exp(−
∫

1/λ1)
= exp(−

∫
(1/λ− 1/λ1))

(12)
= exp(−

∫
∂ log v−1

v ) =
v

v − 1
.

Further, we have

(14)
∂ν

ν
= ∂ log ν = ∂ log exp(−

∫
1/λ) = − 1

λ
.

We express ∂f1 in the basis {∂f,∆f} and get

∂f1 =
∂f1 ×∆f

∂f ×∆f
∂f +

∂f × ∂f1
∂f ×∆f

∆f.

Note that the coefficients are ratios of parallel vectors. Then we insert ∂f1 into Equation
(9) which then turns into

∂h =
( v − 1

2v − 1
+

v

2v − 1

∂f1 ×∆f

∂f ×∆f

)
∂f +

( −∂v
(2v − 1)2

+
v

2v − 1

∂f × ∂f1
∂f ×∆f

)
∆f.

The value of v in (6) implies (v − 1)/v = (∂f1 ×∆f) : (∂f ×∆f) and thus

(15) ∂h = 2
v − 1

2v − 1
∂f +

( −∂v
(2v − 1)2

+
v

2v − 1

∂f × ∂f1
∂f ×∆f

)
∆f.

Note that the last equation together with the choice of c1 above in Equation (10) implies
that the coefficient of ∆f here equals 2c1. Finally, we show Equation (4), i.e., we need
to show that the following expression equals 0. We get(ν1

ν
+ 1
)
∂f −

( ν
ν1

+ 1
)
∂f1 +

(∂ν
ν

+
∂ν1
ν1

)
∆f

(14)
=
(13)

(v − 1

v
+ 1
)
∂f −

( v

v − 1
+ 1
)
∂f1 −

( 1

λ
+

1

λ1

)
∆f

(9)
= 2

2v − 1

v
∂f − (2v − 1)2

v(v − 1)
∂h−

( ∂v

v(v − 1)
+

1

λ
+

1

λ1

)
∆f

(12)
= 2

2v − 1

v
∂f − (2v − 1)2

v(v − 1)
∂h− 2

λ
∆f

(11)
= 2

2v − 1

v
∂f − (2v − 1)2

v(v − 1)
∂h+ 2c1

(2v − 1)2

v(v − 1)
∆f

=
(2v − 1)2

v(v − 1)

(
− ∂h+ 2

v − 1

2v − 1
∂f + 2c1∆f

)
(15)
= 0.

Therefore, with our choice of ν, Equation (4) holds which yields dualizability of f . �
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Figure 4. Illustration of the semi-discrete holomorphic function g(k, t) of Theorem 7. It is a
semi-discrete analogue of the smooth exponential function z 7→ exp(az) with a ∈ C \ {0}. The

parameters α = π/3, r =
√

2 are equal in all three images whereas ϕ equals π/8, π/12, and π/32
from left to right. We can say that ϕ regulates the density of the strips.

2.2. Example: A semi-discrete helicoid. The semi-discrete helicoid is an example
of a minimal surface. One of the many remarkable insights in the theory of smooth
minimal surfaces is the classical Weierstrass representation formula. It establishes a
correspondence between holomorphic functions and minimal surfaces. For further details
see e.g., [5, ]. This formula has recently been formulated for semi-discrete surfaces [16,
Theorem 2]. It says that for a semi-discrete holomorphic function g : Z × R → C (see
Definition 2) we obtain the corresponding semi-discrete minimal surface f by solving

∂f=−τ
2

Re
[ 1

∂g
(1−g2, i(1+g2), 2g)

]
, ∆f=

σ

2
Re
[ 1

∆g
(1−gg1, i(1+gg1), g+g1)

]
.

In classical differential geometry the holomorphic functions g, h : C→ C with g(z) =
exp(az), h(z) = 1/a, and a ∈ C \ {0} correspond to the isothermic parametrization
of the helical surfaces in the Weierstrass representation [5, Th. 8.5.1]. For a = 1 we
obtain the catenoid and for a = 1 + i the helicoid. Consequently, to obtain semi-discrete
helicoids we need to find a semi-discrete analogue of the map z 7→ exp(az). In the
following theorem we define a semi-discrete holomorphic function which has the desired
property as we will discuss after the proof. Finally, we will get the semi-discrete helicoid
(Figure 5 right) as the Christoffel dual of the stereographic projection of g (Figure 5
left). Since g is holomorphic (i.e., isothermic in C; c.f. Definition 2) its stereographic
projection is isothermic. Also the Christoffel dual construction keeps the property of bee-
ing isothermic. Consequently, this particular parametrization of the helicoid is actually
semi-discrete isothermic.

