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Abstract

The conchoid surface Fd of a surface F with respect to a fixed reference point O is a
surface obtained by increasing the distance function with respect to O by a constant d.
This contribution studies conchoid surfaces of quadrics in Euclidean R3 and shows that
these surfaces admit real rational parameterizations. We present an algorithm to compute
these parameterizations and discuss several configurations of the position of O with respect
to F where the computation simplifies significantly.

Keywords: quadric, pencil of quadrics, del Pezzo surface, rational conchoid surface,
rational polar representation, focal conic.

1. Introduction

The construction of a conchoid curve to a given curve dates back to the ancient Greeks.
An example is the well known conchoid of Nikomedes, being the conchoid of a line, see
Figure 1(a). This curve has been discovered while studying the problem of angle trisection.

Consider a plane curve C ⊂ R2 and a fixed reference point O ∈ R2. The conchoid curve Cd
of C with respect to O at distance d consists of those points Q in the lines OP for P ∈ C, for
which dist(PQ) = d holds. Generally speaking, the conchoid construction is non-rational,
since at any line OP there are typically two points Q1, Q2 with dist(PQ1) = dist(PQ2) = d.
These points are the intersections of OP with a circle of radius d, centered at P . Thus the
conchoid curves Cd of rational planar curves C are typically non-rational.

Consider a conic C, its conchoid curves Cd are only rational for very particular choices of the
reference point O, namely if O ∈ C or O coincides with one of C’s focal points. More details
on conchoid curves can be found in text books on algebraic curves, for instance Wieleitner
(1908); Kunz (2000); Gibson (1998). Algebraic attributes of conchoid curves and surfaces
have been studied recently by Sendra and Sendra (2008, 2010), and by Albano and Roggero
(2010).
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The construction of a conchoid surface Fd to a given surface F ⊂ R3 with respect to a
fixed reference point O at distance d follows analogous lines as the construction of conchoid
curves. Figure 1(b) displays the conchoid surface of a plane F . The conchoid surface Fd
of a surface F is defined by

Fd = {Q ∈ OP with P ∈ F, and dist(QP ) = d}. (1)

Since the construction is non-rational, the conchoid surfaces Fd of rational input surfaces
F are typically non-rational and do not admit rational parameterizations. It has been
shown in Peternell et al. (2012) and Peternell et al. (2011) that the conchoid surfaces Fd of
spheres and rational ruled surfaces F ⊂ R3 always admit real rational parameterizations,
independent of the choice of the reference point O. In both cases the parameterizations
are improper.

Contribution. This article extends the class of real rational surfaces whose conchoid sur-
faces admit real rational parameterizations. In particular we show that the conchoid sur-
faces Fd of quadrics F ⊂ R3 admit real rational parameterizations, independent on the
choice of the reference point O. These surfaces Fd are not bi-rationally equivalent to the
projective plane and their invariants typically do not vanish, but they admit improper real
rational parameterizations. The existence of these special parameterizations is proofed
in Section 2, and Section 3 constructs these parameterizations in all details for regular
quadrics F ⊂ R3 and general position of the reference point O with respect to F . We pro-
vide an explicit parameterization of bi-degree at most (6,2) for a quadric F which directly
leads to real rational parameterizations of its conchoid surfaces Fd of bi-degree at most
(12,4). Section 4 discusses singular quadrics and presents simplifications of the construc-
tion in case that O ∈ F or that O is contained in a focal conic of F . Finally the paper
concludes with a numerical example in Section 5.

Remark. The geometric objects studied are surfaces F in real Euclidean space R3 ad-
mitting real rational parameterizations f(u, v) ∈ R3, where (u, v) are coordinates in R2.
Additionally the projective extension P3 of R3 is considered. This makes a main difference
to traditional algebraic geometry, where surfaces are studied in a projective space over
an algebraically closed field. For instance when speaking about rational surfaces Casteln-
uovo’s theorem says that if a surface admits a rational parameterization it is bi-rationally
equivalent to the projective plane over an algebraically closed field. This theorem is no
longer valid if one considers real surfaces. There exist real surfaces admitting real rational
parameterizations being improper. In this case the inverse map from the surface to the
parameter domain is not rational since any point on the surface corresponds to two or more
points in the parameter domain.

1.1. Conchoid surfaces

To fix the notation, points in R3 or R4 are identified with their Cartesian coordinate vectors
x = (x, y, z) or x = (x, y, z, w). The scalar product of two vectors x and y is denoted by
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Figure 1: Conchoid of a line and a plane.

x ·y, and the same symbol denotes the product of a matrix and a vector in R3 or R4. The
Euclidean norm of a vector x is defined by ‖x‖2 = x · x.

Real surfaces F ⊂ R3 are represented by parameterizations f(u, v) = (f1, f2, f3)(u, v),
where (u, v) are coordinates in R2. The conchoid construction relies on the choice of a
reference point O ∈ R3. Applying a translation we can always assume that O = (0, 0, 0)
is the origin of the chosen coordinate system in R3. This choice is made throughout the
whole article. The conchoid surface Fd of F at distance d admits the parameterization

fd(u, v) = f(u, v)± d f(u, v)

‖f(u, v)‖
. (2)

Locally Fd consists of two sheets for both signs of d. For algebraic input surfaces F , their
conchoid surfaces Fd are algebraic as well. Consider a rationally parameterizable surface
F ⊂ R3, the parameterization (2) is typically non-rational because of the dependency on
the norm ‖f(u, v)‖. This is also evident geometrically since for any point P ∈ F there exist
typically two points Q1, Q2 ∈ OP with dist(PQ1) = dist(PQ2) = d.

Because of the dependency of the conchoid construction on the reference point O, a polar
representation of the surface F ⊂ R3 involving a unit direction vector and a distance from
O is convenient. Spherical coordinates (ρ, ϕ, θ) in R3 are of this kind, but for our purposes
we do not need to specify the angles ϕ and θ. In detail we define

Definition 1. Consider a surface F ⊂ R3 represented by f(u, v). The parameterization

f(u, v) = ρ(u, v)k(u, v),with (3)

ρ(u, v) = ‖f(u, v)‖, and

k(u, v) =
1

‖f(u, v)‖
f(u, v),

is called a polar representation of F . The scalar valued function ρ(u, v) is called its radius
function, and the vector valued function k(u, v) ∈ S2 is called its spherical part.
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Any surface F ⊂ R3 admits a polar representation (3), at least locally. These parameteri-
zations are well adapted for the conchoid construction, since the conchoid surfaces Fd of a
surface F admit the polar representations

fd(u, v) = (ρ(u, v)± d)k(u, v). (4)

Moreover, the ’base surface’ F and its conchoid surfaces Fd are in correspondence with
respect to the identical spherical part k(u, v) of their polar representations.

