Affine Circle Geometry over Quaternion Skew Fields

By Hans Havlicek

Abstract

We investigate the affine circle geometry arising from a quaternion skew field and one of its maximal commutative subfields.

1 Introduction

1.1

The present paper is concerned with the chain geometry $\Sigma(K, L)$ (cf. [1]) on a field extension L/K, where K is a maximal commutative subfield of a quaternion skew field L. Thus L is not a K-algebra. This has many geometric consequences. Best known is probably that three distinct points do not determine a unique chain. As in ordinary Möbius-geometry, it is possible to obtain an affine plane by deleting one point, but a more sophisticated technique is necessary in order to define the lines of this plane. We take a closer look on this construction from two different points of view, starting either from a spread of lines associated to $\Sigma(K, L)$ or the point model of this spread on the Klein quadric. The chains of $\Sigma(K, L)$ yield the lines, degenerate circles and non-degenerate circles of such an affine plane. We establish some properties of these circles and show that degenerate circles are affine Baer subplanes. If K is Galois over the centre of L then each non-degenerate circle can be written as intersection of two affine Hermitian varieties.

We encourage the reader to compare our results with the survey article [9] on chain geometry over an algebra and [10]. There is an extensive literature on the real quaternions. A lot of references can be found, e.g., in [1], [2], [5], [15], [16].

1.2

Throughout this paper L will denote a quaternion skew field with centre Z and K will be a maximal commutative subfield of L. The following exposition follows [4], [8], [13, pp.168–171].

Choose any element $a \in K \setminus Z$ with minimal equation, say

$$a^{2} + a\lambda_{1} + \mu_{1} = 0 \quad (\lambda_{1}, \mu_{1} \in Z).$$

If K/Z is Galois then

$$(\overline{}): K \to K, \quad u = \xi + a\eta \mapsto \overline{u} := \xi - (\lambda_1 + a)\eta \quad (\xi, \eta \in Z)$$

is an automorphism of order 2 fixing Z elementwise¹. There exists an element $i \in L \setminus K$ such that

$$i^{-1}ui = \overline{u}$$
 for all $u \in K$,

¹By an appropriate choice of a it would be possible to have $\lambda_1 = 0$ (Char $K \neq 2$) or $\lambda_1 = 1$ (CharK = 2).

whence

$$ui = i\overline{u} \quad \text{for all } u \in K.$$
 (1)

If K/Z is not Galois then, obviously, $\operatorname{Char} K = 2$ and $\lambda_1 = 0$. The mapping

$$D: K \to K, \quad u = \xi + a\eta \mapsto u^D := a\eta \quad (\xi, \eta \in Z)$$

is additive and satisfies $(uu')^D = u^D u' + uu'^D$ for all $u, u' \in K$, i.e., D is a derivation of K. There exists an $i \in L \setminus K$ such that

$$a^{-1}ia = i+1$$

which leads to the rule

$$ui = iu + u^D$$
 for all $u \in K$. (2)

In every case the element i has a minimal equation over Z, say

$$i^{2} + i\lambda_{2} + \mu_{2} = 0 \quad (\lambda_{2}, \mu_{2} \in Z).$$

If K/Z is Galois then $i^2 \in Z$, whence $\lambda_2 = 0$. If K/Z is not Galois then i and i + 1 have the same minimal equation. This implies $\lambda_2 = 1$. The mapping

$$A: L \to L, \quad u + iv \mapsto \left\{ \begin{array}{ll} \overline{u} - iv & : K/Z \text{ Galois,} \\ u + v + vi & : K/Z \text{ not Galois,} \end{array} \right\} \quad (u, v \in K) \quad (3)$$

is an involutory antiautomorphism of L fixing K. The norm of $x \in L$ is given by $N(x) := x^A x$.

1.3

The mappings $(\overline{})$ and D allow, respectively, the following geometric interpretations:

Let **V** be a right vector space over Z, dim $\mathbf{V} \geq 2$. We are extending **V** to $\mathbf{V} \otimes_Z K$ with $\mathbf{v} \in \mathbf{V}$ to be identified with $\mathbf{v} \otimes 1$. Then define a mapping $\mathbf{V} \otimes_Z K \to \mathbf{V} \otimes_Z K$ by

$$\sum_{\mathbf{v}\in\mathbf{V}}\mathbf{v}\otimes k_{\mathbf{v}}\mapsto \left\{\begin{array}{ll}\sum_{\mathbf{v}\in\mathbf{V}}\mathbf{v}\otimes\overline{k}_{\mathbf{v}}\ :\ K/Z \text{ Galois,}\\\sum_{\mathbf{v}\in\mathbf{V}}\mathbf{v}\otimes k_{\mathbf{v}}^D\ :\ K/Z \text{ not Galois,}\end{array}\right\} \quad (k_{\mathbf{v}}\in K).$$

By abuse of notation, this mapping will also be written as $(\overline{})$ and D, respectively.

