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Robust Feature Classification and Editing
Yu-Kun Laia, Qian-Yi Zhoua, Shi-Min Hua, Johannes Wallnerb and Helmut Pottmannb

Abstract— Sharp edges, ridges, valleys and prongs are
critical for the appearance and an accurate representation
of a 3D model. In this paper, we propose a novel approach
that deals with the global shape of features in a robust
way. Based on a remeshing algorithm which delivers
an isotropic mesh in a feature sensitive metric, features
are recognized on multiple scales via integral invariants
of local neighborhoods. Morphological and smoothing
operations are then used for feature region extraction and
classification into basic types such as ridges, valleys and
prongs. The resulting representation of feature regions is
further used for feature-specific editing operations.

Index Terms— feature sensitivity, remeshing, morphol-
ogy, feature extraction, feature classification, feature edit-
ing.

I. INTRODUCTION

FEATURES are important parts of geometric
models. They come in different varieties: sharp

edges, smoothed edges, ridges or valleys, prongs,
bridges (see Figures 1 and 10) and others. The
crucial role of features for a correct appearance and
an accurate representation of a geometric model has
led to an increasing activity in research dealing with
features (see subsection I-A).

We assume the underlying surfaces to be pro-
cessed are sufficiently smooth. For discrete repre-
sentations like triangular meshes, we assume that
they are piecewise linear approximations to smooth
surfaces. In this setting, feature regions can typically
be characterized by at least one high value of a
principal curvature. Just as curvature depends on
the scale, so do features. A sharp edge can be seen
as a limit of a smoothly blended edge when the
blending radius tends to zero. Roughly speaking,
features are characterized by the way in which the
unit surface normal varies along the surface Φ. It is
therefore natural to consider the field of unit normal
vectors n(x) attached to the surface point x ∈ Φ
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as a vector-valued image defined on the surface.
Borrowing the idea of an image manifold from Im-
age Processing [1], one can now map each surface
point x to a point xf = (x, wn) in R6. Here, w
denotes a non-negative constant, whose magnitude
regulates the amount of feature sensitivity and the
scale on which one wants to respect features (see
Section II-A). In this way, Φ is associated with
a 2-dimensional surface Φf ⊂ R6. By measuring
distances of points and lengths of curves on Φf

instead of Φ, we introduce a feature sensitive (fs)
metric on the surface. It has been studied under
the name regularized isophotic metric [2], and it
has been applied to fs mathematical morphology on
surfaces.

Fig. 1. Result of automatic feature classification: ridges (orange),
valleys (blue), prongs (pink). See also Fig. 10.

Fig. 2. Isolines of the distance from given points computed with
respect to the feature sensitive metric.
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As shown in Fig. 2, distances across features are
much larger in the fs metric than in the ordinary
Euclidean metric. This provides possibilities for fs
geometry processing. An isotropic mesh of Φf de-
livers a feature sensitive mesh of Φ. In this paper, we
show how to compute these meshes and study some
of its geometric properties. Moreover, we propose
fs remeshing as an effective tool for computation
of integral invariants which provide good indicators
for features. Most of the further processing pipeline
such as feature region extraction and global feature
classification can be largely based on this mesh.

A. Related Work

Feature Extraction. Features, especially feature
lines (crest lines) have been discussed from a differ-
ential geometric perspective [3]. Feature extraction
can then be performed by estimating differential
quantities via local or global surface fitting (see [4]–
[7] and the references therein). Also methods of
computational differential geometry, which work
directly with meshes and do not require an approx-
imation step, have recently been extended for crest
line extraction [8].

Our method for feature extraction uses integral
invariants of approximate geodesic circles in the fs
metric. In this sense, it is related to and motivated by
work of Manay et al. [9], who noted that curvature
of planar curves can be estimated in a robust way via
integrals over local neighborhoods. A very similar
idea is found in the work of Clarenz, Rumpf and
Telea [10], [11], who recognize features by integral
invariants of patches cut out from the surface by
balls; the ball size determines the scale on which the
features shall be detected. This method is robust and
could also be used for feature detection prior to the
use of our further processing. However, it does not
prepare further processing as much as our approach
is doing this.

Feature classification and editing. In contrast to
the large body of work on local feature extraction,
there is much less research on automatic classifi-
cation and editing. To extract the global shape of
features, ideas from mathematical morphology [12]
have been extended to surfaces [13]. This work,
though not based on feature sensitive metric and
related techniques, has relations to our feature clas-
sification approach. However, our approach further
classifies features and manipulates them correspond-

ing to their type. Clarenz et al. [11] propose a PDE-
based algebraic multigrid algorithm to compute a set
of multiscale basis functions, which are then applied
for feature sensitive surface editing. Based on the
characteristics of intersection curves with blowing
bubbles, Mortara et al. [14] propose a method to
locally classify vertices into a few types, which is
different from our approach that takes global shape
of features into account.

