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1. Introduction

Baer subspaces of projective spaces as well as Segre manifolds of pappian projective

spaces are very well known. But seemingly they are unrelated topics, apart from the

(more or less formal) fact that both of them may be described in terms of tensor pro-

ducts of vector spaces.

Baer subspaces of a desarguesian projective space with an underlying (not neces-

sarily commutative) field L arise from subfields K of right and left degree 2 over L.

(Recall that the right and left degree of a field extension may be different; cf.

[4,123ff].) If W is a right vector space over K, then the tensor product W!tK!L is a

right vector space over L. With 1tetL we have the canonical embedding wt9Ltwt1 of W in

W!tK!L. This yields an embedding of the projective space on W in the projective space

on W!tK!L as a Baer subspace.

When V1 and V2 are vector spaces over the same commutative field L, then the set

of all non-zero pure bivectors of V1!tL!V2 determines a Segre manifold in the projec-

tive space on V1!tL!V2. Following geometric ideas in [3] and [10], a definition of

Segre manifolds will be given when the ground field L is arbitrary. However, by fol-

lowing this definition, the connection to tensor products of vector spaces seems to be

lost when L is a skew field, since forming V1!tL!V2 requires a r!i!g!h!t vector space

V1 and a l!e!f!t vector space V2 over L. And this is not in accordance with the geo-

metric approach.

The following construction of a Baer subspace within a Segre manifold essentially

depends on the existence of an element atetL which has degree two over the centre of
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L. So it will not work in pappian spaces. Furthermore we are going to use that cross-

ratios in a skew field L are conjugacy classes of L rather than single elements. More-

over we shall show that the generators of the given Segre manifold yield a 1-spread of

the Baer subspace. Any transversal subspace of the Segre manifold may be regarded as

an indicator set of this 1-spread.

!
!
!
!
2. Segre manifolds

Let P be a projective space. Given complementary subspaces U and U’ of P and a projec-

tive collineation k!:!UtLtU’, where U,U’ are regarded as sets of points, the set
!kSt:=t{X!e!YvY |Y!e!U}tCtP

!
is called a Segre manifold. Every line belonging to

!kS t:=t{YvY |Y!e!U}I !
is called a generator of S. A subspace TtCtP is named a transversal subspace of S , ifI !

lt(eS )t9LtlnTI !
defines a bijection of S onto T.I

When P is pappian and (2n+1)-dimensional, then every Segre manifold according to

this definition is a Corrado Segre manifold S1;n in the notation of W.!Burau [3,133].

Cf. also [6,189 ff]. One could also ask for generalizations of Segre manifolds whose

generators are subspaces of higher dimension. But we shall not be concerned with this

possibility.

If dimPt=t3, then S is a regulus in the sense of Beniamino Segre [10,319], andI
conversely every regulus is the set of generators of a Segre manifold. Reguli often

are defined in such a way that their existence forces P to be pappian. But we shall

stick to the more general terminology introduced by B.!Segre.

In the sequel let V be a right vector space over a field L. When U is a subspace

of V, then P(U) stands for the projective space on U. Given MtCtL, we denote by Z(M)

the centralizer of M in L.

Suppose that S is a Segre manifold in P(V) with span!St=tP(V). Then V is the

direct sum of two subspaces U,U’, say, and there is a linear bijection
!

’!:!UtLtU’, ut9Ltu’ (1)
!

such that the defining projective collineation k for S may be written as
!

k!:! P(U)tLtP(U’), xLt9Ltx’L. (2)
!
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We use this to determine all lines of P(V) within the manifold S:

THEOREM 1. Let S be the family of generators of a Segre manifold S which is spanningI
P(V). Then the family of all transversal subspaces of S is given byI 2S t:=t{T(x,y)|(0,0)!$!(x,y)!e!Z(L) }II
where

T(x,y)t:=tP({ux+u’y})|u!e!U\{o}).

If gtCtS is a line of P(V), then either g!e!S or g is contained in a transversalI
subspace.