In terms of the projective spaces $\mathcal{P}_Z(\mathbf{V})$ and $\mathcal{P}_K(\mathbf{V} \otimes_Z K)$ the first projective space is being embedded in the second one as a Baer subspace. If $\mathbf{x}K$ is a point of $\mathcal{P}_K(\mathbf{V} \otimes_Z K) \setminus \mathcal{P}_Z(\mathbf{V})$ then through this point there is a unique line of $\mathcal{P}_K(\mathbf{V} \otimes_Z K)$ containing more than one point of $\mathcal{P}_Z(\mathbf{V})$. That line is given by

$$\mathbf{x}K \lor \overline{\mathbf{x}}K$$
 and $\mathbf{x}K \lor (\mathbf{x}^D)K$

respectively². Note that defining a mapping by setting $\mathbf{x}K \mapsto (\mathbf{x}^D)K$ is ambiguous, since

$$(\mathbf{x}u)^D = \mathbf{x}^D u + \mathbf{x}u^D$$
 for all $\mathbf{x} \in \mathbf{V} \otimes_Z K, u \in K$.

We give a second interpretation in terms of affine $planes^3$:

Lemma 1 Let W be a right vector space over K, dim W = 2, and let $\{u, v\}$ be a basis of W. Then

$$\{ \mathbf{u}k + \mathbf{v}\overline{k} \mid k \in K \} : K/Z \text{ Galois,} \\ \{ \mathbf{u}k + \mathbf{v}k^D \mid k \in K \} : K/Z \text{ not Galois,}$$

$$(4)$$

is an affine Baer subplane (over Z) of the affine plane on \mathbf{W} .

 $^{^2\}mathrm{At}$ least in the first case this is very well known.

³Cf. the concept of 'Minimalkoordinaten' described, e.g., in [17, p.35]

Proof. If \mathbf{u}' and \mathbf{v}' are linearly independent vectors of \mathbf{W} then the set of all linear combinations of \mathbf{u}' and \mathbf{v}' with coefficients in Z is an affine Baer subplane over Z. Write $k = \xi + a\eta$ with $\xi, \eta \in Z$.

If K/Z is Galois then

$$\mathbf{u}k + \mathbf{v}\overline{k} = (\mathbf{u} + \mathbf{v})\xi + (\mathbf{u}a - \mathbf{v}(\lambda_1 + a))\eta.$$

The vectors $\mathbf{u} + \mathbf{v}$ and $\mathbf{u}a - \mathbf{v}(\lambda_1 + a)$ are linearly independent, since otherwise we would have the contradiction $\overline{a} = -\lambda_1 - a = a$.

If K/Z is not Galois then

$$\mathbf{u}k + \mathbf{v}k^D = \mathbf{u}\xi + (\mathbf{u} + \mathbf{v})a\eta.$$

The vectors **u** and $(\mathbf{u} + \mathbf{v})a$ are linearly independent.

2 Projective Chain Geometry on L/K

2.1

Let L/K be given as before. Following [1, p.320ff.] we obtain an incidence structure $\Sigma(K, L)$ as follows: The points of $\Sigma(K, L)$ are the points of the projective line over L, viz. $\mathcal{P}_L(L^2)$, the blocks, now called chains, are the K-sublines of $\mathcal{P}_L(L^2)$. However, in contrast to [1], we shall regard L^2 as right vector space over K rather than L. Each s-dimensional subspace of L^2 (over L) is 2s-dimensional over K, whence $\mathcal{P}_K(L^2) =: \mathcal{P}_K$ is 3-dimensional. The points of $\Sigma(K, L)$ now appear as lines of a spread of \mathcal{P}_K , say $\mathcal{S}_{L/K}$; cf. [6], [7]. If t is a line of \mathcal{P}_K not contained in $\mathcal{S}_{L/K}$ then through each point of t there goes exactly one line of $\mathcal{S}_{L/K}$. The subset C of $\mathcal{S}_{L/K}$ arising in this way is a chain of $\Sigma(K, L)$. We call t a transversal line of the chain C. If L/K is not Galois then each chain has exactly one transversal line, otherwise exactly two transversal lines that are interchanged under the non-projective collineation

$$\iota: \mathcal{P}_K \to \mathcal{P}_K, \quad (l_0, l_1)K \mapsto (l_0 i, l_1 i)K. \tag{5}$$

Cf. [8, Theorem 2], [11].