So far not many semi-discrete holomorphic functions are known. The following version
of z 7→ exp((i+ 1)z) seems to be new.

Theorem 7. Let r, α, ϕ ∈ R with ϕ 6= 0, r > 0 such that λ = cos(α+ϕ/2)
cos(α−ϕ/2) > 0. Then

g(k, t) = exp(r exp(iα)t+ (iϕ+ log λ)k)

is a semi-discrete holomorphic function. For an illustration see Figure 4.
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Proof. First, we show that g is circular. That is, we need to show that the normalized
tangent vectors are symmetric with respect to (∆g)⊥ (cf. also [11, Equation (8)]).
Therefore, we need to show that

V :=
( ∂g
|∂g|

+
∂g1
|∂g1|

)
(g1 − g)−1 ∈ iR

for all k. Setting z = cosα+ i sinα, we obtain

V =
([
λkrz exp(rtz + ikϕ)

]
·
[
λkr exp(rt cosα)

]−1
+
[
λk+1rz exp(rtz + i(k+1)ϕ)

]
·
[
λk+1r exp(t cosα)

]−1)
(
λk+1 exp(rtz + i(k + 1)ϕ)− λk exp(rtz + ikϕ)

)−1
= c · exp(iα)(exp(iϕ) + 1)(λ exp(iϕ)− 1)−1,

with some c ∈ R. After a tedious but straightforward computation we obtain

exp(iα)(exp(iϕ) + 1)(λ exp(iϕ)− 1)−1 = −icos(α− ϕ/2)

cos(ϕ/2)
∈ iR

and conclude that g is circular. To show that g is holomorphic we define three functions

ν(k, t) = λkr2 exp(rt cosα), σ(k, t) =
2 sin2 ϕ

cos 2α+ cosϕ
, and τ(k, t) = r−2.

We immediately see that σ and τ are independent of t and k, respectively, and therefore
∂σ = 0 and ∆τ = 0. It is further easy to see that

|∂g|2 = τν2 and |∆g|2 = σνν1.

Hence, the requirements of Definition 2 are fulfilled and consequently, g is a semi-discrete
holomorphic function. �

Note that the parameter ϕ regulates the density of smooth curves in the semi-discrete
holomorphic map as illustrated by Figure 4.

The semi-discrete holomorphic function of Theorem 7 can be seen as an analogue of the
smooth holomorphic function exp(az) in addition to the similarity of its representation
for the following reason. Let us consider the two families of parameter lines of exp(az).
Each parameter line is a logarithmic spiral. That is, each parameter line is characterized
by the fact that the tangent vector in each point is obtained from its position vector
after applying a uniquely determined similarity. In our case the two tangents of the two
parameter lines through exp(az) are a exp(az) and ia exp(az).

Analogous properties are true in our semi-discrete case. The smooth curves g(k, ·) are
logarithmic spirals too. The tangent vector at g(k, t) is obtained from its position vector
after applying the similarity z 7→ r exp(iα)z. The discrete curves (polygons) g(·, t) are
discrete logarithmic spirals in the sense that we obtain the discrete derivative ∆g(k, t)
from its position vector g(k, t) after applying the similarity z 7→ (λ exp(iφ)− 1).

These analogies between the smooth and the semi-discrete setting justify calling g a
semi-discrete exponential map.

Comparing now the complex numbers defining the just mentioned similarities from
the smooth and the semi-discrete settings, then a either corresponds to r exp(−iα) or
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Figure 5. Illustration of a semi-discrete isothermic parametrization of a helicoid (right) together
with its Gauss image (left). The helicoid is generated as a Christoffel dual of the Gauss image and
thus is a semi-discrete minimal surface. Each strip is a developable surface. The corresponding
semi-discrete holomorphic function represented by Theorem 7 takes r =

√
2, α = π/4, and

ϕ = π/16 as parameters.

to i(λ exp(−iϕ) − 1). For our illustration in Figure 5 we chose the first one, i.e., a =
1 + i = r exp(−iα). Thus, r =

√
2 and α = π/4.