The main goal is to show that quadrics in R3 have conchoid surfaces Fd which admit
real rational parameterizations. In fact we will construct polar representations f(u, v) =
ρ(u, v)k(u, v) of quadrics F , where ρ(u, v) is a rational function and k(u, v) is a rational
(improper) parameterization of the unit sphere S2. These parameterizations are denoted
as rational polar representations. Finally, their conchoid surfaces Fd admit rational polar
representations (4) as well.

Theoretically it might be possible that there exist rational surfaces F ⊂ R3 whose conchoid
surfaces Fd admit real rational parameterizations fd(u, v), not corresponding to f(u, v) by
coincident spherical parts k(u, v). The following definition shall rule out these cases.

Definition 2. A surface F is called rational conchoid surface with respect to the reference
point O = (0, 0, 0), if F admits a rational polar representation ρ(u, v)k(u, v), with a ra-
tional radius function ρ(u, v) denoting the distance function from O to F and a rational
parameterization k(u, v) of S2.

Remark. A rational conchoid surface F ⊂ R3 is not necessarily a rational surface in the
sense that it is bi-rationally equivalent to the projective plane. It might be parameterized
by a possibly improper rational polar representation f(u, v) = ρ(u, v)k(u, v), where k(u, v)
is a possibly improper rational parameterization of S2. Thus F is often denoted as uni-
rational.

1.2. The cone model

The construction of rational conchoid surfaces in the sense of Definition 2 is related to uni-
rational two-dimensional surfaces in a three-dimensional cone in R4. Consider Euclidean
R4 with coordinates x, y, z and w and let R3 be embedded in R4 by w = 0. Consider the
quadratic three-dimensional cone

D : x2 + y2 + z2 − w2 = 0 ⊂ R4. (5)

The correspondence between points in D and points in R3 is realized by the orthogonal
projection π, see Figure 2,

π : D ⊂ R4 → R3, (6)

(x, y, z, w) 7→ x = (x, y, z), with w = ±‖x‖.
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Theorem 3. The rational conchoid surfaces F ⊂ R3 are in correspondence to those two-
dimensional surfaces Φ ⊂ D : x2 + y2 + z2 − w2 = 0 ⊂ R4, admitting rational parameteri-
zations ϕ(u, v).

Proof: Let Φ ⊂ D be a uni-rational surface, admitting the real rational parameterization
ϕ(u, v) = (ϕ1, . . . , ϕ4)(u, v). Consequently, the orthogonal projection π(Φ) is a rational
conchoid surface F with rational radius function ρ(u, v) = ϕ4(u, v) and rational spherical
part

k(u, v) =
1

ϕ4(u, v)
(ϕ1(u, v), ϕ2(u, v), ϕ3(u, v)).

Let F ⊂ R3 be a rational conchoid surface with rational polar representation f(u, v) =
ρ(u, v)k(u, v) with ‖k‖ = 1. Then there is a uni-rational surface Φ ⊂ D with π(Φ) = F ,
and a rational parameterization of Φ reads

ϕ(u, v) = ρ(u, v)(k1(u, v), k2(u, v), k3(u, v), 1).

�
Note that ϕ = ρ(k1, k2, k3,−1) is also be a possible rational representation of Φ satisfying
same requirements. Any point x = (x, y, z) ∈ R3 has two pre-images P+ = (x, y, z, ‖x‖)
and P− = (x, y, z,−‖x‖) with respect to the projection π.

1.3. Admissible rational mappings

We study mappings that preserve the rationality of the polar representation of a surface.
Consider the map σ : R3 → R3 given by

σ(x) = x′ =
r(x)

s(x)
R · x, with R ∈ R3×3, and RT ·R = I = diag(1, 1, 1), (7)

and relatively prime polynomials r(x) and s(x). Consequently the norm of x′ is

‖x′‖ =
√

x′ · x′ = r(x)

s(x)
‖x‖.

Thus the rational map (7) preserves rational polar representations. It can be decomposed
into a rotation x 7→ R·x around a line through O and a ’scaling’ x 7→ f(x) x with a rational
function f(x), fixing all lines through O. We note that a translation x′ = x + c, with a
constant vector c ∈ R3, typically does not preserve rationality of a parameterization.

If one chooses s(x) = s0 + s1x + s2y + s3z as a linear polynomial, r ∈ R and R = I, then
the rational map (7) becomes a perspective collineation. This is a projective linear map
which fixes the point O and keeps the axis plane r− s(x) = 0 point-wise fixed. The plane
s(x) = 0 contains points with improper image points, the plane −r + s1x+ s2y + s3z = 0
is called vanishing plane and consists of points with improper pre-images. In Section 2.1
these perspective collineations together with rotations around lines through O are used to
transform a quadric to a particular normal form.
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Figure 2: The cone model.

Corollary 4. Any rational map of the form (7) preserves rational polar representations
with respect to the reference point O = (0, 0, 0). Choosing r ∈ R and a linear polyno-
mial s(x) these mappings are rotations about lines through O combined with perspective
collineations with center O.

2. Rational polar representation of quadrics – Theory

A quadric F ⊂ R3 is the zero set of a quadratic equation in x, y and z. In the following F
denotes both, the quadric as well as its defining polynomial F (x, y, z) = 0, since it should
be clear from the context whether F denotes a surface or a polynomial. We assume that
the polynomial F has real coefficients and that the quadric F has more than one real point.

Quadrics F ⊂ R3 and conics c ⊂ R2 admit rational parameterizations. The conchoid
curves cd of conics c ⊂ R2 with respect to an arbitrary reference point O are typically
non-rational curves. These curves cd are rational if and only if O ∈ c or if O is a focal
point of c. In the first case cd is an irreducible rational curve, in the second case cd consists
of two rational components.

Consider a regular quadric F ∈ R3 and a fixed reference point O /∈ F , chosen as origin
(0, 0, 0). We prove that F admits a real rational polar representation f(u, v) = ρ(u, v)k(u, v).
Consequently, F is a rational conchoid surface in the sense of Definition 2. The explicit
construction is carried out in several steps and leads to an explicit polar representation of
F . An outline of the construction reads as follows:

• Apply admissible transformations to represent a quadric F by a normal form (Sec-
tion 2.1).

• Compute the associated pencil of quadrics in R4. Its base locus Φ carries a rational
one-parameter family of real conics L(u) (Section 2.2).
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Theoretically these two steps already prove the existence of real rational polar representa-
tions of quadrics and there are also techniques to compute those. Nevertheless, in order to
find low degree parameterizations which can be computed symbolically we have to inves-
tigate the geometry of the conics L(u) in more detail.

• Conics L(u) ⊂ Φ are transformed to circles C(u) in S2 (Section 3.1). Explicit pa-
rameterizations of C(u) ⊂ S2 are provided in Section 3.2.

• Rational parameterizations of Φ and their corresponding rational polar representa-
tions of F are derived in Section 3.3.