Fs parameterization. Almost any work dealing
with features incorporates surface normals in some
way, and there is even some work which does this
in a way close to ours: Cohen-Steiner et al. [15]
aim at approximating surfaces with help of Lloyd’s
clustering algorithm and a geometric error metric
based on surface normals. However, the authors
of [15] do not exploit the feature sensitive metric
and the properties of the related image manifold.
The purpose of combining normals with positions
as well as the method used are different, and we
also solve a different problem. The image manifold
is also related to curvature estimation based on
normal cycles [16]. Sander et al. [17] proposed a
parameterization method that minimizes signal er-
rors (approximated by first order Taylor expansion)
and in this work they mention that normals can
be considered as 3-dimensional signals; in a later
contribution [18] they deal with fs parameterization.

Feature sensitive remeshing is a basic tool used
in this paper for efficient feature extraction and
processing on mesh models. We treat fs remeshing
as isotropic remeshing in the fs metric. Remeshing
is an active topic, and we will briefly describe some
work which is related to ours. Isotropic remesh-
ing was studied in [19]. The authors used error
diffusion to initially distribute vertices, and then
refined positions of vertices using global confor-
mal parameterization and the weighted centroidal
Voronoi diagram. Finally, a constrained Delaunay
triangulation is applied to construct the mesh. Due
to the use of a global parameterization, the approach
does not work well when applied to models with
complicated topology. The work in [20] and [21]
improved this by using a set of local parame-
terizations. Botsch and Kobbelt [22] proposed an
efficient and heuristic approach to generate isotropic
meshes, which used iterative local modifications and
reported good results on smooth models. Even with
curvature-adaptive sampling [19]–[21], [23], [24]
it is not easy to follow features with one large
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principal curvature well. In [25], a general approach
based on principal curvature tensor estimation was
proposed to generate isotropic triangles in umbilic
regions and anisotropic quadrilaterals elsewhere.

Feature sensitive surface extraction from volume
data. Kobbelt et al. [26] proposed a feature pre-
serving approach to surface extraction from volume
data. Their approach utilizes feature edge and fea-
ture point detection with some heuristics related to
normal variation; then more samples are inserted
in detected feature regions to improve the repre-
sentation of sharp features. Ju et al. [27] improves
this method, and the improved method is used for
mesh repair with feature preservation [28]. A sam-
pling pattern to represent feature and blend regions
which minimizes normal variation and noise was
proposed in [29]. This approach still depends on
an accurate detection of feature regions. Vorsatz et
al. [30] proposed another way for feature preserving
remeshing, where an estimated scalar curvature field
forces vertices to snap to features. Though explicit
thresholding is avoided, curvature estimation is still
necessary. Our approach not only deals with sharp
features, but also smooth ones; it incorporates nor-
mal information, but no higher-order differential
quantities.

B. Overview

Based on the feature sensitive metric, an efficient
anisotropic remeshing method can be derived. By
exploiting properties of the mapping between a
surface Φ and its image manifold Φf , one can rec-
ognize and extract feature regions. The computation
of integral invariants used for feature extraction can
greatly benefit from the new remeshing approach.
Morphology based on the feature sensitive metric
and feature sensitive curve smoothing performed via
Φf allow us to improve feature extraction results.
We also show how a smoothed skeleton, constructed
in the feature sensitive sense, is used for classifica-
tion, for automatic modification of features, or for
interactive editing operations.

The paper is organized as follows. Section II de-
scribes geometry and the algorithm for feature sen-
sitive remeshing. The extraction of feature regions
is discussed in Section III. Global descriptors such
as the skeleton (with respect to the feature sensitive
metric) of a feature region serve for classification
and manipulation of feature regions in Section IV.

Experimental results are presented and discussed in
Section V and finally we conclude this paper and
discuss future work in Section VI.

II. FEATURE SENSITIVE REMESHING

A. Definition and Geometric Properties
Any isotropic surface remeshing or sampling al-

gorithm, which is not confined to the 3D case, can
just as well be applied to Φf ⊂ R6 instead of
Φ. This is a simple approach to feature sensitive
remeshing and feature sensitive sampling, respec-
tively: it places more points in highly curved areas
than in flat ones. We have verified this transfer for
various remeshing and sampling algorithms [19],
[21], [31], [32]. We would like to point out that the
use of Φf ⊂ R6 is mainly for a simple transfer from
isotropic to non-isotropic remeshing algorithms and
for a simple introduction of the fs metric. As will
be seen from the developments given below, we can
still explain everything in R3 via an appropriately
combined processing of points and normals and thus
the use of the image manifold in R6 does not result
in any computational overhead over working in 3D.

Here we focus on fs isotropic meshes. They stem
from nearly equilateral and equally sized triangles
in R6. In the next sections, we will see that such
meshes are very useful for feature extraction and for
simplifying and accelerating the algorithms for fs
morphology on surfaces which are proposed in [2].
They are also used for feature sensitive smoothing
which achieves similar effects as geometric snakes
[33], but in a simpler way.

The geometric properties of fs isotropic remesh-
ing stem from the characteristics of the fs metric,
especially the property of principal distortions. The
first fundamental form of Φf has the symmetric
positive definite matrix

M = I + w2III, (1)

which is a combination of first and third fundamen-
tal form of Φ. More details about basic geometric
properties can be found in [2].