3. Semi-discrete cmc surfaces

In contrast to Section 2 here we focus on semi-discrete surfaces with constant but
non-vanishing mean curvature. After the definition of mean curvature we focus on
characterizations and properties of the Gauss image of a cmc surface.

3.1. Mean curvature from Steiner’s formula. For conjugate semi-discrete surfaces
in [11, ] we introduced the notion of mean curvature with respect to a certain Gauss
image. We are given a pair of parallel semi-discrete surfaces f and s (i.e., ∆f ‖ ∆s and
∂f ‖ ∂s). Here, s plays the role of the Gauss image. In classical differential geometry
the Gauss image is a map to the sphere. To mimic this in our semi-discrete setting the
semi-discrete Gauss image s should be approximating the sphere in an appropriate way.
Like as mentioned in Section 2, there are two common possibilities: Either the curves
s(k, ·) are contained in the sphere (inscribed) as in Figure 5 left, or, the strips are tangent
to the sphere (circumscribed). The following definition of the mean curvature works for
either type of semi-discrete Gauss image.

Definition 8. Let f and s be a pair of parallel, conjugate semi-discrete surfaces. Then
we call

(16) H = −det(∂f + ∂f1,∆s, n) + det(∂s+ ∂s1,∆f, n)

2 det(∂f + ∂f1,∆f, n)
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semi-discrete mean curvature of f with respect to s, where n is the unit normal vector
of the parallel tangent planes of the two strips.

This definition can be seen as the limit of an appropriate refinement process in one
direction of the definition for planar quadrilateral meshes in [1, ]. The combinatorial
geometries of this definition imply that the mean curvature H(k, t) is not associated
with the vertex f(k, t) but rather with the segments f(k, t)f(k + 1, t).

3.2. CMC surfaces parametrized by semi-discrete Koenigs nets. Here we would
like to recall a connection between classical Christoffel duality and cmc surfaces which
also holds in our semi-discrete setting. In doing so we follow [2, Theorem 4.49] and [11,
].

Theorem 9. Let f and s be a pair of parallel, conjugate semi-discrete surfaces. Then f
is a Koenigs net which has constant mean curvature 1 with respect to the Gauss image
s if and only if there is a function ν such that

∂s = −ν
2 + 1

ν2
∂f and ∆s =

1− νν1
νν1

∆f.

Proof. We use the definition of the mean curvature (16) and obtain

H = 1⇐⇒ det(∂f + ∂f1,∆f + ∆s, n) + det(∂f + ∂s+ ∂f1 + ∂s1,∆f, n) = 0.

Then Equation (5) implies that f is dualizable which yields the existence of a dual f∗

and a semi-discrete function ν such that

∂f + ∂s = ∂f∗ = − 1

ν2
∂f and ∆f + ∆s = ∆f∗ =

1

νν1
∆f.

This concludes the proof. �

3.3. Semi-discrete Gauss images of cmc surfaces (algebraic). We aim at charac-
terizations of pairs of parallel semi-discrete surfaces f and s, where f is a semi-discrete
cmc surface with respect to its Gauss image surface s. The following theorem charac-
terizes semi-discrete surfaces s which are Gauss images of cmc surfaces.

Theorem 10. Let s be a conjugate semi-discrete surface. Then each of the following
statements is equivalent to the others.

(a) s is a Gauss image of a cmc surface.
(b) There exists a positive function ν : Z × R ⊃ U → R+ such that the system of

difference-differential equations

∂f = − ν2

ν2 + 1
∂s and ∆f =

νν1
1− νν1

∆s

is integrable. (f is a Koenigs net and cmc with respect to the Gauss image s.)
(c) There exists a positive function ν : Z× R ⊃ U → R+ such that

(17)
∂ log(νν1 − 1)

ν + ν1
∆s+

ν

ν2 + 1
∂s− ν1

ν21 + 1
∂s1 = 0.
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Proof. (a) ⇐⇒ (b) is clear by Theorem 9.
(b) ⇐⇒ (c): The difference-differential equations of (b) are integrable if and only if

the integrability condition ∆∂f = ∂∆f holds. That is, f exists if and only if

∆
( ν2

ν2 + 1
∂s
)

= ∂
( νν1
νν1 − 1

∆s
)
,

which after rearranging turns into Equation (17). �

3.4. Semi-discrete Gauss images of cmc surfaces (geometric). In this section we
give a necessary geometric characterization for a semi-discrete surface s being a Gauss
image of a cmc surface. We will end up with a similar property just like ‘property (∗)’
in Theorem 13 but with different curves involved. For the sake of clarity we split up the
proof into the following technical lemmas. In the following ν always denotes a function
which is needed in Theorem 10 such that f is a Koenigs net.