By assuming regularity of F and O /∈ F we have excluded some special cases, whose
treatment is actually significantly simpler than the generic case. Singular quadrics and
special positions of the reference point O with respect to F are discussed in Section 4.

2.1. Transformation to normal form

A quadric F in R3 is given by

F (x, y, z) = XT ·M ·X = 0, with MT = M ∈ R4×4, and X = (1, x, y, z) ∈ R4, (8)

where M is a regular symmetric 4× 4 matrix with real entries and X is a column vector.
Let O = (0, 0, 0) /∈ F be the reference point for the conchoid construction.

The aim is to apply admissible transformations and coordinate transformations such that
the image quadric is represented by a diagonal matrix. We perform this in two steps. First
we apply a perspective collineation κ with center O /∈ F according to Corollary 4, that O
becomes the center of κ(F ) = F ′. Assume that M has entries mij ∈ R, with i, j = 1, . . . , 4,
then this transformation reads

κ : x′ =
1

s(x)
x, with s(x) = m11 +m12x+m13y +m14z. (9)

The polar plane δ of O with respect to F is given by s(x) = 0. Let ω = P3 \ R3 be the
ideal plane of the projective space P3 extending R3. Then κ(δ) = ω, and κ maps F to the
quadric

F ′ :
1

m11

+ x′T ·M ′ · x′ = 0,

with a symmetric 3× 3 matrix M ′. The equation of F ′ does no longer contain linear terms
in x′, y′ and z′. Further we may assume that m11 = ±1. Depending on the position of O
and ω = κ(δ) with respect to F ′ one distinguishes different affine types of F ′. Since O /∈ F
and thus ω is not a tangent plane of F ′, the image quadric F ′ is never a paraboloid.

• If O is inside of F ′, the intersection F ′ ∩ ω does not contain real points. Thus F ′ is
an ellipsoid.
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• Otherwise if O is outside F ′, the intersection F ′ ∩ω is a conic containing real points.
Thus F ′ is a hyperboloid, either of one sheet or of two sheets.

In a second step we apply a coordinate transformation where the new coordinate axes are
chosen as eigenvectors of M ′. This can be considered as rotation fixing O. Thus F ′ is
represented by a diagonal matrix, and reads

F ′ : XT · diag(±1,±a2,±b2,±c2) ·X = 0. (10)

If all signs in (10) are positive, F ′ is a quadric without real points. Otherwise in case of
strict inequalities between a, b and c and with a proper re-ordering of the coordinate axes
the different combinations of signs imply the normal forms of Table 1.

Ellipsoid F ′ : −1 + a2x2 + b2y2 + c2z2 = 0

Hyperboloid of two sheets F ′ : 1− a2x2 + b2y2 + c2z2 = 0

Hyperboloid of one sheet F ′ : −1− a2x2 + b2y2 + c2z2 = 0

Table 1: Normal forms of quadrics.

If there are two coincident eigenvalues, say b = c, F ′ is a rotational quadric with x as axis.
If all three eigenvalues coincide, F ′ is a sphere, centered at O. The first case is obtained
when O lies on a focal conic of F , and the second case appears when O is a focal point of a
rotational quadric F . Both cases are studied in detail in Section 4.3. Since a hyperboloid
of one sheet (last line of Table 1) is a real ruled quadric, the algorithm from Peternell et al.
(2011) applies to this case, too.

2.2. Quadric pencil and base locus

Consider a quadric represented by one of the normal forms listed in Table 1. For simplicity
it shall be denoted again by F instead of F ′. We show that F contains a one-parameter
family of conics admitting a real rational polar representation. Let A ⊂ R4 be the three-
dimensional quadratic cylinder through F whose generating lines are parallel to the w-axis.
Thus A(x, y, z, w) = F (x, y, z)=0. Let

B(α, β) = αA+ βD ⊂ R4, with (α, β) ∈ R2 \ (0, 0), (11)

be the pencil of quadrics in R4 spanned by the cylinder A and the cone D from equation (5),
illustrated in Figure 3(a).

A pencil of quadrics B ⊂ R4 contains up to five singular quadrics. If one of these singular
quadrics, say B, is a cone over a real ruled quadric, the cone B contains two one-parameter
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families of real planes corresponding to the two families of generating lines of the ruled
quadric. Moreover, these families of planes are determined by linear equations with rational
coefficients. We have a look at the three different normal forms of F , and show that in
these cases the pencil of quadrics B contains a cone over a ruled quadric.

• Given an ellipsoid F : −1 + a2x2 + b2y2 + c2z2 = 0 in R3, with 0 < a2 < b2 < c2. The
respective pencil of quadrics B contains the cylinder

B : −1− (b2 − a2)x2 + (c2 − b2)z2 + b2w2 = 0 (12)

over the ruled two-dimensional quadric B ∩ (y = 0).

• Given a hyperboloid of two sheets F : 1−a2x2+b2y2+c2z2 = 0 in R3, with 0 < b2 < c2.
The respective pencil of quadrics contains the cylinder

B : 1− (c2 + a2)x2 − (c2 − b2)y2 + c2w2 = 0

over the ruled two-dimensional quadric B ∩ (z = 0).

• Given the hyperboloid of one sheet F : −1 − a2x2 + b2y2 + c2z2 = 0 in R3, with
0 < b2 < c2. The corresponding cylinder A is already a cylinder over the ruled
quadric F . The respective pencil of quadrics contains two further cylinders

B1 : −1 + (a2 + b2)y2 + (a2 + c2)z2 − a2w2 = 0, and

B2 : −1− (a2 + b2)x2 + (c2 − b2)z2 + b2w2 = 0,

over ruled quadrics B1 ∩ x = 0 and B2 ∩ y = 0, respectively.

Let B be a cylinder over a two-dimensional ruled quadric and let ψ(u), u ∈ R, be one of its
one-parameter families of generating planes. Consider the intersection surface Φ = A∩D,
the base locus of the pencil of quadrics B. Since Φ = B ∩ D, Φ contains a rational one
parameter family of conics L(u) = D∩ψ(u), compare equation (14). Not all of these conics
might contain real points, but there is at least a subset L(s), s ∈ I ⊂ R of conics containing
real points; compare equation (20) in Section 3.2. It has been proved in Peternell (1997);
Schicho (1998) that such a family of conics always admits a real rational parameterization.
This proves that Φ ⊂ D is a uni-rational surface.

According to Theorem 3, a real rational parameterization of Φ represents a real rational
polar representation of the quadric F . This proves

Theorem 5. A quadric F ⊂ R3 is a rational conchoid surface independent of the position
of the reference point O and the distance d.
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Remark. The two-dimensional surface Φ is a so called del Pezzo surface of degree four,
and it is known that it admits real rational parameterizations, even a proper one over an
algebraically closed field. For detailed information about del Pezzo surfaces see for example
Griffiths and Harris (1978); Manin (1974); Schicho (1998).