A mapping between two surfaces, e.g., Φ and Φf ,
can be investigated with regard to metric distortions.
In our case, the mapping α between the two surfaces
is given by α : x(u, v) ½ xf (u, v). At some point
(u, v), the distortion λ(u̇) in direction u̇ = (u̇, v̇)
(seen as tangent direction of a curve (u(t), v(t)) in
the parameter domain, whose image on Φ and Φf is
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c and cf respectively), is defined as λ2(u̇) := ċ2
f/ċ

2.
It can be proved that

λ(u̇) = 1− w2K + 2w2Hκn(u̇), (2)

where K and H are Gaussian and mean curvature,
respectively, and κn is the normal curvature in
direction u̇.

Of particular interest are the extremal distortions,
whose geometric explanation is very simple. The
affine first derivative mapping Dα maps the unit
circle k in a tangent plane of Φ (centered at the
point x(u, v) of contact), to an ellipse kf in the
corresponding tangent plane of Φf at the point
xf (u, v). The distances of the vertices of that ellipse
to its center are exactly the extremal distortions λ1,
λ2. Equation 2 shows that the directions of extremal
distortion between Φ and Φf are the principal cur-
vature directions of Φ; with the principal curvatures
κi (i = 1, 2) of Φ, the extremal distortions λi are

λ2
i = 1− w2K + 2w2Hκi = 1 + w2κ2

i . (3)

Note that also the reverse mapping from Φf to Φ
has extremal distortions. A unit circle lf in a tangent
plane of Φf is mapped under Dα−1 to an ellipse l in
the corresponding tangent plane of Φ. The axes of
this ellipse l are in principal curvature direction, and
its vertices are distance 1/λi to the center. These
ellipses l nicely visualize the fs behavior of the
metric and serve (if small) as approximate isolines
of the fs distance from their center (see Fig. 2).

A near-isotropic triangulation with target length l
of a smooth surface with maximum curvature κ has
approximation error ≈ l2 κ

2
. We can then show that

a fs isotropic mesh with target length lf in feature
space leads to a triangulation of the original surface
with approximation error ≈ l2f

κ
2

1
1+κ2w2 .

The computation of the image manifold Φf re-
quires surface normals. For a smooth surface in any
representation this is a simple task. However, we
need to be careful with the following issues: the
presence of noise, the scale and the presence of
sharp features. The latter can be edges as intersec-
tion curves of smooth surfaces or corners, which are
points, where at least three surface patches intersect
or where the local shape is like the vertex of a
cone. The computation of the image manifold Φf for
triangle meshes with estimated normals can be done
by simply mapping each vertex to the feature space
in R6 while keeping the connectivity unchanged. For
sharp features (edges or corners), the mapping is

not one-to-one, or in the discrete case, the simple
mapping will result in undersampling of the man-
ifold embedded in R6, even if it is well sampled
in R3. For most scanned models, sharp features are
not well preserved, and will most likely be replaced
by small blending regions, due to the limitation of
acquisition or processing techniques. In this case,
sharp features discussed here are not present at all.
However, for CAD models or models constructed
via feature preserving algorithms (e.g. [29], [30]) or
feature recovery techniques (e.g. [34]), it is possible
to have sharp features, though they are always rare
compared to the whole model.

Noise and scale. We assume that we are given
an error tolerance δ for points on the model and a
parameter ε (usually small, but much larger than δ);
only features of width > ε shall be handled.

In the presence of noise or negligible features, we
estimate normals from a neighborhood of size≈ ε,
e.g., with local planar or quadratic fits (see e.g. [35])
and a fitting error < δ. Even if this does not
mean smoothing of the original data, this approach
prevents a dramatic increase of the noise level in Φf .
Moreover, marginal features - in contrast to relevant
ones - do not manifest themselves in larger area of
Φf .

If the model Φ gets scaled by a factor σ, Φf scales
with this factor if the weight w is also multiplied
by σ. Hence, w has to be judged in relation to the
object size. Suitable values of w will therefore be
given under the assumption that the model fits into
the unit cube. Explicit estimation of the noise level
is not practical for many cases and thus in practice
it is chosen with the user’s assistance. We have
found that the same w is suitable for a wide range
of models with similar scale, therefore choosing an
appropriate w will not be a difficult task. Moreover,
users may appreciate the freedom of choice of w,
as a way to control the feature sensitivity. This is
especially useful in remeshing. The values w used
for the examples in this paper will be given in
Section V.

Sharp features. The handling of sharp features
depends on the application. In our paper, we as-
sume the viewpoint that a sharp feature is a limit
case of a smooth surface. The reader may consider
sharp features smoothed with a very small blending
radius. Then, a point p on a sharp edge c ⊂ Φ,
with normals n− and n+ of the adjacent smooth
surfaces, corresponds to a circular arc pf on the
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Fig. 3. The blow-up phenomenon at sharp edges and corners: Top:
original mesh in R3. Bottom: Projection of the corresponding mesh
in R6.

image manifold Φf ; this arc has the endpoints
(p, wn−) and (p, wn+). This is a case of surface
expansion (see Fig. 3). A sharp edge is mapped
to a surface region on Φ. Likewise, at a corner
we have a two-dimensional set of surface normals
and a corresponding spherical patch in the image
manifold. Similarly, we need to insert more samples
in expansion regions to ensure accurate sampling.