Lemma 11. Let s be a semi-discrete Gauss image of a cmc surface f . Further let ν be a
positive function which makes f a Koenigs net (cf. Th. 10). Then we have the following
quotient of parallel vectors

∂s1 ×∆s

∂s×∆s
=

ν(ν21 + 1)

ν1(ν2 + 1)
.

Proof. We obtain the equation after a vector product of (17) with ∆s. �

We construct two curves p and q on each strip at the same but opposite oriented
distance β‖∆s‖ from s1 and s, respectively, (see Figure 2 right)

(18) p = s+ (1− β)∆s q = s+ β∆s.

Then we easily obtain

(19) s+ v∆s = p+ λ(q − p) ⇐⇒ λ =
v − 1 + β

2β − 1
.

Then, we generate a curve g on each strip such that the four points p, q, g, r are in
harmonic position, i.e., cr(p, q, g, r) = −1.

Lemma 12. Let s be a semi-discrete Gauss image of a cmc surface f and let ν be a
corresponding positive function which makes f a Koenigs net. Let r be the curve of
regression of the strip s, s1 and let β = νν1/(νν1− 1) and p, q be as in (18). Further, let
g be a curve on the strip s, s1 such that cr(p, q, g, r) = −1. Then we have

g = s+
ν1(ν

2 − 1)

(ν + ν1)(νν1 − 1)
∆s.

Proof. Clearly, g = s+ θ∆s = p+µ(q− p) for some θ and µ. Equation (19) and Lemma
4 imply

µ =
θ − 1 + β

2β − 1
and µ =

λ

2λ− 1
,

where λ determines the curve of regression r = p + λ(q − p). Again, as r = s + v∆s =
p+ λ(q − p) we obtain with (19)

λ =
v − 1 + β

2β − 1
,
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g−1
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r−1
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Figure 6. Illustration of Theorem 13. The curves s−1, s, s1 (double lines) illustrate the border
of two adjacent strips of the Gauss image of a semi-discrete cmc surface. Each strip has a curve
of regression r and r−1. For each strip, say s, s1, we have a pair of curves p and q (dashed
lines) which have the same but opposite oriented distance from the curves s and s1. The curve
g consists of all points which are harmonic conjugate to r with respect to p and q, i.e., the
cross-ratio cr(p, q, g, r) equals −1. Theorem 13 implies for Gauss images of cmc surfaces that the
three tangents s + R∂s, g + R∂g, and g−1 + R∂g−1 are intersecting in a common point or are
parallel.

where Lemma 3 and Lemma 11 imply

v =
(

1− ν(ν21 + 1)

ν1(ν2 + 1)

)−1
.

A tedious but straightforward computation by inserting backwards one equation into
the other yields

θ =
ν1(ν

2 − 1)

(ν + ν1)(νν1 − 1)
,

which concludes our proof. �

Finally we can state a necessary geometric condition for the Gauss image of semi-
discrete cmc surfaces.

Theorem 13. Let s be a Gauss image of a semi-discrete cmc surface f and let g and
g−1 be the curves on the strips s, s1 and s−1, s as defined in Lemma 12. Then the three
tangents

s+ R∂s, g + R∂g, g−1 + R∂g−1,
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are intersecting in a common point or are parallel. For an illustration see Figure 6.

Proof. We set

θ =
ν1(ν

2 − 1)

(ν + ν1)(νν1 − 1)

and obtain

∂θ =
ν1(ν

2 + 1)(ν21 − 1)∂ν − ν(ν2 − 1)(ν21 + 1)∂ν1
(ν + ν1)2(νν1 − 1)2

.