The problem of computing real rational parameterizations of the intersection Φ of two
quadrics in R4 has already been studied in Aigner et al. (2009). We give a brief outline of
that method. Consider a point P ∈ Φ. The projection of Φ from P to a three-dimensional
space is a cubic surface, say Ψ. The cubic surface Ψ contains at least one real line, say
g. Consider the one parameter family of planes ε(t) through g. The intersection ε(t) ∩ Ψ
consists of g and a curve k(t) of degree two, typically a conic. A real rational parameteri-
zation of this family of curves k(t) on Ψ is lifted back to a real rational parameterization
of Φ.

Section 3 provides a detailed description of a another method for the construction of a real
rational parameterization of the intersection Φ of two quadrics in R4. The construction is
possibly a bit more involved compared to that of Aigner et al. (2009). But finally we are
able to provide a symbolic solution and the resulting parameterization is of bi-degree (6, 2).

3. Rational polar representation of quadrics – Details

This section provides a detailed construction of a polar representation of a quadric F ⊂ R3

with respect to a reference point O, chosen as origin. We have already explained how to
transform F to a normal form with respect to O, given in Table 1. The last section lists
the singular quadrics of the corresponding quadric pencil B ⊂ R4, which are cylinders over
a two-dimensional ruled quadric. The explicit construction is similar in all three cases and
shall be performed exemplarily for an ellipsoid F ⊂ R3.

Consider the ellipsoid F : −1 + a2x2 + b2y2 + c2z2 = 0, with 0 < a2 < b2 < c2. The
corresponding pencil of quadrics B ⊂ R4 contains the singular quadric B, given by (12).
Let Φ = B ∩D. A rational parameterization of B reads

b(u, v1, v2) = e0(u) + v1e1(u) + v2e2, (13)

where e0(u) + v1e1(u) parameterizes a ruled quadric being contained in y = 0, and e2

is a direction vector of the generating lines of the cylinder B. Using the abbreviations
β =
√
b2 − a2 and γ =

√
c2 − b2, the vector functions e0, e1 and e2 read

e0 =

(
−u
β
, 0,−u

γ
,
1

b

)
, e1 =

(
−u

2 + 1

uβ
, 0,−u

2 − 1

uγ
,
2

b

)
, and e2 = (0, 1, 0, 0) .

The generating planes ψ(u) of B are spanned by e1 and e2. The intersection surface
Φ carries a family of conics L(u) = D ∩ ψ(u). Inserting the parameterization (13) into
D : x2 + y2 + z2 − w2 = 0 yields an implicit representation of L(u), a quadratic equation
in v1 and v2 whose coefficients are polynomials in u.
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In order to obtain an equation (14) of L(u) without linear terms in v1, we choose the
directrix curve e0(u) + λ(u)e1(u) instead of e0(u) of B in (13), with

λ(u) =
(a2b2(u2 + 1)− c2b2(u2 − 1)− 2a2c2)u2

a2b2(u2 + 1)2 − c2b2(u2 − 1)2 − 4a2c2u2
.

Consequently, the family of conics L(u) ⊂ Φ is represented by

L(u) : l0(u) + l1(u)v21 + l2(u)v22 = 0, (14)

whose coefficients are the polynomials

l0(u) = b2γ2β2u2(c2(u2 − 1)2 − a2(u2 + 1)2),

l1(u) = (b2(c2(u2 − 1)2 − a2(u2 + 1)2) + 4a2c2u2)2,

l2(u) = −b2γ2β2u2(b2(c2(u2 − 1)2 − a2(u2 + 1)2) + 4a2c2u2).

(15)

The aim is to determine real rational functions (v1(u, t), v2(u, t)) satisfying equation (14)
identically. It has already been shown in Schicho (1998) that these functions exist if some
requirements are fulfilled. At first, the family of conics L(u) has to contain real points for
all u ∈ R. If this is not the case, it is necessary to substitute u = (u0s

2 + u1)/(s
2 + 1) such

that L(s) satisfies this requirement for all s ∈ R.

In the next step one computes the zeros of the polynomials li(s). Real zeros appear
with even multiplicity. In case that two of the polynomials li(s) have common zeros,
equation (14) can be simplified. Finally we end up with an equation L(s) of the form (14)
where no two polynomials have common zeros. In the present case these polynomials
are of degrees ≤ 8. To construct real rational functions (v1(s, t), v2(s, t)) satisfying L(s)
identically, a linear system combined with a quadratic equation has to be solved. To our
knowledge it is not possible to compute a symbolic solution for v1(s, t) and v2(s, t) in
terms of the coefficients a, b, c of F , but only numeric solutions are available for particular
choices of these coefficients. In addition, the degrees of the final parameterization of Φ are
unnecessarily high.

Since this direct method does not result in a symbolic parameterization of Φ depending
on the coefficients of the input quadric F , further geometric properties of the family of
conics L(u) have to be investigated. As a benefit for this extra work we can provide
parameterizations of lower degrees. All computational steps proposed in the following, can
be carried out symbolically with help of a computer-algebra-system.

• The rational family of conics L(u) ⊂ Φ ⊂ R4 is transformed to a rational family
of circles C(u) ⊂ S2 ⊂ R3. A real rational parameterization of C(u) is constructed
explicitly in Section 3.2.

• A real rational parameterization of Φ corresponds to a real rational polar represen-
tation of the quadric F ; compare Section 3.3.
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3.1. Cones of revolution

Consider the top view projection π : R4 → R3 with π(x, y, z, w) = (x, y, z). We intend
to prove that the top-view projections C(u) = π(L(u)) are a family of conics which are
contained in cones of revolution Γ(u), with common vertex at the origin O. To achieve this
we investigate at first the intersection of the cone D ⊂ R4 with a generic three-dimensional
subspace E.

Lemma 6. Consider the cone D : x2 + y2 + z2−w2 = 0 and a hyperplane E : a1x+ a2y+
a3z − a4w = 0. If the intersection K = D ∩ E is a real cone ⊂ R4, its top view projection
π(K) = Γ is a cone of revolution with a = (a1, a2, a3) as rotational axis and its half opening
angle τ is determined by ‖a‖ cos τ = a4.

Proof: The intersection K = D∩E is a quadratic cone with vertex O ∈ R4. Its projection
Γ = π(K) is a cone with vertex at O, given by

Γ : (a21 − a24)x2 + (a22 − a24)y2 + (a23 − a24)z2 + 2(a1a2xy + a2a3yz + a3a1zx) = 0. (16)

Since the origin in R4 coincides with the origin in R3, we use the same symbol O. Intro-
ducing the vector x = (x, y, z), we may write D : xT ·x−w2 = 0 and E : aT ·x− a4w = 0.
Eliminating w from these two equations yields Γ : xT ·M · x = 0, with M = a · aT − a24I,
and I = diag(1, 1, 1), which is just equation (16) in vector notation.