As discussed above, sharp edges or corners, rather
than sharp blending regions, need special treatment.
The detection of sharp edges and corners can be
made by dihedral angle estimation; instabilities due
to badly shaped triangles are avoided by the use of
planar cuts orthogonal to the edge in consideration.
More samples with the same position, but different
normal vectors are then inserted to sample the
feature regions with better accuracy (Fig. 3).

B. Remeshing Algorithm
Details about transferring the optimization algo-

rithm in [32] to Φf to achieve fs isotropic remeshing
will be discussed in this subsection. Advantages of
this approach are its generality and its capability
of handling models with arbitrary genus, with or
without holes.

The remeshing process is carried out in two
phases. The first phase spreads out a desired number
of sampling points over the input mesh surface Φf

and iteratively modifies their positions to achieve
near-isotropic sampling. The second phase connects
those sampling points with the information from the
input mesh. This two-phase strategy is similar to the
re-tiling approach in [23], however, we adapt it to fs

isotropic remeshing, and utilize different algorithms
in either phase.

The basic idea is the same as [32], but it is
implemented on meshes embedded in R6. It is based
on the minimization of an energy function, which
is a sum of spring energies that push away vertices
which are too close to each other. This is done by
a projected gradient descent method. The manifold
is the triangle mesh representation of Φf in R6;
the projection onto it can be accelerated by the
approximate nearest neighbor algorithm [36]. Be-
cause we are processing models containing various
kinds of features, it is not ideal if we simply use
Euclidean distances in R6 to judge their distances
over the surface. We have found geodesic distances,
computed by [37] for example, necessary to achieve
fs isotropic remeshing of high quality.

The second phase takes the sample points and the
original mesh as input, and reconstructs the output
mesh with correct connectivity, keeping triangles
as equilateral as possible. We suggest to recover
connectivity by a set of overlapping local param-
eterizations. In a local region, a geodesic disk is
constructed and the corresponding region is mapped
to a unit circle in the parameter domain, using a
feature sensitive adaptation of the parameterization
method described in detail in the following para-
graph. The samples falling into the disk are also
mapped to the parameter domain, and a planar De-
launay algorithm can be applied to connect the local
patch. Previously connected edges are treated as
constraints, and thus a planar constrained Delaunay
triangulation algorithm is applied. The constrained
Delaunay triangulation has been implemented using
the CGAL library [38]. The local parameteriza-
tion scheme avoids topological problem encountered
with the use of a global parameterization. The
produced mesh is already nearly isotropic in almost
all cases. However, in rare cases, especially near the
boundary of two patches when the parameterization
has relatively large distortions, we may still use a
few iterations of Delaunay like edge swap to further
improve the results.

The parameterization used in the reconstruction
is a mapping from the 2-manifold embedded in
R6 to a planar domain. Various parameterization
methods can be adapted for this purpose. For a
recent survey of parameterization methods, see [39].
The adaptation is usually straightforward, as the
algorithms almost solely depend on edge lengths
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and related measurements. The parameterization is
desirable if it can be computed efficiently, and if it
is guaranteed to be a one-to-one mapping when the
outer boundary is fixed to a convex polygon. Quasi-
conformal parameterization is preferable, as it keeps
Delaunay property after the mapping. We used the
mean value parameterization proposed in [40] in our
experiments, which satisfies the requirements and
is an approximation of harmonic maps, which is in
practice close to conformal parameterization.

Remeshing results of our method are shown in
Fig. 4.

Fig. 4. Results of feature sensitive remeshing. Note that triangles
are isotropic in flat regions while anisotropic in feature regions.

III. FEATURE EXTRACTION

A. Feature Filter

Most feature detectors are based on differential
invariants. Although this is reasonable for highly
accurate and dense data, this is no longer the case
for increasing noise or sparsity. From the view-
point of stability, it is preferable to use integral
invariants. This has been shown in the context of
planar curve matching by Manay et al. [9] and for
feature extraction by Clarenz et al. [10]. Although
the latter approach would also serve very well for
our purposes, we prefer the following approach
which uses the result of fs remeshing.

The computation of such invariants requires the
definition of neighborhoods of points and later also
the measuring of distances. As to neighborhoods,
Fig. 2 and the considerations of geometric prop-
erties of Φf lead to the idea to bound the local
neighborhood of a point v ∈ Φ by a fs geodesic
circle C(v, r), i.e., the points whose fs distance
from v equals r. The corresponding curve Cf in
Φf is the boundary of a geodesic fan [41]. Thus,
an efficient computation can be based on the latter
reference. Moreover, fs isotropic meshes provide
a good and efficient approximation of fs geodesic
disk using topological disk with discrete radius
r, the number of edges away from the center.
More accurate geodesic disks can be approximated.
Geodesic distance at each vertex to the center is first
approximated, similar to previous geodesic distance
computation method(e.g. [37]). Based on isotropic
meshes, the computation can avoid backtracking,
and as vertices on the same topological ring are
similar in distance, a fixed number of rings are
sufficient. Approximated geodesic disks can thus be
formed by connecting points on edges that intersect
with geodesic disk of desired radius. The asymptotic
complexity of this approximation is identical (with
a different global coefficient) to that of use of
topological distance, and is still easy to implement.