Next we compute ∂g

∂g = ∂s+ (∂θ)∆s+ θ∆(∂s)

= (∂θ)∆s+ (1− θ)∂s+ θ∂s1

= (∂θ)∆s+ (1− θ)∂s+
(ν2 − 1)(ν21 + 1)

(ν + ν1)(νν1 − 1)

( ν1
ν21 + 1

∂s1

)
.

We use Equation (17) which reads

ν1
ν21 + 1

∂s1 =
∂ log(νν1 − 1)

ν + ν1
∆s+

ν

ν2 + 1
∂s

and replace the corresponding “∂s1 part” in the expression above to get

∂g =
2ν1(ν

2ν21 − 1)∂ν

(ν + ν1)2(νν1 − 1)2
∆s+

2ν(νν1 + 1)

(ν + ν1)(ν2 + 1)
∂s.

Now we split the proof into two cases. In the first case ∂ν = 0. This corresponds to the
parallelity of ∂g and ∂s. We make the following change of parameters: s̃(k, t) = s(−k, t),
i.e., we walk through the sequence of curves in the reverse direction. This immediately
implies

∂g−1 =
2ν−1(ν

2ν2−1 − 1)∂ν

(ν + ν−1)2(νν−1 − 1)2
∆s−1 +

2ν(νν−1 + 1)

(ν + ν−1)(ν2 + 1)
∂s,

since we only need to replace the index 1 in the last equation by −1. Thus, in our case
where ∂ν equals 0 we obtain parallelity of ∂g−1 and ∂s as well. Consequently, for the
case ∂ν = 0 the theorem is proven.

In the second case we have ∂ν 6= 0. Therefore, we can set

cg =
(1− ν2)(ν + ν1)

2(νν1 + 1)∂ν
and cs =

(1− ν2)ν
(ν2 + 1)∂ν

.

Then it is easy to verify that

g + cg∂g = s+ cs∂s,

which implies that the two tangents of s and g intersect at the common point

(s+ R∂s) ∩ (g + R∂g) = s+
(1− ν2)ν

(ν2 + 1)∂ν
∂s.

Furthermore, cs only depends on ν and ∂ν, i.e., cs is independent from the curve s1 and
the function ν1. Consequently, the change of parameters s̃(k, t) = s(−k, t) implies that
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the tangents of s̃ and g̃ which correspond to the tangents of s and g−1 intersect at the
same point. Thus

(s+ R∂s) ∩ (g−1 + R∂g−1) = (s+ R∂s) ∩ (g + R∂g) = s+
(1− ν2)ν

(ν2 + 1)∂ν
∂s,

which concludes our proof. �

Remark 14. Counting degrees of freedom suggests that the other implication of Theorem
13 is also true, i.e., it should be possible to conclude that s is the Gauss image of a cmc
surface assuming that the incidence geometric condition holds. So far a proof is missing.

4. Isothermic cmc surfaces

The class of surfaces we are considering here are semi-discrete isothermic surfaces as
given by Definition 2. One of the properties of a semi-discrete surface f being isothermic
is circularity. It is a consequence [14, ] of circularity of f that there exists a parallel
surface s which is inscribed to the unit sphere. Here, inscribed means that the generating
curves s(k, ·) are contained in the surface of the unit sphere (i.e., ‖s(k, t)‖ = 1 for all
k and t). Thus, s itself is also circular for the following reason. The tangents s + R∂s
and s1 +R∂s1 at the same parameter value t are both contained in the tangent plane of
the strip. This tangent plane intersects the unit sphere along a circle. This circle also
makes tangential contact with s and s1 at corresponding points. In analogy to §3.3 and
§3.4, in this section we study properties of semi-discrete Gauss images s of cmc surfaces
f . The difference to previous sections is that f is now isothermic.

Theorem 15. Let s be the Gauss image of a dualizable semi-discrete cmc surface f and
let ν be a positive function which makes f a Koenigs net. Then s is circular if and only
if

(20)
νν1

(νν1 − 1)2
‖∆s‖2

is constant along the strip (i.e., does not depend on the continuous parameter t).

Proof. We differentiate our function with respect to t and obtain

∂
( νν1

(νν1−1)2
‖∆s‖2

)
=

2νν1
(νν1−1)2

〈∆s,∆∂s〉 − (νν1+1)∂ log(νν1 − 1)

(νν1−1)2
‖∆s‖2.