2.2

Write \mathcal{L} for the set of lines of \mathcal{P}_K and $\gamma : \mathcal{L} \to \widehat{\mathcal{P}}_K$ for the Klein mapping. Here $\widehat{\mathcal{P}}_K$ is the ambient space of the Klein quadric $\mathcal{Q} := \mathcal{L}^{\gamma}$. The underlying vector space of $\widehat{\mathcal{P}}_K$ is $L^2 \wedge L^2$ (over K). In [8, Theorem 1] it is shown that there is a unique 5-dimensional Baer subspace \prod_Z (over Z) of $\widehat{\mathcal{P}}_K$ such that

$$\mathcal{S}_{L/K}{}^{\gamma} = \Pi_Z \cap \mathcal{Q}.$$

With respect to Π_Z the set $S_{L/K}^{\gamma}$ is an oval quadric, i.e. a quadric without lines. A subset C of $S_{L/K}$ is a chain if, and only if, there exists a 3-dimensional subspace \mathcal{X} of $\widehat{\mathcal{P}}_K$ such that⁴

$$\mathcal{X} \cap \Pi_Z$$
 is a 3-dimensional subspace of Π_Z , (6)

$$\mathcal{C}^{\gamma} = \mathcal{X} \cap \mathcal{S}_{L/K}^{\gamma}$$
 is an elliptic quadric of $\mathcal{X} \cap \Pi_Z$ (over Z), (7)

$$\mathcal{X} \cap \mathcal{Q}$$
 contains a line of \mathcal{P}_K ; (8)

cf. [8, Theorem 1].

⁴If L is the skew field of real quaternions then K is a field of complex numbers and Z the field of real numbers. Here conditions (6) and (7) are already sufficient to characterize the γ -images of chains.

The automorphism group of $\Sigma(K, L)$ is formed by all bijections of $\mathcal{S}_{L/K}$ taking chains to chains in both directions. If κ is a collineation or a duality of \mathcal{P}_K with $\mathcal{S}_{L/K}^{\kappa} = \mathcal{S}_{L/K}$ then κ is yielding an automorphism of $\Sigma(K, L)$. Conversely, according to [12] and [8, Theorem 4], each automorphism of $\Sigma(K, L)$ can be induced by an automorphic collineation or duality of $\mathcal{S}_{L/K}$, say κ . This κ is uniquely determined for K/Z not being Galois, otherwise the product of ι (cf. formula (5)) and κ is the only other solution.

Transferring these results to $\widehat{\mathcal{P}}_K$ establishes that an automorphic collineation μ of the Klein quadric is the γ -transform of an automorphic collineation or duality of $\mathcal{S}_{L/K}$ if, and only if, Π_Z is invariant under μ . If K/Z is Galois, then the γ -transform of the collineation ι (cf. (5)) is the Baer involution of $\widehat{\mathcal{P}}_K$ fixing Π_Z pointwise. See [8, Theorem 4].

$\mathbf{2.4}$

Let C_0 and C_1 be two chains with a common element, say $p \in S_{L/K}$. We say that C_0 is **tangent** to C_1 at p if there exist transversal lines t_i of C_i (i = 0, 1) such that p, t_0, t_1 are in one pencil of lines. This is a reflexive and symmetric relation.

If K/Z is Galois then there is also an orthogonality relation on the set of chains: If C_i (i = 0, 1) are chains with transversal lines t_i , t_i^{ι} , respectively, then C_0 is said to be **orthogonal** to C_1 if t_0 intersects both t_1 and t_1^{ι} . This relation is symmetric, since ι is an involution. Given two orthogonal chains their transversal lines form a skew quadrilateral.

The two definitions above are not given in an intrinsic way. However, both relations are invariant under automorphic collineations and dualities of $S_{L/K}$ and hence invariant under automorphisms of $\Sigma(K, L)$.

The proofs of the following results are left to the reader: Chains C_0 , C_1 are tangent at $p \in C_0 \cap C_1$ if, and only if, their images under the Klein mapping are quadrics with the same tangent plane at the point p^{γ} . A chain C_0 is orthogonal to a chain C_1 if, and only if, the subspace of $\widehat{\mathcal{P}}_K$ spanned by C_0^{γ} contains the orthogonal subspace (with respect to the Klein quadric) of C_1^{γ} .