As to the invariants themselves, we e.g. use
the compactness measure fcom = A/L2, where A
and L are area and circumference of C(v, r) in
Φ, respectively. This invariant assumes its highest
values for nearly circular C(v, r); fcom is smaller
if C is elongated. These facts follow from the
isoperimetric inequality (fcom ≤ 1/(4π) for all
planar curves and fcom = 1/(4π) only for cicles). A
curvature-like integral invariant “κmax” is estimated
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via the shortest distance dmin of C(v, r) from v: it
satisfies dmin = r/

√
1 + w2κ2

max. Thus dmin and its
dependence on r serves as an invariant.

For various values of r, we obtain invariants
at different scales. A feature detector combines
thresholds on fcom and dmin. We use the following
elementary feature responses, which are defined via
threshold values Ti:

—R1(T1) is true ⇐⇒ dmin < T1. R1 detects
feature regions which exhibit small curvature radius
in at least one direction.

—R2(T2) is true ⇐⇒ fcom < T2. R2 in com-
bination with R1 detects elongated features (ridges,
valleys, sufficiently narrow bridges, tunnels, but also
parts of prongs).

—R3(T3) is true ⇐⇒ fcom > T3. Both R3 and R1

are true for the top of a prong (if it is not detected
as a ridge).

Good thresholds are found via a statistical anal-
ysis of the values for fcom and dmin in a few user-
selected feature and non-feature regions. Mean and
deviation of these values in feature and non-feature
regions can be estimated from the training data, and
linear discriminant model with Gaussian distribution
assumption can be used to derive the thresholds. Use
R1(T1) alone also works reasonably well in practice.

B. Morphological improvement of the filter result

The filtering described above elicits a positive
response for some vertices of the mesh. Triangles
with at least two positive vertices are then marked as
candidates for a feature region (“black” triangles),
others are not (“white” triangles). We may view
this as a binary image on a triangulation and can
apply methods of mathematical morphology [12]
to it. Because we have a fs isotropic triangulation,
it is appropriate to derive morphological operations
with topological disks rather than fs geodesic disks
as structuring elements. This is a special case of
graph morphology [42]. We use a closing operation
(morphological dilation followed by erosion) to
fill small holes in feature regions and a cleaning
operation to remove sufficiently small regions that
are possibly caused by noise.

In some cases, however, the closing operation
may happen to connect two disconnected, yet close
regions. This is not desirable and may lead to mis-
classification in later steps. morphological opening
(morphological erosion followed by dilation) may

Fig. 5. Results of the feature filter using dmin for neighborhood
size 1,2,3, increasing from top to bottom.

be performed before or after closing to work in
an opposite way, i.e. avoid misleadingly connecting
two regions. However, either way has its limitation.
We suggest to further improve the results by using
hysteresis thresholding initially proposed in image
processing by Canny et al. [43]. The idea usually
uses two thresholds rather than one used in simple
thresholding. The first threshold is used to compute
a preliminary classification of whether a face be-
longs to a feature region. Then fs morphological op-
erations are used to improve the result. The opening
operation does not remove faces that have higher
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Fig. 6. Results of the feature filter based on fcom for neighborhood
size 1,2,3, increasing from top to bottom.

feature response (using a tighter threshold) from
feature regions. Similarly, the closing operation only
recognizes faces that are sufficiently close to fea-
tures (using a looser threshold) as feature regions. In
this way, the results tend to reduce the possibility of
misleading connection and disconnection of regions.

C. Feature Sensitive Polygon Smoothing.

The second stage of processing is to form con-
nected components of feature triangles. Here two
faces are considered adjacent if they share a com-
mon edge. Depending on the type of the feature,

Fig. 7. Steps in the feature classification procedure: Filter response
(top left); morphological closing (top right); boundary extraction
(bottom left); skeleton and classification (bottom right).

we may have a certain number of closed boundary
curves of a feature region. The boundary is actually
a polygon on the mesh, formed by edges of the
triangles which belong to the black feature region.
To obtain a nicer result and better basis for further
processing, we may apply smoothing to the bound-
ary polygon. This should be done on Φf ⊂ R6, in
order to maintain a good alignment with the feature
shape. We present fs polygon/curve smoothing; its
applications go beyond the present one.

Let x1, . . . ,xn ∈ Φf ⊂ R6 be the current (closed)
sequence of vertices (i.e. xn+1 = x1) of the polygon
which shall be smoothed. In the spirit of splines
in manifolds [44], we may minimize a discretized
tension spline energy,

F =
1

2

∑
i

[
(xi+1 + xi−1 − 2xi)

2 + λ(xi+1 − xi)
2
]
,

(4)
with a tension factor λ. The energy’s partial deriva-
tive with respect to xj is given by ∂F/∂xj =
∆4xj − λ∆2xj , where ∆2xj and ∆4xj are central-
ized second and fourth differences.
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For a minimizer of F , which is restricted to Φf ,
at each vertex xj , the vector ∆4xj − λ∆2xj has to
be orthogonal to Φf (by the Lagrangian multiplier
rule). For the purpose of smoothing, we propose to
simply apply a few iterations of a projected gradient
descent as follows:

1) At the current vertex position xj , compute
the negative gradient vector vj := −∆4xj +
λ∆2xj .