If a4 = 0, it follows that rk M = 1, and Γ is the double plane (xT · a)2 = 0. If a24 =
a21 + a22 + a23, E is tangent to D, and rk M = 2. The projection Γ = π(D ∩ E) consists of
a real line carrying two conjugate complex planes.

Otherwise, rk M = 3 and its eigenvectors define the axes of symmetry of Γ. The eigenvalues
and corresponding eigenvectors (eigenspaces) of M are

t1 = a21 + a22 + a23 − a24 → a = (a1, a2, a3),

t2 = t3 = −a24 → λv1 + µv2, with v1,v2 ⊥ a.

12
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Figure 4: From left to right: Conics L ⊂ Φ ⊂ R4, conics C ⊂ F ⊂ R3, circles C ⊂ S2 ⊂ R3, circles
C∗ ⊂ R2.

The eigenvalue t1 corresponds to the axis a of Γ. The twofold eigenvalue t2 = t3 corresponds
to a two-dimensional eigenspace spanned by two linearly independent vectors v1,v2, both
orthogonal to a. Any plane passing through the axis with direction vector a is a plane of
symmetry of Γ, and thus Γ is a cone of rotation. Intersecting Γ : xT ·M · x = 0 with the
unit sphere xT ·I ·x = 1 shows that the half opening angle τ of Γ satisfies ‖a‖ cos τ = a4. �

Lemma 7. Consider the cone D : x2 + y2 + z2 − w2 = 0. Let ψ ⊂ R4 be a plane with
O /∈ ψ and assume that L = D ∩ ψ contains real points. Then the projection π(L) = C is
either a segment of a line or a conic contained in a rotational cone Γ ⊂ R3.

Proof: The intersection L = D ∩ ψ is a conic in R4. Assume that its carrier plane ψ is
not parallel to the w-axis, then the projection C = π(L) is a conic as well. Consider the
hyperplane E joiningO = (0, 0, 0, 0) and ψ. Lemma 6 says that the projection π(D∩E) = Γ
is a cone of rotation. Since ψ ⊂ E, the projection C = π(L) is a conic in the rotational
cone Γ.

In case where the plane ψ ⊂ R4 is parallel to the w-axis, its projection π(ψ) ⊂ R3 is a line.
Consequently the projection of the conic L = D ∩ ψ is a segment of that line. �

In the remainder of the section we give the explicit representations of the conics L(u) ⊂ Φ
and their projections C(u) = π(L(u)) being contained in cones of revolution Γ(u) with
common vertex O. The intersection of a cone of revolution with vertex at O and the unit
sphere S2 consists of two circles. It is possible to define a rational map C(u) 7→ C(u)
between the family of conics C(u) ⊂ F and a family of circles C(u) ⊂ S2. An explicit
representation of this map is finally given by the radius function ρ(s, t) in equation (25).
The motivation to proceed in that way is that the practical parameterization of a one-
parameter family of circles on S2 is easier than parameterizing a general one-parameter
family of conics C(u) in space. Moreover it turns out that the map C(u) 7→ C(u) and its
inverse do not raise the degree of the final parameterization.

13



The family of conics L(u) = ψ(u) ∩D on the surface Φ ⊂ R4 is represented by

ψ(u) : b(u, v1, v2) = e0(u) + v1e1(u) + v2e2

D : x2 + y2 + z2 − w2 = 0

}
L(u), (17)

where ψ(u) is one family of generating planes of the cylinder B from (12) and (13). Ap-
plying the top view projection π from (6) we obtain the family of conics C(u) = π(L(u))
on the ellipsoid F = π(Φ). These conics C(u) ⊂ F are intersections of F with planes
ε(u) = π(ψ(u)). Their representation reads

ε(u) = π(ψ(u)) : −2u+ β(u2 − 1)x− γ(u2 + 1)z = 0

F = π(Φ) : −1 + a2x2 + b2y2 + c2z2 = 0

}
C(u). (18)

Consider the hyperplanes E(u) connecting planes ψ(u) and the origin O in R4. According
to Lemmas 6 and 7, the conics C(u) = Γ(u) ∩ ε(u) are intersections of rotational cones
Γ(u) = π(E(u) ∩D) and planes ε(u). An illustration is given in Figure 4.

The cones Γ(u) have common vertex O, and a direction vector of their rotational axes is
(β(u2 + 1), 0,−γ(u2 − 1)). Since an expression for the half opening angle τ(u) is rather
lengthy and not needed in the following, it is omitted here. The intersection Γ(u) ∩ S2

defines a family of circles C(u) represented by

ε(u) : −2ub+ β(u2 + 1)x− γ(u2 − 1)z = 0

S2 : x2 + y2 + z2 − 1 = 0

}
C(u). (19)

Remark. We note that the planes ε(u) envelope the hyperbolic cylinder −(b2 − a2)x2 +
(c2− b2)z2−1 = 0, see Figure 3(b). It is obtained as intersection B∩R3 : w = 0. Likewise,
the carrier planes ε(u) of the circles C(u) envelope the hyperbolic cylinder −(b2 − a2)x2 +
(c2 − b2)z2 + b2 = 0.

3.2. Rational parameterization of a family of circles

In Section 3.1 the family of conics L(u) ⊂ Φ ⊂ R4 has been transformed to a family of
circles C(u) ⊂ S2. Not all planes ε(u) intersect S2 in circles containing real points. In
order to construct a real rational parameterization of the circles C = S2 ∩ ε, we have to
restrict the parameter u ∈ R to a suitable proper interval [u0, u1]. This re-parameterization
reads

u(s) =
u0s

2 + u1
s2 + 1

, with u0 =
c− a
α

, u1 = −c− a
α

, and α =
√
c2 − a2. (20)

The curves C(u0), C(u1) ⊂ S2 degenerate to the points P± = ± 1
bα

(cβ, 0, aγ), see Fig-
ure 5(a). Let τ be the symmetry plane of P+ and P−.
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Figure 5: Correspondence between the sphere and the quadric and the circles in the plane τ .