3 Affine Circle Geometry on L/K

3.1

With the notations introduced in section 2, select one line of $\mathcal{S}_{L/K}$ and label it ∞ . Let $\widetilde{\mathcal{A}}$ be a (projective) plane of \mathcal{P}_K through ∞ and write $\mathcal{A} := \widetilde{\mathcal{A}} \setminus \infty$. Then \mathcal{A} can be viewed as an affine plane with ∞ as line at infinity. The mapping

$$\rho: \mathcal{S}_{L/K} \setminus \{\infty\} \to \mathcal{A}, \quad s \mapsto \mathcal{A} \cap s \tag{9}$$

is well-defined and bijective. A chain \mathcal{C} containing ∞ yields an affine line $(\mathcal{C} \setminus \{\infty\})^{\rho}$ if, and only if, \mathcal{C} has a transversal line in $\widetilde{\mathcal{A}}$. Two chains with transversal lines in $\widetilde{\mathcal{A}}$ yield parallel lines if, and only if, the chains are tangent at ∞ .

If \mathcal{A}' is any plane through ∞ then, with $\mathcal{A}' := \mathcal{A}' \setminus \infty$, the mapping

$$\beta: \mathcal{A} \to \mathcal{A}', \quad \mathcal{A} \cap s \mapsto \mathcal{A}' \cap s \quad (s \in \mathcal{S}_{L/K} \setminus \{\infty\})$$

is a well-defined bijection⁵. This β is an affinity if either $\widetilde{\mathcal{A}}' = \widetilde{\mathcal{A}}$ or $\widetilde{\mathcal{A}}' = \widetilde{\mathcal{A}}^{\iota}$ [6, Theorem 5]; the second alternative is only possible when K/Z is Galois.

2.3

⁵One could also select some point $A \in \infty$ and then obtain an affine plane by a dual construction.

The group of automorphic collineations of $S_{L/K}$ operates 3-fold transitively on the lines of $S_{L/K}$ [1, p.322]. Thus we may transfer ∞ to the line given by (0,1)L. Moreover, for all $c \in L$, $c \neq 0$

$$(l_0, l_1)K \mapsto (cl_0, cl_1)K \quad ((0, 0) \neq (l_0, l_1) \in L^2)$$

is an automorphic collineation of $S_{L/K}$ fixing ∞ . Hence, without loss of generality, we may assume in the sequel that

$$\infty = \mathcal{P}_K((0,1)L)$$
 and $\mathcal{A} = (1,0)K \vee \infty$.

Then the mapping (9) becomes

$$\mathcal{P}_K((l_0, l_1)L) \mapsto (1, l_1 l_0^{-1})K.$$
 (10)

We shall identify \mathcal{A} with L via⁶ $(1, l)K \equiv l$. Thus L gets the structure of an affine plane over K. We shall emphasize this by writing $\mathcal{A}_K(L)$ rather than L.

Theorem 1 Let κ be an automorphic collineation or duality of $S_{L/K}$ fixing ∞ . Then there exist elements $m_0, m_1, m \in L, m_0, m_1 \neq 0$ and an automorphism or antiautomorphism J of L with $K^J = K$ such that

$$x^{\rho^{-1}\kappa\rho} = m_1 x^J m_0 + m \quad \text{for all } x \in L.$$

$$\tag{11}$$

The additional conditions

$$J$$
 is an automorphism of L , (12)

$$m_0 \in K \text{ or, only if } K/Z \text{ is Galois, } m_0 i^{-1} \in K$$
 (13)

together are necessary and sufficient for $\rho^{-1}\kappa\rho$ to be an affinity of $\mathcal{A}_K(L)$.

Proof. The assertion in formula (11) is obviously true.

Now suppose that $\rho^{-1}\kappa\rho$ is an affinity of $\mathcal{A}_K(L)$. Then κ has to take each chain with a transversal line in $\widetilde{\mathcal{A}}$ to a chain with a transversal line in $\widetilde{\mathcal{A}}$. Hence $\widetilde{\mathcal{A}}^{\kappa} = \widetilde{\mathcal{A}}$ or, only if K/Z is Galois, $\widetilde{\mathcal{A}}^{\kappa} = \widetilde{\mathcal{A}}^{\iota}$. Therefore κ cannot be a duality, so that Jcannot be an antiautomorphism [8, Theorem 4]. Consequently, $g: x \mapsto m_1 x^J m_0$ has to be a semilinear mapping of the right vector space L over K. We infer from

$$xk \stackrel{g}{\mapsto} (m_1 x^J m_0)(m_0^{-1} k^J m_0) \quad \text{for all } x \in L, \ k \in K$$

that $m_0^{-1}Km_0 = K$. There are two possibilities: If

$$m_0^{-1}km_0 = k$$
 for all $k \in K$

then m_0 is a non-zero element of K, since K is a maximal commutative subfield of L. On the other hand, however only if K/Z is Galois, also

$$m_0^{-1}km_0 = \overline{k}$$
 for all $k \in K$

is possible. Now, again using that K is maximal commutative, it follows from (1) that $m_0 i^{-1} \in K$.