!
Proof. A straightforward calculation shows that every T(x,y)!e!S is a transversalII
subspace of S .I

On the other hand, if T is transversal, then pick different lines l0,l1!e!S . PutI
Qt:=tl0vl1, whence dimQt=t3. All lines of S within Q form a regulus with TnQ being aI
transversal line of this regulus. We infer from [10,319] that l0nT and l1nT have the

form
! 2(u0x+u0’y)L, (v0x+v0’y)L with (0,0)t$t(x,y)!e!Z(L) ,

!
respectively. Fixing l0 and varying l1 in S \{l0} yields TtCtT(x,y) which forcesI
Tt=tT(x,y).

Now let gtCtS be a line. It will be sufficient to show that gtmtS impliesI
gtCtT!e!S . Hence we have points X0,X1!e!g which are incident with different linesII
l0,l1!e!S . Repeating the arguments just used, we deduce that gt=tTnQ for some trans-I
versal subspace T!e!S .PII

On every line l!e!S the set lnS is a subline over the centre Z(L) of L, so theI II
cross-ratio (CR) of any four different points of lnS lies in Z(L); cf. [10,321],II
[8]. Given any transversal subspace T(x,y), the mapping

!
P(U)tLtT(x,y), uLt9Lt(ux+u’y)L

!
is a projective collineation, so that

!
T(x0,y0)tLtT(x1,y1), lnT(x0,y0)t9LtlnT(x1,y1) with l!e!SI!

is again a projective collineation for any two transversal subspaces T(x0,y0) and

T(x1,y1). This mapping in turn may be used to generate the given Segre manifold S.

Every Segre manifold S has at least three different transversal subspaces and it

is easily shown that S equals the union over all lines which intersect three of its

transversal subspaces. It is immediate from theorem 1 that S uS is the set of allI II
maximal subspaces which are contained in S. The rôle of S and S cannot be inter-I II
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changed unless P(V) is 3-dimensional and pappian; cf. e.g. [10,319-321].

!
!
!
!
3. Baer subspaces

Let K be a subfield of L whose left and right degree over L equals 2. If W is a right
~vector space over K, then the projective space P(W) yields a Baer subspace P of

~ ~P(W!tK!L), as has been sketched in section 1. Given a subspace M of P, there is a
~ ~ ~unique subspace M of P(V) with Mt=tPnM. We shall also say that M is a subspace of P.

1 ~Since the l!e!f!t degree of L over K is 2, every point X of P(W!tK!L)\P, say
!( )Xt=t S wt(x +h i) L (x,htetK, itetL\K),9 w w 0weW! ~is incident with a unique line of P which is spanned by

!( ) ( )S wx t1 L and S wh t1 L.9 w 0 9 w 0weW weW !
It follows in the same fashion that every hyperplane of P(W!tK!L), which is not a

~ ~hyperplane of P, contains a unique co-line of P, since 2 is also the r!i!g!h!t degree

of L over K.

So far there was no restriction on the ground field L. From now on, however, we

assume that L is a non-commutative field. The conjugacy class of any a!e!L will be
^written as a. The main result of this paper is

THEOREM 2. Let S be a Segre manifold spanning P(V) and denote by U,U’,TtetS threeII
different transversal subspaces of S . Assume that a!e!L is quadratic over the centreI
of L. Then the set of all points X!e!S satisfying

! ^X!e!lX!e!S 6 CR(X,lXnT,lXnU,lXnU’)t=taI !~ ~is a Baer subspace P of P(V). The centralizer of a in L is an underlying field of P.
!

Proof. (a) Let S be given by (2) and suppose Ut=tP(U), U’t=tP(U’), Tt=tT(1,1). The

element atetL is a zero of its minimal polynomial
!2X -m1X-m0!e!Z(L)[X]. (3)

!
Denote by A the commutative subfield of L spanned by Z(L)u{a}. Hence the centralizers

of {a} and A in L are the same. We obtain
!