To gain a rational parameterization of the circles C(s), a stereographic projection σ : S2 →
τ with projection center P+ is performed. Since σ is a conformal map, it transfers circles
C ⊂ S2 to circles C? ⊂ τ . An implicit representation for C?(s) is obtained by choosing a

Cartesian coordinate system {O, ξ, η} in τ , with η = y and ξ = η ×
−−→
OP+. This gives

C∗(s) : (ξ −m(s))2 + η2 − r(s)2 = 0, with (21)

m(s) =
s2γβ

b2 + s2ac
, and r(s)2 =

b2s2(s2a+ c)(a+ cs2)

(b2 + s2ac)2
. (22)

The denominator of r(s)2 is a square of a polynomial. Its numerator is a non-negative
polynomial and therefore it is the sum of the two squares h1(s)

2 = (s2b(a + c))2 and
h2(s)

2 = (sb
√
ac(s2− 1))2. The terms h1(s) and h2(s) together with m(s) define a rational

cubic trajectory q(s) of the family of circles C∗(s) with the property that q(s) ∈ C?(s) for
all s ∈ R. A parameterization reads

q(s) =
1

b+ s2ac

(
s2γβ + h1(s)

h2(s)

)
=

1

b+ s2ac

(
s2(b(c+ a) + γβ)

sb(s2 − 1)
√
ac

)
We construct a parameterization of that part of the plane τ being covered by the circles
C?(s) of bi-degree (3, 2), with the property that c?(s0, t) represents the fixed circle C?(s0),
with s0 = const. Using the abbreviation µ(s, t) = 2

√
act(s2 − 1) − (c + a)s(t2 − 1), this

parameterization reads

c∗(s, t) =
1

(b2 + s2ac)(1 + t2)

(
s(−bµ(s, t) + sγβ(t2 + 1))

−sb(
√
ac(s2 − 1)(t2 − 1) + 2ts(c+ a))

)
.

The inverse stereographic projection σ−1 : τ → S2 maps c?(s, t) to a rational parameteri-
zation c(s, t) of S2 of bi-degree (6, 2),

c(s, t) = (c1(s, t), c2(s, t), c3(s, t)) =
1

n(s, t)
g(s, t), (23)
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whose numerator g = (g1, g2, g3) and denominator n are the polynomials

g1(s, t) = −2bγs(a+ cs2)µ(s, t)− β(1 + t2)(c(s4 + 1)(b2 − s2ac) + 2s2(b2a− c3s2))
g2(s, t) = −2αs(b2 + s2ac)(

√
ac(1− t2)(1− s2) + 2st(a+ c))

g3(s, t) = 2bβs(as2 + c)µ(s, t)− γ(1 + t2)(a(s4 + 1)(b2 − s2ac) + 2s2(b2c− a3s2))
n(s, t) = α(−2βγs3µ(s, t) + b(1 + t2)((1− s4)(b2 − acs2) + 2s2(s2(a2 + c2) + 2ac))).

(24)

3.3. Rational polar representation of F and its conchoid surfaces

According to Definition 1, a polar representation f(s, t) = ρ(s, t)k(s, t) of a surface F con-
sists of a radius function ρ(s, t) and a parameterization k(s, t) of S2. The parameterization
c(s, t) from equation (23) is already the spherical part of the rational polar representation
of the ellipsoid F . To determine the radius function ρ(s, t), the family of conics C(s) ⊂ ε(s)
has to be parameterized, compare equation (18). Using the substitution (20), the coeffi-
cients ei and ei of the planes ε : e0 + e1x + e2y + e3z = 0 and ε : e0 + e1x + e2y + e3z = 0
read

e0 = α(s4 − 1), e1 = β(a(s4 + 1) + 2cs2), e2 = 0, e3 = γ(c(s4 + 1) + 2as2), and

e0 = be0, e1 = −β
γ
e3, e2 = 0, e3 = − γ

β
e1.

The conics C(s) ⊂ F are computed as intersection curves C = Γ ∩ ε. Thus we have

f(s, t) = c(s, t) = ρ(s, t)c(s, t), with

ρ(s, t) =
−e0

e1c1 + e2c2 + e3c3
=

−e0n
e1g1 + e2g2 + e3g3

. (25)

We note that c ⊂ ε for all s ∈ R. In case that ε(s0) = ε(s0), it follows that c ⊂ ε(s0), and
the denominator and numerator of (25) have the common factor (s − s0). The condition
ε(s0) = ε(s0) holds for the zeros of s2−1, corresponding to u = 0, and for the zeros of s2+1,
corresponding to u =∞. This implies that the polynomial ε : e0n+ e1g1 + e2g2 + e3g3 = 0
is divisible by s4 − 1. Since e0 = α(s4 − 1), also the denominator e1g1 + e2g2 + e3g3 is
divisible by s4 − 1. Thus the radius function (25) is represented by

ρ(s, t) =
n(s, t)

p(s, t)
with n(s, t) from (24) and (26)

p(s, t) = α(−2βγbsµ(s, t) + (1 + t2)(ac(1− s4)(b2 − s2ac) + 2s2b2(a2 + c2 + 2s2ac))).

Combining equations (23), (25) and (26) leads to real rational polar representations of the
ellipsoid F and its conchoid surfaces Fd at distance d ∈ R,

F : f(s, t) =
1

p(s, t)
g(s, t) = ρ(s, t)c(s, t), (27)

Fd : fd(s, t) =
n(s, t) + d p(s, t)

p(s, t)
c(s, t) =

n(s, t) + d p(s, t)

n(s, t) p(s, t)
g(s, t). (28)
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Figure 6: Rational parameterization with rational distance of an ellipsoid.

The parameterization f(s, t) of F is of bi-degree (6, 2) whereas the parameterization fd(s, t)
of Fd is typically of bi-degree (12, 4). Numerical examples show that the degree of im-
properness of the parameterization (27) is four. A rational parameterization of the del
Pezzo surface Φ = D ∩ A is of bi-degree (6, 2) and reads

ϕ(s, t) =
1

p(s, t)
(g1(s, t), g2(s, t), g3(s, t),±n(s, t)). (29)

Theorem 8. A quadric F ⊂ R3 admits a rational polar representation f(s, t) of bi-degree
at most (6, 2) with respect to an arbitrarily chosen reference point O. Its conchoid surfaces
Fd at distance d with respect to O admit rational polar representations fd(s, t) of bi-degree
at most (12, 4).

4. Special cases

In Sections 2 and 3 we have given a detailed investigation of real rational polar representa-
tions of regular quadrics F with respect to a reference point O in general position. What
remains is a discussion of the cases having been excluded so far. These are

• F is a singular quadric,

• the reference point O lies on F ,

• the reference point O lies on a focal conic of F or coincides with a focal point of a
rotational quadric F .

The rational polar representations of these cases are typically of lower degree.
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4.1. Singular quadrics

The quadric F : XT ·M · X = 0, with X = (1, x, y, z) ∈ R4, M = MT ∈ R4×4, is called
singular if det(M) = 0. Singular quadrics are cones and cylinders in case that rk (M) = 3
or pairs of planes if rk (M) = 2, or a double plane if rk (M) = 1. We again assume that F
contains more than one real point. For the construction of rational polar representations
of planes, cylinders and cones we refer to Peternell et al. (2011).

4.2. Reference point lies on the quadric

Consider the quadric F : XT · M · X = 0, with X = (1, x, y, z). The reference point
O = (0, 0, 0) is contained in F if and only if the constant term of F (x, y, z) = 0 vanishes.
We have a look at two methods to find a real rational polar representation of F .