$\mathbf{3.2}$

The proof of the converse is a straightforward calculation. \blacksquare

⁶This is accordance with the inhomogeneous notation used in [1].

3.3

If \mathcal{C} is a chain such that $(\mathcal{C} \setminus \{\infty\})^{\rho}$ is not a line of $\mathcal{A}_K(L)$ then $(\mathcal{C} \setminus \{\infty\})^{\rho}$ will be named a **circle**. There are two kinds of circles: If $\infty \in \mathcal{C}$ then the circle is called **degenerate**, otherwise **non-degenerate**. The following Lemma shows that distinct chains cannot define the same circle. In addition it establishes that a circle cannot be degenerate and non-degenerate at the same time:

Lemma 2 Let C_0 and C_1 be two chains such that $C_0 \setminus \{\infty\} = C_1 \setminus \{\infty\}$. Then $C_0 = C_1$.

Proof. According to (6), (7), (8) there exists a 3-dimensional subspace \mathcal{X}_0 of $\widehat{\mathcal{P}}_K$ with

$$\mathcal{C}_0{}^{\gamma} = \mathcal{X}_0 \cap \Pi_Z \cap \mathcal{Q}.$$

Since C_0^{γ} is an oval quadric of $\mathcal{X}_0 \cap \Pi_Z$ and Z is infinite, $(C_0 \setminus \{\infty\})^{\gamma}$ is still spanning \mathcal{X}_0 . Repeating this, mutatis mutandis, for C_1 gives $\mathcal{X}_0 = \mathcal{X}_1$, whence $C_0 = C_1$, as required.

$\mathbf{3.4}$

By Lemma 2, we may unambiguously speak of a line being **tangent** to a circle at some point $P \in \mathcal{A}_K(L)$ or of circles **touching** at P if they arise from chains that are tangent at $P^{\rho^{-1}}$.

A degenerate circle has no tangent lines. A point P of a non-degenerate circle is called **regular** if there exists a tangent line of that circle at P. If such a circle is given as \mathcal{C}^{ρ} , \mathcal{C} a chain, then $P \in \mathcal{C}^{\rho}$ is regular if, and only if, P (regarded as point of \mathcal{A}) is incident with a transversal line of \mathcal{C} . Thus a non-degenerate circle has either one or two regular points.

3.5

If K/Z is Galois then call two lines, or a circle and a line, or two circles of $\mathcal{A}_K(L)$ orthogonal if they arise from orthogonal chains.

By virtue of the collineation ι (cf. formula (5)), a line lK + m $(l, m \in L, l \neq 0)$ is orthogonal to all lines being parallel to liK.

We introduce a unitary scalar product * on the right vector space L over K by setting

 $(u+iv)*(u'+iv') := \overline{u}u' + \mu_2 \overline{v}v' \quad \text{for all } u, u', v, v' \in K.$ (14)

This scalar product is describing the orthogonality relation on lines from above. Moreover, (u + iv) * (u + iv) = N(u + iv), whence the norm is a Hermitian form⁷ on L over K.

It is easily seen that there exists no line orthogonal to a degenerate circle. The join of the two regular points of a non-degenerate circle is the only line being orthogonal to that circle. It will be called the **midline** of the circle. The midline is orthogonal to both tangent lines.

All affinities described in Theorem 1 are preserving orthogonality.

3.6

Let \mathcal{C} be a chain such that $\Delta := (\mathcal{C} \setminus \{\infty\})^{\rho}$ is a degenerate circle. Then either there are two points or there is one point on the line ∞ incident with transversal lines of

 $^{^7\}mathrm{If}\;K/Z$ is not Galois then the norm does not seem to be a quadratic or Hermitian form on L over K.

C. We call these points at infinity of $\mathcal{A}_K(L)$ the **absolute points** or the **absolute directions** of Δ . This terminology will be motivated in 3.10.

The group AGL(1, L) of all transformations (11) with $m_0 = 1$ operates sharply 2-fold transitively on $\mathcal{A}_K(L)$. Thus each degenerate circle can be transferred under AGL(1, L) to a degenerate circle through 0 and 1. Write

$$L^{\circ} := \begin{cases} L \setminus (K \cup Ki) : K/Z \text{ Galois,} \\ L^{\circ} := L \setminus K : K/Z \text{ not Galois.} \end{cases}$$

Then, by [1, p.329] and (13), the degenerate circles through 0 and 1 are exactly the sets

$$cKc^{-1}$$
 with $c \in L^{\circ}$. (15)

From now on assume that a degenerate circle Δ is given by (15). Let \mathcal{C} be the chain with transversal line $(c, 0)K \vee (0, c)K$. Then $\Delta = (\mathcal{C} \setminus \{\infty\})^{\rho}$, whence cK is an absolute direction of Δ . Each affinity of AGL(1, L) (cf. formula (11)) with $m_1, m \in cKc^{-1}$ ($m_1 \neq 0, m_0 = 1$ as before) takes Δ onto Δ .