2) Compute the orthogonal projection tj of vj

into the tangent plane of Φf at xj .
3) Project the point xj + stj onto Φf where s is

the step size.
For stability reasons, the step size s is controlled

by the Armijo rule [45]. Fast projection onto the
mesh in R6 can be done with the approximate
nearest neighbor algorithm [36].

IV. FEATURE CLASSIFICATION AND
MANIPULATION

We describe how to classify feature regions and
to capture them in a form which simplifies further
processing. Inspired by modeling techniques such
as ‘wires’ [46], we represent the feature region by
its boundary and a skeleton.

A. Skeleton computation.
The skeleton of a feature region (with respect

to the fs metric) could be computed by a fast
marching algorithm which generates a distance field
on the mesh in R6 [47]. However, we already have
a fs isotropic mesh and thus we can compute an
approximate skeleton in a more efficient way based
on graph morphology [42]. For a similar approach,
see [13].

In order to further improve the quality of this
skeleton, post-pruning removes short side branches.
Smoothing according to Section III-C produces a
final skeleton. The difference to Section III-C is that
the skeleton does not consist of a single polygon.
We may view it as a collection of poly-lines to
be smoothed such that connectivity is maintained.
Some results are shown in Fig. 8. Note that the
skeleton is in general not formed of crest lines.

B. Feature classification.
The developments above provide the basis for an

automatic classification of feature regions. Feature

Fig. 8. Feature regions with smoothed boundary and skeleton.

classification is a wide and rather unexplored area.
Here we confine ourselves to a few basic types:
ridges and valleys, prongs, bridges and tunnels, as
shown in Figures 1 and 10. Ridges and valleys are
actually the same, and so are bridges and tunnels,
if we switch from the interior of the surface to its
exterior. Note that we may have aggregates of vari-
ous feature region types, and that our classification
is far away from being complete. We rather want
to show how well the present framework helps in
automatic feature classification.

Ridges and valleys have a skeleton s well aligned
with the boundary of the feature region. The skele-
ton may be branching, and the feature region may
have a quite complicated structure globally. How-
ever, in any case, the skeleton ratio rskel := ls/lb
between the Euclidean boundary length lb and the
skeleton length ls is approximately 0.5. Moreover,
the Euclidean surface area A of the region is close to
ls ·θ, with the average feature thickness θ. From this
we may compute θ, which we expect to be of the
same magnitude as the feature size ρ. Feature size
means the smallest radius of curvature of a feature.
To distinguish between a ridge and a valley, one
may investigate points p′ in local profile sections
with planes through points p ∈ s and orthogonal to
s. If the inner product (p′−p) ·n with the outward
normal n at p is < 0 (> 0), we have local convexity
(concavity) of the profile section and thus a ridge
(valley).

A simple prong always has a single boundary
loop, which is not well aligned with the skeleton
s; the latter is typically small. However, due to
instabilities of the skeleton computation on a long
prong with a comparably short boundary, we do
not use it for classification. Rather, the surface area
A is a further good indicator. Approximating the
‘shortest’ prong by a hemisphere, we see that A
should be greater than l2b/2π. To find the top region



SUBMITTED TO IEEE TVCG 10

of the prong, we search for a region with high
curvature in both directions. It corresponds to a
positive response of feature filters R1 and R3 with
appropriate thresholds. A central point in this region
serves as top point. This simple prong detection
works well if the top region is not too far away
from a spherical region, i.e., cross sections normal
to the main direction of the prong are not far away
from circles (high compactness measure).

There are more complicated prongs, seen e.g.
at some toes of the dragon in Fig. 1, which get
classified as ridges with this simple procedure. This
is actually correct, if one judges such features at a
smaller scale. At a larger scale, however, one may
want to classify the same feature as a prong. This
motivates our approach of using multiple thresholds
for feature filtering. Improved feature classification
uses the inclusion tree of feature regions detected at
different scales.

A basic bridge or tunnel (without branches) has
two closed boundary loops. The skeleton is not well
aligned with the boundary, and there is no top region
as for a prong. The triangles in the fs isotropic mesh
should be elongated in a direction transversal to the
boundary.

Feature Classification Algorithm. Based on
these simple characteristics of elementary feature
types, we implemented a feature classification algo-
rithm (not considering bridges and tunnels) which
produced the results shown in Figures 1 and 10. The
basic classification decision is made by properties of
elementary features discussed above. Here, we will
present the algorithm structure used for classifying
models. They are designed to handle some practical
issues in classification like small holes in continuous
regions etc. As the problem is itself ill posed, the
classification process will make a few assumptions
in decreasing order of possibilities and slightly
modify feature regions (e.g. fill small holes) until
a reliable result is obtained.