On the one hand, consider a parameterization f(u, v) = ρ(u, v)k(u, v) with an arbitrary
rational parameterization k(u, v) of S2. To determine the unknown radius function ρ(u, v),
one inserts f(u, v) into F (x, y, z) = 0. This gives the trivial solution ρ(u, v) = 0, and besides
this a rational function ρ(u, v), expressed by the coordinates of k(u, v).

On the other hand, a quadric F is mapped by a perspective collineation κ of the form (9) to
a quadric F ′. By choosing the denominator of κ as tangent plane of F we can assume that
F ′ becomes a paraboloid. By an admissible rotation we can achieve F ′ : z = ax2+by2, with
a, b ∈ R \ 0. Thus F ′ is either an elliptic or a hyperbolic paraboloid, depending whether
ab > 0 or ab < 0.

We consider a one-parameter family of cones of rotation Γ(v) with vertex O and axis z.
An implicit equation of these cones is Γ(v) : sinh v2(x2 + y2) − z2 = 0, and a possible
parameterization reads

g(u, t, v) = u

(
2t

sinh v
,
1− t2

sinh v
, 1 + t2

)
.

Intersecting Γ(v) with F ′ determines the function u(v, t) = sinh2 v(1+t2)/(4at2+b(1−t2)2).
The t-lines of the final parameterization f(t, v) = g(u(t, v), t, v) are rational quartic curves,
the intersection curves Γ(v) ∩ F ′. This polar representation of F ′ reads, see Figure 7(a),

f(v, t) =
(1 + t2) sinh v

4at2 + b(1− t2)2

 2t

(1− t2)
(1 + t2) sinh v

 , with ‖f(v, t)‖ =
(1 + t)2 sinh v cosh v

4at2 + b(1− t2)2
.

Performing the rational substitutions cosh v = (1+s2)/(1−s2) and sinh v = 2t/(1−s2) yields
a rational polar representation of F ′ of bi-degree (4, 2). In case that F ′ : z = a(x2 + y2) is
a paraboloid of rotation, the parameterization simplifies and is of bi-degree (2, 2), and its
norm is independent on t,

f(v, t) =
sinh v

a(1 + t2)

(
2t, 1− t2, (1 + t2) sinh v

)
, with ‖f(v, t)‖ =

sinh v cosh v

a
.
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4.3. Reference point lies on a focal conic of the quadric

Given a quadric F : XT ·M ·X = 0, the perspective collineation κ from equation (9) maps
F to the quadric F ′ : ±1 + x′T ·M ′ · x′ = 0, centered at O = (0, 0, 0). The tangential cone
∆ of F ′ with vertex at O is fixed with respect to κ. Thus Delta is the tangential cone of
F and F ′, and reads

∆ : x′T ·M ′ · x′ = 0.

The eigenvectors and eigenvalues of M ′ define the coordinate transformation to achieve
the normal form (10). The case of pairwise distinct eigenvalues is discussed already. It
remains to investigate the cases of coinciding eigenvalues, namely b = c for all affine types
of Table 1 and additionally a = b and a = b = c in case that F ′ is an ellipsoid. We discuss
these particular cases exemplarily for an ellipsoid F ′.

F ′ is a rotational quadric. Consider the rotational ellipsoid F ′ : a2x2 +b2(y2 +z2) = 1 with
axis x. We substitute b = c in the parameterization (24) and in (26). The parameterization
of the spherical part c(s, t) and the rational polar representation f(s, t) of F ′ are

c(s, t) =
1

n(s, t)
g(s, t), and f(s, t) =

1

p(s, t)
g(s, t) = ρ(s, t)c(s, t). (30)

with coordinate functions gi(s, t) of g(s, t) and polynomials n(s, t) and p(s, t),

g1(s, t) = b(1 + t2)(s4 − 1)

g2(s, t) = −2s(
√
ab(1− t2)(1− s2) + 2st(a+ b))

g3(s, t) = 2s(2t
√
ab(s2 − 1)− (a+ b)s(t2 − 1)) = 2sµ(s, t)

p(s, t) = b(1 + t2)(2bs2 + a(1 + s4))

n(s, t) = (1 + t2)(2as2 + b(1 + s4)).

(31)

The t-lines of f(s, t) are parallel circles, the s-lines are rational curves of degree four.
Figure 7(b) shows an illustration of an ellipsoid with one highlighted s-line. The parame-
terization f(s, t) is of bi-degree (4, 2) and has rational length ρ(s) independent on t,

ρ(s) =
n(s, t)

p(s, t)
=

2as2 + b(1 + s4)

b(2bs2 + a(1 + s4))
. (32)

Alternatively, the parameterization f(s, t) could be derived using the cone model, see
Section 3. The corresponding pencil of quadrics B contains a cylinder over the conic
−(b2 − a2)x2 + b2w2 = 1, and its generating planes are parallel to the yz−plane.

Two or more coinciding eigenvalues of M ′ imply, that F ′ is a rotational quadric and that
the tangential cone ∆ to F and F ′, with vertex O, is a rotational cone. This can happen
only for special positions of O with respect to F . Section 4.4 will show that ∆ is a rotational
tangential cone of F with vertex O, exactly if O is contained in a so called focal conic of
F , see Figure 8(a).
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(a) Paraboloid.

F

(b) Rotational ellipsoid.

Figure 7: Special cases.

F ′ is a sphere. Consider a sphere F ′ : a2(x2 + y2 + z2) = 1 of radius 1/a, centered at O.
Any rational parameterization f(u, v) = 1/ak(u, v), with ‖k‖ = 1, of F ′ has rational length
trivially. The pre-image F with respect to κ is a rotational quadric with O as focal point.
Since F ′ admits a proper rational polar representation of bi-degree (2, 2), the same holds
for the pre-image F . The conchoid surfaces of F with respect to O are reducible and each
component admits proper rational polar representations.

4.4. Focal conics of quadrics

Let F ⊂ R3 be a quadric and let P ∈ R3 be a fixed point with P 6∈ F . We want to
determine possible positions for P , such that the quadratic tangential cone ∆ with vertex
P is a rotational cone. Let δ be the polar plane of P with respect to F . Then ∆ is defined
as cone connecting P and the conic F ∩ δ. If P is outside of F , ∆ consists of all real
tangent lines of F passing through P . If P is inside F , the tangent lines of F through P
are conjugate complex and ∆ does not contain real points except P . In the excluded case
P ∈ F , the polar plane δ is tangent to F , and F ∩ δ is not a conic.

To define the points with a rotational tangential cone ∆ we outline the method presented
in McCrea (1960). Let us consider the quadric

F :
x2

a
+
y2

b
+
z2

c
− 1 = XT ·M ·X = 0, with M = diag(−1,

1

a
,
1

b
,
1

c
), (33)

and X = (1, x, y, z) and a ≥ b ≥ c. This normal form of F differs from those used in
Table 1, but it has the advantage that one or two coefficients may be negative.