Then we look at the integrability condition for Gauss images of cmc surfaces (17) which
after multiplication with ∆s reads

∂ log(νν1 − 1)‖∆s‖2 =
ν1(ν + ν1)

ν21 + 1
〈∂s1,∆s〉 −

ν(ν + ν1)

ν2 + 1
〈∂s,∆s〉.

We replace ∂ log(νν1 − 1)‖∆s‖2 in our derivative by the term on the right hand side of
the last equation to obtain

(21)
ν1 − ν
νν1 − 1

( ν

ν2 + 1
〈∂s,∆s〉+

ν1
ν21 + 1

〈∂s1,∆s〉
)
.

It is a fact which follows from [11, Lemma 3.3] that for isothermic semi-discrete surfaces
f the two vectors ∂f and ∂f1 lie to the same side of the line spanned by f, f1 in the
tangent plane. Since ν is positive, Theorem 10 (b) implies that ∂f and ∂s point in
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ϕ1ϕ1ϕ1ϕ1ϕ1ϕ1ϕ1ϕ1ϕ1ϕ1ϕ1ϕ1ϕ1ϕ1ϕ1ϕ1ϕ1

ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ

∆s∆s∆s∆s∆s∆s∆s∆s∆s∆s∆s∆s∆s∆s∆s∆s∆s

s0

s̃0
s̃1s̃2s̃3

s0(t)

∂s0(t)
s1(t)

∂s1(t) s0(t̂)

x

F (t̂, x)

Figure 7. Left: A strip is circular if and only if ϕ = ϕ1. Right: A semi-discrete Cauchy problem.
We are given the smooth curve s0 and a polygon (s̃i)i=0,1,..., drawn with fat lines. Theorem 19
says that there is a unique circular semi-discrete surface which includes s0 and (s̃i)i=0,1,... (as
indicated with dashed lines), which is the Gauss image of an isothermic cmc surface. In the
corresponding proof we construct a vector field F which maps a point x ∈ R3 at time t to a
vector in R3 such that ∂s1(t) = F (t, s1(t)).

opposite directions. Thus, the two vectors ∂s and ∂s1 lie to the same side of the line
spanned by s, s1 in the tangent plane. The derivative vectors ∂s and ∂s1 enclose angles
ϕ and ϕ1 with ∆s and −∆s, respectively, thus

〈∂s,∆s〉
‖∂s‖‖∆s‖

= cosϕ,
〈∂s1,∆s〉
‖∂s1‖‖∆s‖

= − cosϕ1,

and
〈∂s,∆s× n〉
‖∂s‖‖∆s‖

= sinϕ,
〈∂s1,∆s× n〉
‖∂s1‖‖∆s‖

= sinϕ1,

where n is the unit normal vector of the tangent plane (see Figure 7 left). Note that
∆s× n comes out of ∆s after a rotation about π/2 in the tangent plane. Further, since
〈∂s,∆s× n〉 = 〈∂s×∆s, n〉 we rewrite Lemma 11 which now reads

〈∂s×∆s, n〉 = 〈∂s1 ×∆s, n〉ν1(ν
2 + 1)

ν(ν21 + 1)
.

Thus, we obtain circularity if and only if ϕ = ϕ1 which is further equivalent (mod π) to

tanϕ=tanϕ1 ⇔ sinϕ

cosϕ
=

sinϕ1

cosϕ1
⇔ 〈∂s,∆s× n〉

〈∂s,∆s〉
=
〈∂s1,∆s× n〉
〈∂s1,−∆s〉

⇔ ν1(ν
2 + 1)

〈∂s,∆s〉
=

ν(ν21 + 1)

〈∂s1,−∆s〉
⇔ ν

ν2 + 1
〈∂s,∆s〉+

ν1
ν21 + 1

〈∂s1,∆s〉=0,

which is equivalent to vanishing of Equation (21). Thus, circularity is equivalent to

∂
( νν1

(νν1−1)2
‖∆s‖2

)
= 0,

which is what we wanted to show. �
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Remark 16. In one direction, the implication of Theorem 15 is a corollary of [11,
Theorem 4.3] which says that for circular semi-discrete surfaces isothermicity and du-
alizability are equivalent. Since in our case f is dualizable and circular, which implies
that f is isothermic, we therefore get

νν1
(νν1 − 1)2

‖∆s‖2 =
1

νν1
‖∆f‖2 = σ

using Theorem 10 (b) and Definition 2 with ∂σ = 0. Thus, our considered function must
be constant.