Theorem 2 Each degenerate circle of $\mathcal{A}_K(L)$ is an affine Baer subplane of $\mathcal{A}_K(L)$ with the centre of L as underlying field.

Proof. It is sufficient to show this for a degenerate circle given by (15). Set $c^{-1} =: d + ie$ with $d, e \in K$. Then, by (1) and (2),

$$cKc^{-1} = \begin{cases} \{(cd)k + (cie)\overline{k} \mid k \in K\} : K/Z \text{ Galois,} \\ \{k + (ce)k^D \mid k \in K\} : K/Z \text{ not Galois.} \end{cases}$$

Now the assertion follows by Lemma 1. \blacksquare

3.7

Next we turn to non-degenerate circles.

Theorem 3 All non-degenerate circles of the affine plane $\mathcal{A}_K(L)$ are in one orbit of AGL(1, L).

Proof. Let C_0 be the chain with transversal line

$$(1,0)K \lor (i,i)K. \tag{16}$$

Then $\Gamma_0 := \mathcal{C}_0^{\rho}$ is a non-degenerate circle with regular point 0.

Let K/Z be Galois. Then 1 is the other regular point of Γ_0 . If Γ_1 is a nondegenerate circle then there exists an affinity $\alpha \in \text{AGL}(1, L)$ taking the regular points of Γ_1 to 0 and 1, respectively. Hence $\Gamma_1^{\alpha \rho^{-1}}$ is a chain with one transversal line through (1,0)K and the other transversal line through (1,1)K. Applying the collineation ι on (1,1)K establishes that (16) is a transversal line of this chain, whence $\Gamma_0 = \Gamma_1^{\alpha}$.

Now assume that K/Z is not Galois. If Γ_1 is a non–degenerate circle then there exists an affinity $\alpha \in \operatorname{AGL}(1, L)$ taking the only regular point of Γ_1 to 0. The chain $\Gamma_1^{\alpha\rho^{-1}}$ has a unique transversal line through (1,0)K and some point of the plane $(i,0)K \vee \infty$, say

$$(id, e+if)K$$
 with $d, e, f \in K, d, e+if \neq 0$.

There exists an element $m_1 \in L \setminus \{0\}$ such that $m_1(e+if) = id$. The collineation κ of \mathcal{P}_K given by $(l_0, l_1)K \mapsto (l_0, m_1 l_1)K$ leaves $\mathcal{S}_{L/K}$ invariant, fixes the point (1, 0)K as well as the line ∞ and takes (id, e+if)K to (i, i)K. Hence the induced affinity $\rho^{-1}\kappa\rho$ of $\mathcal{A}_K(L)$ carries Γ_1^{α} over to Γ_0 .

The non-degenerate circle Γ_0 arising from the chain \mathcal{C}_0 with transversal line (16) has the parametric representation

$$\{ik_1(k_0+ik_1)^{-1} \mid (0,0) \neq (k_0,k_1) \in K^2\};$$
(17)

cf. also [1, Satz 3.2]. Next we establish an equation for Γ_0 :

Theorem 4 The non-degenerate circle Γ_0 given by (17) equals the set of all points $u + iv \ (u, v \in K) \ satisfying^8$

$$u = N(u + iv). \tag{18}$$

Proof. The term $ik_1(k_0+ik_1)^{-1}$ in formula (17) can be rewritten as follows: If K/Z is Galois then

$$ik_1(k_0 + ik_1)^{-1} = ik_1(\overline{k_0} - ik_1)\left((k_0 + ik_1)(\overline{k_0} - ik_1)\right)^{-1} \\ = (\mu_2 k_1 \overline{k_1} + i\overline{k_0} k_1)(k_0 \overline{k_0} + \mu_2 k_1 \overline{k_1})^{-1},$$

otherwise

$$ik_1(k_0 + ik_1)^{-1} = ik_1(k_0 + k_1 + k_1i)\left((k_0 + ik_1)(k_0 + k_1 + k_1i)\right)^{-1} = \left(\mu_2 k_1^2 + ik_0 k_1\right) \left(k_0^2 + k_0 k_1 + (k_0 k_1)^D + \mu_2 k_1^2\right)^{-1}.$$

Now, since

$$N(u+iv) = \begin{cases} u\overline{u} + \mu_2 v\overline{v} & : K/Z \text{ Galois,} \\ u^2 + uv + (uv)^D + \mu_2 v^2 & : K/Z \text{ not Galois,} \end{cases}$$

it is easily seen that all points of Γ_0 are satisfying equation (18).