Consider an arbitrary point P = (p1, p2, p3) = p ∈ R3 and planes θ : (x − p) · n = 0
containing P , where n ∈ R3 denotes θ’s normal vector. The polarity with respect to F
maps θ to its pole T , whose Cartesian coordinates are

t =
1

p · n
(an1, bn2, cn3) =

1

p · n
diag(a, b, c) · n. (34)
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Figure 8: Tangential cone ∆ of an ellipsoid.

The quadratic cone ∆ with vertex P typically has three symmetry planes θ1, θ2, θ3 and
its normal vectors are the axes of ∆. A plane of symmetry θ has the property that PT
is parallel to n, thus PT is perpendicular to θ, see Figure 8(b). This gives the equation
(p · pT − diag(a, b, c)) · n = M · n = λn, with a symmetric matrix

M =

p
2
1 − a p1p2 p1p3

p1p2 p22 − b p2p3

p1p3 p2p3 p23 − c

 . (35)

This is an eigenvalue problem of the symmetric matrix M . If the characteristic polynomial
of M has three different zeros, then there are three different orthogonal eigenvectors de-
termining the axes and the symmetry planes θ1, θ2, θ3 of ∆. By construction, the planes θi
are conjugate with respect to F . This expresses the fact that the pole Ti of θi is contained
in the other planes θj, θk, for i 6= j, k and i, j, k = {1, 2, 3}. The points P, T1, T2, T3 form a
special polar tetrahedron of F , with orthogonal planes θi.

The cone ∆ has rotation symmetry if and only if the matrix M has multiple eigenvalues.
The characteristic polynomial of M reads

det(M − λI) = −(λ+ a)(λ+ b)(λ+ c) + p21(λ+ b)(λ+ c)

+p22(λ+ a)(λ+ c) + p23(λ+ a)(λ+ b). (36)

Consider the case a > b > c. We first assume p1, p2, p3 6= 0 and insert λ = {∞,−c,−b,−a}
in (36). This gives the signs −,+,−,+, hence the determinant (36) has three different
zeros. To achieve a double eigenvalue we consider p1 = 0, and (36) factorizes to

(λ+ a)(−(λ+ b)(λ+ c) + p22(λ+ c) + p23(λ+ b)). (37)
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This polynomial has a double zero if λ = −a is a zero of the second factor. By letting
x = p1, y = p2 and z = p3, this gives the conjugate complex conic

f1 : x = 0 ∩ − y2

a− b
− z2

a− c
= 1.

Analogously, for p2 = 0 and p3 = 0, we obtain the conics

f2 : y = 0 ∩ x2

a− b
− z2

b− c
= 1, and f3 : z = 0 ∩ x2

a− c
+

y2

b− c
= 1. (38)

These three conics f1, f2 and f3 are called focal conics of the quadric F . They are the
locus of points having a rotational tangential cones ∆ with respect to F . Since we are
only interested in cones with real vertices, there remain the hyperbola f2 and the ellipse
f3. For points at f2, f3 which are inside of F , the cone ∆ is conjugate complex but has a
real vertex and is defined by a quadratic equation with real coefficients.

Consider the case b = c. Then F is a rotational quadric with axis x. The characteristic
polynomial (36) of the matrix M simplifies to

det(M − λI) = (λ+ b)[(λ+ b)(p2x − (λ+ a)) + (λ+ a)(p2y + p2z)] = 0. (39)

This equation has multiple zeros if either λ = −b and thus f1 : y = 0 ∩ z = 0 or if λ = −a
and thus f2 : x = 0 ∩ y2 + z2 = −(a − b). The first case defines the rotational axis as
focal conic f1, the second case defines the conjugate complex circle f2. Since f2 does not
contain real points, it remains the rotational axis as real focal curve.

5. Example

To conclude the paper we discuss an example which is used for the Figures 3(b), 5(b) and
6. Let an ellipsoid be given by

F : −2 + 2x2 + 4x− 2xy + 2y2 + z2 = 0.

The polar plane δ : x− 1 = 0 of the origin intersects F in a complex conic. The transfor-
mations to achieve a normal form are the following:

• Perspective collineation:

κ : x′ =
1

x− 1
x

• Rotation about O with ω = 3
8
π combined with a re-ordering of the coordinate axes:

x̃ = R · κ(x) =

 0 0 1

cos(ω) sin(ω) 0

− sin(ω) cos(ω) 0

 · κ(x). (40)
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Applying these two transformations to F leads to the normal form, again

F ′ : x2 + (3− sin 2ω + cos 2ω)y2 + (3 + sin 2ω − cos 2ω)z2 − 2. (41)

Since the coefficients of F ′ are trigonometric functions of the rotation angle ω, and because
of the fact that the final parameterization f(s, t) contains square roots of these coefficients,
e.g. γ =

√
c2 − b2, we use floating point numbers as approximations. Inserting the co-

efficients a = 1/2, b = (3 − sin 2ω + cos 2ω)/2 and c = (3 + sin 2ω − cos 2ω)/2 into the
solution (29) and inverting the transformations to get the following rational parameteriza-
tion of the quadric F ,

f(s, t) = 1
p(s,t)

(x(s, t), y(s, t), z(s, t)), with

x(s, t) = (−1.07s6 + 0.80)(t2 + 1)− 1.41(t2 + 1.20t− 1)s5 + (1.59t2 − 2.01− 6.02t)s4

+0.34(t2 − 5.47t− 1)s3 + (6.11t2 − 4.54t− 1.47)s2 + 1.06(t2 + 3.34t− 1)s

y(s, t) = (0.44s6 − 0.33)(t2 + 1)− 3.40(t2 − 0.20t− 1)s5 + (−0.66t2 − 14.53t+ 0.83)s4

+0.83(t2 + .93t− 1)s3 + (−2.53t2 − 10.97t+ 0.61)s2 + 2.56(t2 − 0.57t− 1)s

z(s, t) = (1.10s6 − 0.83)(t2 + 1)− 8.43ts5 + (12.82t2 − 5.21)s4 + 4.42ts3

+(4.60t2 − 3.98)s2 + 4.01ts,

p(s, t) = (0.82s6 + 2.23)(t2 + 1)− 1.41(t2 + 1.20t− 1)s5 + (5.86t2 − 6.02t+ 2.25)s4

+0.34(t2 − 17.26t− 1)s3 + (15.84t2 − 4.54t− 0.32)s2 + 1.06(t2 + 7.12t− 1)s.

The norm of f(s, t) reads

‖f(s, t)‖ = 1
p(s,t)

((1.60s6 + 4.79s2 + 1.21)(t2 + 1)− 4.50s3t(s2 − 1) + (11.84t2 + 2.21)s4).
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