Remark 17. We rewrite the constant term (15) of Theorem 15. We obtain the following
constant expressions as we use Theorem 10 (b) at (∗) and β from Lemma 12 at (∗∗) and
Equations (18) at (§)

const. =
νν1

(νν1 − 1)2
‖∆s‖2 =

νν1
νν1 − 1

‖∆s‖ ·
( νν1
νν1 − 1

− 1
)
‖∆s‖

(∗)
= ‖∆f‖ ·

(
‖∆f‖ − sgn(νν1 − 1)‖∆s‖

) (∗∗)
= β‖∆s‖ · (β − 1)‖∆s‖

(§)
= 〈q − s, s− p〉.

Theorem 18. Let s be the Gauss image of an isothermic cmc surface f and let ν be
a positive function which makes f a Koenigs net. Further, let m be the curve traced by
the center of the family of circles that makes contact with s, s1 and let p, q be curves
as defined by Equations (18). Then the strip generated by p and q is circular and the
centers of the circles are identical to m for each parameter value t.

Proof. Let c be the midpoint of s and s1, i.e., c = (s+ s1)/2. Then, there are two right
angled triangles m, c, p and m, c, s and we therefore get

‖m− p‖2 − ‖m− s‖2 = ‖m− c‖2 + ‖c− p‖2 − ‖m− c‖2 − ‖c− s‖2

= ‖p− q‖2/4− ‖∆s‖2/4 (∗)
= ((1− 2β)2 − 1)‖∆s‖2/4 = (β2 − β)‖∆s‖2.

Equality at (∗) follows from the affine combinations representing p and q in Equation
(18). Consequently, Remark 17 implies that ‖m−p‖2−‖m−s‖2 is constant which yields

(22) 0 = ∂
(
‖m− p‖2 − ‖m− s‖2

)
= 2〈m− p, ∂m− ∂p〉 − 2〈m− s, ∂m− ∂s〉.

Since m is the center of the circle that makes tangential contact with s and s1 we have
〈m− s, ∂s〉 = 0 and 〈m− s1, ∂s1〉 = 0. From ‖m− s‖2 = ‖m− s1‖2 we conclude

〈∂m− ∂s,m− s〉 = 〈∂m− ∂s1,m− s1〉.

After expanding the last equation we get 〈∂m, s1 − s〉 = 0. Since s − p is parallel to
s1 − s we also get 〈∂m, s− p〉 = 0. Finally, inserting all the derived equations into (22),
we get

〈m− p, ∂p〉 = 0,

which means that the circle with center m and radius ‖m− p‖ makes tangential contact
with the curve p. Analogously, this circle also makes tangential contact with the curve
q. �
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5. A Cauchy problem for the Gauss image of a cmc surface

In this section we investigate a Cauchy problem in the setting of circular semi-discrete
surfaces. The following theorem says that for some given initial values there is a unique
circular semi-discrete surface which is the Gauss image of a cmc surface.

Theorem 19. Let I ⊂ R be an interval with t0 ∈ I. Suppose we are given a curve
s0 : I → R3, a positive function ν : I → R+, and a polygon (s̃k)k=0,1,... with s̃0 = s0(t0)
(see Figure 7 right). Further, let (ν̃k)k=1,... be a sequence with positive entries.

Then there are a unique circular semi-discrete surface

s : {0, 1, . . .} × I → R3

and positive functions ν0, ν1, . . . : I → R+ such that

• the first curve of s, namely s(0, t), equals the given curve s0,
• the k-th curve passes through s̃k for all k, i.e., sk(t0) = s̃k,
• νk(t0) = ν̃k for all k,
• the functions νk are of the form required by Theorem 10, which means that s is

the Gauss image of a cmc surface.

Proof. As a first step we construct s1 and ν1 from the given data and show that the two
curves s, s1 together with ν, ν1 fulfill the integrability condition (17). Then the rest
follows by induction.