Conversely, let q + ir $(q, r \in K)$ be a solution of (18). If q = 0 then r = 0, whence we have a point of Γ_0 . Otherwise set

$$k_0 := \left\{ \begin{array}{l} \mu_2 \overline{rq^{-1}} : K/Z \text{ Galois,} \\ \mu_2 rq^{-1} : K/Z \text{ not Galois,} \end{array} \right\} \text{ and } k_1 := 1.$$

The point of Γ_0 with these parameters equals q + ir.

3.9

We are able to say a little bit more about non–degenerate circles provided that K/Z is Galois. Formula (18) becomes

$$N(u+iv) - u = (u - 1 + iv) * (u + iv) = 0.$$
(19)

Thus, if we intersect each line through 0 with its orthogonal line through 1 then the set of all such points of intersection equals Γ_0 . This is a nice analogon to a well-known property of opposite points on a Euclidean circle⁹.

Theorem 5 Let K/Z be Galois. Write $E := \{y \in K \mid y + \overline{y} = 1\}$ and \mathcal{H}_e $(e \in E)$ for the affine Hermitian variety formed by all points u + iv $(u, v \in K)$ subject to the equation

$$N(u+iv) = eu + \overline{eu}.$$

Then the non-degenerate circle Γ_0 given by (17) can be written as

$$\Gamma_0 = \mathcal{H}_e \cap \mathcal{H}_f \quad for \ all \ e, f \in E \ with \ e \neq f.$$
(20)

$\mathbf{3.8}$

 $^{^{8}\}mathrm{In}$ the elementary plane of complex numbers the same kind of equation gives a circle through 0 and 1.

⁹The points 0 and 1 are, however, the only points of Γ_0 with this property.

Proof. A straightforward calculation yields

$$E = \begin{cases} \frac{1}{2} + (\lambda_1 + 2a)Z : \operatorname{Char} K \neq 2, \\ a\lambda_1^{-1} + Z : \operatorname{Char} K = 2, \end{cases}$$

whence E is infinite. Given $q + ir \in \Gamma_0$ $(q, r \in K)$ then $q \in Z$ implies

$$\Gamma_0 \subset \bigcap_{e \in E} \mathcal{H}_e.$$

Choose distinct elements $e, f \in E$ and $q + ir \in \mathcal{H}_e \cap \mathcal{H}_f (q, r \in K)$. Then

$$N(q+ir) - N(q+ir) = eq + \overline{eq} - fq - \overline{fq} = 0.$$

But

$$\frac{e-f}{\overline{f}-\overline{e}} = 1,$$

so that $q = \overline{q}$ and therefore $q + ir \in \Gamma_0$.

3.10

There is an alternative approach to $\mathcal{A}_K(L)$ via the point model of $\Sigma(K, L)$ on the Klein quadric \mathcal{Q} .

Write $I := \infty^{\gamma}$ and \mathcal{Z} for the γ -image of the ruled plane on \mathcal{A} ; this \mathcal{Z} is a plane on the Klein quadric. Furthermore let \mathcal{F} be any plane of \mathcal{P}_K skew to \mathcal{Z} and write

$$\pi: \widehat{\mathcal{P}}_K \setminus \mathcal{Z} \to \widetilde{\mathcal{F}} \tag{21}$$

for the projection with centre \mathcal{Z} onto the plane $\widetilde{\mathcal{F}}$. It is well known from descriptive line geometry that there exists a collineation ψ of $\widetilde{\mathcal{A}}$ onto $\widetilde{\mathcal{F}}$ such that

$$(p \cap \widetilde{\mathcal{A}})^{\psi} = p^{\gamma \tau}$$

for all lines p of \mathcal{P}_K not contained in $\widetilde{\mathcal{A}}$. Cf., e.g., [3]. We turn $\widetilde{\mathcal{F}}$ into an affine plane \mathcal{F} , say, by regarding $\widetilde{\mathcal{F}} \cap I^{\perp}$ as its line at infinity; here I^{\perp} denotes the tangent hyperplane of the Klein quadric at I. Then $\infty^{\psi} = \mathcal{F} \cap I^{\perp}$.

The bijectivity of ρ implies that $S_{L/K}^{\gamma} \setminus \{I\}$ is mapped bijectively under π onto the affine plane \mathcal{F} . The restriction

$$\pi \mid \mathcal{S}_{L/K}^{\gamma} \setminus \{I\}$$

can be seen as a **generalized stereographic projection** of the oval quadric $S_{L/K}^{\gamma}$ of Π_Z onto the affine plane¹⁰ \mathcal{F} .