Pseudo-code of the Algorithm:

FeatureClassify (): Feature classification for fs
isotropic meshes:

Input: fs isotropic mesh.
Output: detected feature regions with recognized

labels.
1) Feature filter;
2) Morphological improvements;

3) Extract connected components by Breadth
First Search;

4) For each component,
a) smooth the patch boundary using fs

smoothing;
b) discard very small patches after smooth-

ing;
c) use FeatureClassifyPatch() to classify

it;
5) Combine the results in each patch;
FeatureClassifyPatch (): Classification for a de-

tected region:
Input: A feature region;
Output: The feature type it is supposed to be.

However, this might also be a list, in cases the patch
is further segmented.

1) Compute the skeleton for the patch;
2) Classify the patch into prong, ridge/valley etc.

using properties of elementary features and a
tight threshold;

3) If the patch is classified as ridge/valley:
a) Try to segment the patch based on con-

vexity;
b) Extract segmented parts;
c) Smooth the boundary for each part using

fs smoothing;
d) Discard patches that are too small;
e) If more than one sub-patch exist, re-

cursively call FeatureClassifyPatch() to
classify them.

4) Fill small holes to simplify the boundary,
and recursively call FeatureClassifyPatch()
to classify it;

5) Classify the patch with properties of elemental
features again, using a looser threshold.

Feature detection and classification for a specific
scale is done as follows: By using the feature filter,
a few faces are selected as features. Morphological
operations are carried out to improve the filter
result. Each connected component is considered as a
feature region. The boundary is smoothed, and the
smoothed boundary is snapped back to the mesh,
which causes the boundary to be still made up
of a continuous set of edges on the mesh. The
region bounded by the updated boundary is treated
as smoothed version of the feature region. We now
check which type it most probably belongs to, by
using characteristics discussed above. We assume
that prongs have only one boundary; however, it
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is common in practice that ridges, valleys, or even
a combination of ridges and valleys appear in a
complicated configuration. There may even exist
several holes in them. Simply counting the number
of boundary loops is not reliable in practice. We
then always check if it satisfies the two properties
of ridges/valleys, namely following the feature, and
satisfying the rskel threshold. If these are satisfied
well, they can be classified as a ridge or valley. For
patches detected as ridges or valleys, which have
a significant number of both convex and concave
faces, a further segmentation is employed. This
is due to the observation that ridges and valleys
commonly appear side by side. Using local con-
vexity checking described above, each feature face
in the current feature region is marked as either
convex or concave. Then morphological operations
are employed (morphological opening followed by
morphological closing for example, and now these
two types will be considered as foreground and
background respectively) to smooth out segmented
regions. Sufficiently large connected regions of ei-
ther of these two types will be formed, and then fur-
ther classified (by the same process). If segmented
feature regions are classified well, the segmentation
is granted. If some feature region cannot be sim-
ply classified as any of these kinds, some small
modifications can be performed. Very small holes
with just a few non-feature faces will be filled, and
such an operation will alter the statistical quantities
of the feature region, thus change the classification
result. Therefore, these operations must be done
with care. Specifically, they can be carried out only
for rejected region by the first classification. This
recursive process is performed until each elementary
part is either well classified, or rejected as unknown
feature type.

Multiscale prong detection: For ridges and val-
leys, one scale of classification suffices to get
reasonably good results. However, for a moderate
scale, some prongs cannot be reliably detected, as
it may be merged into a larger region, typically
ridges. They will then be classified as part of ridges.
Though this may also be correct in some sense, it
would be more desirable to detect them as prongs,
at least for some applications. Multi-scale prong
detection can be performed, by detecting prongs at
various scales (from stricter to looser thresholds).
The feature regions will become larger, and prongs
may be merged into nearby ridges in some scale.

This phenomenon can be detected, and the largest
prong before merging is fixed as the prong. In the
desired scale, even the prong is directly adjacent to
ridges, by this process, they can still be recognized
as prongs, and the left part can well be considered
as a ridge.

C. Feature manipulation.

After feature classification, a feature region F is
outlined by its boundary and a central part: the latter
is a point on the top for a prong and the smoothed
skeleton for a ridge or valley. Therefore, we have
the input to known modeling paradigms, e.g. based
on a handle [48] or on wires [46]. Modifications
may change the boundary of F by a dilation or
erosion (performed with respect to the fs metric if
appropriate). We may also change the central part,
either automatically or in an interactive way and
recompute the surface with known methods in the
literature. In view of the wide area of possibilities,
which are not really the focus of our work, we just
give two examples illustrating the usefulness of our
classification results and show how they work well
in automatic or interactive modeling applications.

For prongs, typical operations include erosion
and dilation. Erosion of a prong can make it thin-
ner, shorter, or both. Dilation works in exactly
the opposite way. It is performed by changing the
boundary and/or central point, respectively. Both the
central point and the boundary (as well as their
near neighbors, which are required by the method to
ensure smoothness) are considered as handles, and
the positions of other vertices can be derived by
the modeling approach in [48]. Fig. 11 shows the
dilation and erosion effects for prongs of the dragon
head model.