----------------------------------------------------------------------------------------------------
1The following calculation runs in a well-known manner. The only reason for writing it
down is to emphasize the significance of left and right degrees in geometric terms.
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|L!:!Z(A)| t=t|A!:!Z(L)| t=t2t=t|A!:!Z(L)| t=t|L!:!Z(A)| ,left left right right! ! !
where the first and the last sign of equality follows from the centralizer theorem

~[4,49; Corollary 2], while the others are obvious. Every point X!e!P has the form

Xt=twL with w being an element of
!

Wt:=t{u+u’a|ueU}tCtV. (4)
!

By construction (W,+) is a subgroup of (V,+) which is closed under multiplication with

scalars of Z(A). Therefore W is a right vector space over Z(A). We shall emphasize

this by writing WZ(A). If we regard U as a right vector space UZ(A) over Z(A), then
!

a!:!UZ(A)tLtWZ(A), ut9Ltu+u’a (5)
!

is a Z(A)-linear bijection of vector spaces.

(b) In order to show that W gives rise to a Baer subspace of P(V), we establish

that the mapping
!

f!:!W!tZ(A)!LtLtV, S wtx t9Lt S wx (x !e!L)w w wweW weW !
is an L-linear bijection.

This f is well defined and L-linear. Let B be a basis of UZ(A) and let d be any

element of L\Z(A). Then every x!e!W!tZ(A)!L can be written as
!

xt=t S (b+b’a)t(x +dh ) with x ,h !e!Z(A).b b b bbeB
Suppose that

!
f(x)t=t S (b+b’a)(x +dh )t=tob b! beB!

whence, by Vt=tUsU’ and the inverse of the mapping (1),
!

S b(x +dh )t=to, S (ba)(x +dh )t=to.b b b bbeB ! beB!-1Multiplying the second equation by -a and adding the first equation yields
!-1S bdh t=t S b(ada )h . (6)b bbeB beB !!

Case 1: a is separable over Z(L). Hence
!-----at:=t(m1-a)!e!A\{a}

!
is a zero of the polynomial (3). There is an automorphism of A which fixes Z(L)

-----elementwise and takes a to a. By the Skolem Noether theorem (cf. e.g. the corrol-

lary in [4,46]), that automorphism of A can be extended to an inner automorphism
-1 -----of L. So there is an element c!e!L\Z(A) such that c act=ta. Since d!e!L\Z(A) has

been chosen arbitrarily, we may assume that dt=tc. Hence
!
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-----adt=tdat=td(m1-a). (7)
!-1 -1We deduce from d Adt=tA that d Z(A)dt=tZ(A), so that

!-1zt(eZ(A))t9Ltdzd
!

is an automorphism of Z(A). Therefore ut9Ltud is a Z(A)-semilinear bijection of

U and {bd|beB} is a basis of UZ(A). Now, by (7), equation (6) becomes
! -1S bdh t=t S bd(m1-a)a hb bbeB beB !

which forces
! -1h t=t a (m1-a)h for all b!e!B.b b !

Assume that h t$t0 for some b!e!B. Hence 2at=tm1, a contradiction. So h t=t0 forb b
all b!e!B.

Case 2: a is inseparable over Z(L). Consequently CharLt=t2 and m1t=t0. We read off
2from a t=tm0!e!Z(L) that the inner automorphism

!-1xt9Lta xa
!-1of L has order 2. Since xt+ta xatetZ(A) for all xtetL, the element d can be

-1chosen such that a dat=td+1. We obtain
!

adt=tda+a. (8)
!

By (8) equation (6) can be written as
! -1S bdh t=t S b(da+a)a h t=t S bdh !+! S bhb b b bbeB beB beB beB!

which implies h t=t0 for all b!e!B.b
In either case x t=t0 for all b!e!B and, finally, xt=to. So f is injective. Further-b
more f is surjective, since W spans all of V.P

We remark that this proof can be reduced drastically if dimUt<t8, since then f being

surjective already implies that f is a bijection.

Now we are in a position to show how the generators of the given Segre manifold

are "seen" from within the Baer subspace. Recall that a set S of mutually skew lines

of a projective space P is called a 1-spread, if S is covering P. When dimPt=t3, we

shall use the term spread rather than 1-spread and a dual spread is to mean a set of

mutually skew lines such that every plane of P contains one line of S.