Let \mathcal{C} be a chain. Then $\mathcal{C}^{\gamma} = \mathcal{X} \cap \mathcal{Q} \cap \prod_{Z}$ for some 3-dimensional subspace \mathcal{X} of $\widehat{\mathcal{P}}_{K}$. We leave it to the reader to show that $(\mathcal{C} \setminus \{\infty\})^{\gamma\pi}$ is an affine line if $\mathcal{X} \cap \mathcal{Z}$ is a line through I, a degenerate circle if $\mathcal{X} \cap \mathcal{Z} = \{I\}$ and a non-degenerate circle if $\mathcal{X} \cap \mathcal{Z}$ is some point other than I.

Using the mapping $\gamma \pi \psi^{-1}$ instead of ρ is very convenient to establish results on the images of traces [1, p.327], since their γ -images are just the regular conics on $S_{L/K}^{\gamma}$ [8, 3.4]. We sketch just one result without proof:

Let \mathcal{C} be a chain through ∞ such that $(\mathcal{C} \setminus \{\infty\})^{\rho} =: \Delta$ is a degenerate circle of $\mathcal{A}_K(L)$. Then the ρ -images of traces in \mathcal{C} are on one hand the lines of the affine plane Δ and on the other hand certain ellipses of Δ . If these ellipses are extended to conics of $\mathcal{A}_K(L)$ then the absolute directions of Δ determine their points at infinity¹¹. This is the well-known concept of absolute circular points. Δ is a Euclidean plane representing the extension K/Z. Cf. [14].

 $^{^{10}}$ A 'usual' stereographic projection would map onto a 4-dimensional affine space over Z rather than an affine plane over K.

¹¹There is only one such point if K/Z is not Galois.

References

- Benz, W.: Vorlesungen über Geometrie der Algebren, Grundlehren Bd. 197, Springer, Berlin Heidelberg New York, 1973.
- [2] Berger, M.: Geometry I, II, Springer, Berlin Heidelberg New York London Paris Tokyo, 1987.
- [3] Brauner, H.: Eine geometrische Kennzeichnung linearer Abbildungen, Monatsh. Math. 77 (1973), 10-20.
- [4] Cohn, P.M.: Quadratic Extensions of Skew Fields, Proc. London Math. Soc. 11 (1961), 531–556.
- [5] Havlicek, H.: Die Projektivitäten und Antiprojektivitäten der Quaternionengeraden, Publ. Math. Debrecen 40 (1992), 219–227.
- [6] Havlicek, H.: On the Geometry of Field Extensions, Aequat. Math. 45 (1993), 232– 238.
- [7] Havlicek, H.: Spreads of right quadratic skew field extensions, Geom. Dedicata 49 (1994), 239–251.
- [8] Havlicek, H.: Spheres of quadratic field extensions, Abh. Math. Sem. Univ. Hamburg 64 (1994), in print.
- [9] Herzer, A.: Chain Geometries, in: F. Buekenhout (ed.), Handbook of Incidence Geometry (pp. 781–842), Amsterdam, Elsevier, 1995.
- [10] Herzer, A.: Der äquiforme Raum einer Algebra, Mitt. Math. Ges. Hamburg 13 (1993), 129–154.
- [11] Kist, G., Reinmiedl, B.: Geradenmodelle der Möbius- und Burau-Geometrien, J. Geometry 41 (1991), 94–113.
- [12] Mäurer, H., Metz, R., Nolte, W.: Die Automorphismengruppe der Möbiusgeometrie einer Körpererweiterung, Aequat. Math. 21 (1980), 110–112.
- [13] Pickert, G.: Projektive Ebenen, Springer, 2nd ed., Berlin Heidelberg New York, 1975.
- [14] Schröder, E.M.: Metric Geometry, in: F. Buekenhout (ed.), Handbook of Incidence Geometry (pp. 945–1013), Amsterdam, Elsevier, 1995.
- [15] Tallini Scafati, M.: Metrica hermitiana ellitica in uno spazio proiettivo quaternionale, Ann. Mat. pura appl. (IV) 60 (1963), 203–234.
- [16] Wilker, J.B.: The Quaternion formalism for Möbius Groups in Four or Fewer Dimensions, Linear Alg. Appl. 190 (1993), 99–136.
- [17] Wunderlich, W.: Ebene Kinematik, BI Hochschultaschenbücher 447/447a, Bibliographisches Institut, Mannheim Wien Zürich, 1970.

Hans Havlicek, Abteilung für Lineare Algebra und Geometrie, Technische Universität, Wiedner Hauptstrasse 8–10, A–1040 Wien, Austria. EMAIL: havlicek@geometrie.tuwien.ac.at