For ridges and valleys, sharpening and smoothing
are useful operations. Ridge and valley sharpening
can be performed by wire deformation [46]. The
skeleton for a ridge or valley region may have
complicated configuration, and we model each con-
tinuous segment of skeleton without branching as
a wire. The skeleton part is smoothed with similar
technique as boundary smoothing (but not closed),
and then the smoothed result is considered as the
reference curve. The wire curve is derived from
moving vertices on the smoothed skeleton in the
direction (for ridges) or opposite direction (for val-
leys) of local normals. To make the result visually
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better, the normals could be smoothed along the
skeleton. The effective radius r is derived from the
average distance of patch boundary to the nearest
point on the smoothed skeleton. Only vertices that
are no more than distance r away from the smoothed
skeleton will be affected by the deformation. In
regions affected by two or more wires, the com-
bination formula in [46] is applied to get smooth
transitions. We may choose as scaling factor s a
value slightly smaller than 1 (e.g. 0.95) to make
the region sharper. A similar idea can be used to
achieve ridge/valley smoothing, but it works in an
opposite way. To make the result smoother, a post-
smoothing operator could be applied. One example
of ridge sharpening is shown in Fig. 12.

V. EXPERIMENTAL RESULTS

Fig. 4 shows a few results of feature sensitive
remeshing. The dragon model (top and middle left,
two closeups) is remeshed with w = 0.05, the
Max Planck head model (middle right) is remeshed
with w = 0.04, and the Armadillo model (bottom,
two close-ups) is remeshed with w = 0.03. All
the models are scaled to fit within a bounding
cube of size 1. Due to this resizing, it will be
better to use smaller w for complicated models. As
meaningful features are relatively small, a smaller w
will be sufficient to add feature sensitivity. Smoother
models can usually work with relatively larger w
as noise levels are lower and features are not as
sharp. For models with similar scale, smoothness
and noise level, the same w is sufficient to provide
results of high quality. Note that in these examples,
sample points are aggregated in feature regions
and triangles are elongated along the feature edges.
Fig. 9 shows the same rocker arm model remeshed
with different weights. Note that for the purpose of
feature classification, a wide range of weights are
all possible, with appropriately selected thresholds.

Remeshing can be implemented efficiently. We
suggest here a few improvements for performance.

The sampling before iterative optimization can be
improved by error diffusion similar to the one used
in [19]. We diffuse sampling errors from one face to
its neighbors, keeping average number of samples
almost identical in local regions. In this way, the
initial guess would be a better one for isotropic
remeshing. The surface area used for estimating the
budget of samples should be computed in R6.

Fig. 9. Feature sensitive remeshing with different weights. Left:
w = 0; center: w = 0.1, right: w = 0.2.

Geodesic distances are critical for achieving high
quality results. However, even with an efficient
estimation method, they are more expensive to com-
pute, and we suggest to compute geodesic distances
only when necessary, i.e., near sharp features. We
can use a very rough dihedral based detector for this
purpose, and then grow detected regions, to include
almost all the regions when geodesic distances are
crucial. For every vertex in such regions, geodesic
information in its local neighborhood could be pre-
computed and stored in window structures [37] on
a per edge base. These data need to be computed
only once, and are applicable in each iteration.

The relatively expensive projection in R6 can also
be reduced in later iterations, when most sampling
points will not move much, by checking if the last
projected face is still applicable in the new iteration.
This check is inexpensive, and can greatly reduce
the number of required ANN queries.

The remeshing time for all the models in this
paper are no more than a few minutes. The most
complicated example, remeshing Lucy model from
about 800K triangles to about 200K triangles shown
in Fig. 10(left) took 7 minutes on a Pentium IV
2.4GHz computer.

Fig. 10 gives two examples of automatic feature
classification. The weight w used for remeshing
is between 0.07 and 0.05, respectively. Features
are extracted and classified into ridges (orange),
valleys (blue) and prongs (pink). See also Fig. 1.
The feature extraction and classification took about
5 seconds for the Max Planck head model shown
in Fig. 8 and one minute for more complicated
examples like the Lucy model.

Fig. 11 presents results of automatic dilation and
erosion of prongs on the dragon head model. The
features shown in this figure follows color-coding
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used in other figures. They are detected and classi-
fied automatically, and then used for corresponding
modification. Fig. 12 shows an example of ridge
sharpening. All the ridges in the Happy Buddha
model are sharpened. Two close-ups of the original
model and the sharpened results are on the left and
right of the figure. The modification of prongs took
1 second and sharpening all the ridges took about
3 seconds.

Fig. 10. Automatic detection and classification of features: ridges
(orange), valleys (blue), prongs (pink). cf. Fig. 1.

VI. CONCLUSIONS AND FUTURE WORK

Based on a feature sensitive metric and the idea
of integral invariants, we have presented a robust
feature extraction and classification algorithm. The
by-product of feature sensitive remeshing is itself
a useful tool for efficient computation of some
integral quantities that reflect local characteristics
of surface. We believe that the basic ideas in this
paper can be applied to more applications: model
segmentation or patch layout for fitting seem to be
promising directions.

Our future research will mainly concentrate on
feature extraction, classification and surface match-
ing using further geometric invariants and statistical
methods from pattern classification [49].

Fig. 11. Dilation (top) and erosion (bottom) of prong features.
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