! !!!!!!! !! !!! !!!!! !!! !!! !!!!!! !!!!! !!! !!!!! !!!!!!!

THEOREM 3. Under the assumptions of theorem 2, the set of lines
!~ ~St:=t{lnP|l!e!S }I
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~ ~ ~ ~is a 1-spread of P. If gtCtP is a line of P which carries one point of U, then g!e!S.
~If furthermore dimP(V)t=t3, then the spread S is desarguesian and its kernel is iso-

~morphic to L. Moreover S is a dual spread.
!~ ~Proof. If l!e!S , then lnP is a line of P. Any two different lines l0,l1!e!S areI I~ ~ ~skew. By theorem 2 every point of P is incident with an element of S. Thus S is a

1-spread.

Suppose that g carries different points
! ~(u+u’a)L, (v+v’a)L!e!P, tL!e!U.

!
So t is a linear combination (over L) of u+u’a, v+v’a. We deduce from Vt=tUsU’ that

~ ~v’Lt=tu’L and therefore uLt=tvLt=ttL which implies g!e!S, as required.
~Letting dimP(V)t=t3, we see that WZ(A) is an underlying vector space of P. Define

a multiplication
!

W*LtLtW, (u+u’a,x)t9Ltux+u’xa.
!

Then W becomes a right vector space WL over L. The 1-dimensional subspaces of WL are
~exactly the elements of the partition of W induced by S. Now the mapping a, as is

given by (5), is an L-linear bijection of UL onto WL. Hence dimWLt=t2 which in turn
~shows that the kernel of S is isomorphic to L.

~ ~In order to show that S is also a dual spread, take any plane E of P. The line U
~cannot be contained in E, since then E being a Baer subplane of E would imply

~ ~ ~ ~UnEt=tUnP to be non-empty. Hence EnU is a point off P and the only line of P passing

through it has to be in E.P

We close with some remarks:

A well known example, where this theorem can be applied, is the skew field H of

real quaternions. Here the centralizer of a!n!y atetH\Z(H) is - up to isomorphism - a

field of complex numbers.

Results similar to theorem 3 on spreads of Baer subspaces of pappian projective

spaces can be found in [1], [9]: A.!Beutelspacher and J.!Ueberberg [1] show that
~e!v!e!r!y t-dimensional subspace which is skew to a Baer subspace P of Pt=tPG(2t+1,L)

~yields a 1-spread of P. Theorem 3 states that s!o!m!e subspaces of P(V) share this

property. But on the other hand there is no restriction on the dimension of V.

Now let dimP(V)t=t3. In [7] (Definition 2.4) N.!Knarr generalizes the concept of

"indicator set" (due to A.!Bruen [2]) to the infinite case. Moreover it is shown how
~to obtain a dual spread from such an indicator set. Our construction of S and the

~proof that S is a dual spread fit into Knarr’s general concept: Denote by ItetS anyII
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transversal line and fix any line ltetS . Then I\l is an indicator set within theI
affine plane (Ivl)\l.

Still assuming dimP(V)t=t3, take two different generators l0,l1!e!S and a planeI
EtBtl0 which does not contain any transversal line. By [10,325-329], (EnS)\l0 is the

proper part of a degenerate conic or, in Segre’s terminology, a C-configuration.

Suppose that
! ^CR(Enl1,Tnl1,Unl1,U’nl1)t=tb

! ~ ^ ^for some btetL, whence btmtZ(L). When E is a plane of P, then at=tb and (EnS)\l0 is an
~ ~affine part of the Baer subplane EnPtCtE. However, when E does not belong to P, then

^ ^ ~at$tb and (EnS)\l0 is an indicator set of S within the plane E. This indicator set

again may be again be an affine Baer subplane: By [5] the set (EnS)\l0 is an affine

Baer subplane of the affine plane E\l0 if, and only if, the parameter b is quadratic

over the centre of L.

!
!
!
!
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