We aim at a construction of a Lipschitz continuous function F : I × R3 → R3 such
that the unique solution c(t) of the initial value problem

(23)
∂c

∂t
= F (t, c), c(t0) = s̃1

is the curve c = s1 we are looking for. That is, F is a time-dependent vector field such
that for all t ∈ I and x ∈ R3 the vector F (t, x) equals ∂s1(t). Here, x plays the role of
the point s1(t) (see Figure 7 right). Theorem 15 implies that the value (20) has to be
constant along the strip which yields

νν1
(νν1 − 1)2

‖x− s‖2 =
ν(t0)ν̃1

(ν(t0)ν̃1 − 1)2
‖s̃(t0)− s̃1‖2 =: σ = const.

Consequently, νν1 is either smaller than 1 or greater than 1 along the strip because
otherwise σ would have a pole and would no longer be constant. Further,

νν1 =
2a+ 1±

√
(2a+ 1)2 − 4a2

2a
=: h±(a) > 0, where a =

σ

‖x− s‖2
.

It is easy to see that 0 < h−(a) < 1 < h+(a) for all a > 0. Thus, we define

ν1(t, x) =


h+(a)
ν(t) if ν(t0)ν̃1 > 1

h−(a)
ν(t) if ν(t0)ν̃1 < 1,

which yields a differentiable function ν1. We take this function and define a smooth
vector field

F (t, x) =
ν21 + 1

ν1

(∂ log(νν1 − 1)

ν + ν1
(x− s) +

ν

ν2 + 1
∂s
)
,
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by setting F (t, x) equal to ∂s1 from the equation of the integrability condition (17).
Thus, the initial value problem (23) has a unique solution s1 automatically fulfilling the
integrability condition (17). Since we chose ν1 in such a way that value (20) is constant
along the strip s, s1, Theorem 15 implies circularity of the strip. Therefore, we proved
the existence of the first strip in the desired way. The rest follows by induction. �
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Verlag, Berlin, 2007.

[6] Udo Hertrich-Jeromin, Tim Hoffmann, and Ulrich Pinkall. A discrete version of the Darboux trans-
form for isothermic surfaces. In Discrete integrable geometry and physics (Vienna, 1996), volume 16
of Oxford Lecture Ser. Math. Appl., pages 59–81. Oxford Univ. Press, New York, 1999.

[7] Tim Hoffmann. Discrete cmc surfaces and discrete holomorphic maps. In Discrete integrable ge-
ometry and physics (Vienna, 1996), volume 16 of Oxford Lecture Ser. Math. Appl., pages 97–112.
Oxford Univ. Press, New York, 1999.

[8] Oleg Karpenkov and Johannes Wallner. On offsets and curvatures for discrete and semidiscrete
surfaces. Beitr. Algebra Geom., 55(1):207–228, 2014.

[9] Yang Liu, Weiwei Xu, Jun Wang, Lifeng Zhu, Baining Guo, Falai Chen, and Guoping Wang. General
planar quadrilateral mesh design using conjugate direction field. ACM Trans. Graph., 30:140:1–
140:10, 2011.

[10] Christian Müller. On discrete constant mean curvature surfaces. Discrete Comput. Geom.,
51(3):516–538, 2014.

[11] Christian Müller and Johannes Wallner. Semi-discrete isothermic surfaces. Results Math., 63(3-
4):1395–1407, 2013.

[12] Konrad Polthier and Wayne Rossman. Discrete constant mean curvature surfaces and their index.
J. Reine Angew. Math., 549:47–77, 2002.

[13] Helmut Pottmann, Yang Liu, Johannes Wallner, Alexander I. Bobenko, and Wenping Wang. Ge-
ometry of multi-layer freeform structures for architecture. ACM Trans. Graphics, 26(3):#65,1–11,
2007.

[14] Helmut Pottmann, Alexander Schiftner, Pengbo Bo, Heinz Schmiedhofer, Wenping Wang, Nic-
colo Baldassini, and Johannes Wallner. Freeform surfaces from single curved panels. ACM Trans.
Graphics, 27(3):#76,1–10, 2008. Proc. SIGGRAPH.

[15] Helmut Pottmann and Johannes Wallner. Computational line geometry. Springer-Verlag, 2001.
[16] Wayne Rossman and Masashi Yasumoto. Weierstrass representation for semi-discrete minimal sur-

faces, and comparison of various discretized catenoids. J. Math-for-Ind. 4B, pages 109–118, 2012.
[17] Robert Sauer. Differenzengeometrie. Springer-Verlag, Berlin, 1970.


