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1 Introduction: Square Matrices

Ring geometry and the geometry of matrices meet naturally at the ring R := Kn×n

of n× n matrices with entries in a (not necessarily commutative) field K. Our aim
is to strengthen the interaction between these disciplines. Below we sketch some
results from either side, even though not in their most general form, but in a way
which is tailored for our needs.
Let us start with ring geometry, where we follow [7] and [10]: Consider the free
left R-module R2 and the group GL2(R) = GL2n(K) of invertible 2 × 2-matrices
with entries in R. A pair (A, B) ∈ R2 is called admissible if there exists a matrix in
GL2(R) with (A, B) being its first row. The projective line over R, in symbols P(R),
is the set of cyclic submodules R(A, B) for all admissible pairs (A, B) ∈ R2. Two
admissible pairs represent the same point precisely when they are left-proportional
by a unit in R, i. e., a matrix from GLn(K). Conversely, if R(A′, B′) = R(A, B)
for some pair (A′, B′) ∈ R2 and an admissible pair (A, B) ∈ R2 then (A′, B′) is
admissible too [3, Proposition 2.2]. By [2], the projective line over R allows the
following description which is not available for arbitrary rings, as it makes use of
the left row rank of a matrix X over K (in symbols: rank X):

P(R) = {R(A, B) | A, B ∈ R, rank(A, B) = n}. (1)

Here (A, B) ∈ R2 has to be interpreted as the n × 2n matrix over K arising from
A and B by means of horizontal augmentation. Because of (1), the point set of
P(R) is in bijective correspondence with the Grassmannian Gr2n,n(K) comprising
all n-dimensional subspaces of the left K-vector space K2n via

P(R)→ Gr2n,n(K) : R(A, B) 7→ left row space of (A, B). (2)

From [13, 2.6], our matrix ring R = Kn×n has stable rank 2 [13, § 2]. Viz. for each
(A, B) ∈ R2 which is unimodular, i. e., there are X,Y ∈ R with AX + BY = I, there
exists W ∈ R such that A + BW ∈ GLn(K). Consequently, two important results
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hold: Firstly, any unimodular pair (A, B) ∈ R2 is admissible [13, 2.11]. Secondly,
Bartolone’s parametrisation

R2 → P(R) : (T1,T2) 7→ R(T2T1 − I,T2) (3)

is well defined and surjective. This allows us to write the projective line P(R) in
the form

P(R) = {R(T2T1 − I,T2) | T1,T2 ∈ R}. (4)

See [1] and compare with [4] for a generalisation.
Let us now switch to the geometry of matrices, where [14] is our standard refer-
ence. By comparing the description of the point set P(Kn×n) = P(R) in (1) with
the definition of the point set of the projective space of m × n matrices over K in
[14, 3.6], one sees immediately that the two definitions coincide for m = n ≥ 2
up to the immaterial fact that we address a Grassmannian in the vector space K2n

rather than in the projective space on K2n. The bijection from (2) turns (3) into a
surjective parametric representation of the Grassmannian Gr2n,n(K), namely

R2 → Gr2n,n(K) : (T1,T2) 7→ left row space of (T2T1 − I,T2). (5)

A major difference concerns the additional structure which is imposed on
Gr2n,n(K): In the ring-geometric setting the point set P(R) is endowed with the
symmetric and anti-reflexive relation distant (4) defined by

R(A, B)4R(C,D) ⇔
(
A B
C D

)
∈ GL2(R).

Being distant is equivalent to the complementarity of the n-dimensional subspaces
of K2n which correspond via (2). A crucial property of the projective line over our
ring R, and more generally over any ring of stable rank 2, is as follows [10, 1.4.2]:
Given any two points p and q there exists some point r such that p4 r4 q. In the
matrix-geometric setting two n-dimensional subspaces of K2n are called adjacent
(∼) if, and only if, their intersection has dimension n− 1. However, adjacency can
be expressed in terms of being distant and vice versa [5, Theorem 3.2]. See also
[12, 3.2.4], where complementary subspaces are called opposite.
We refer to [6] for several applications of this link between P(R) and the Grass-
mannian Gr2n,n(K), like a unified explicit description of adjacency preserving
transformations of Gr2n,n(K) which avoids the usual distinction between semilin-
ear bijections and non-degenerate sesquilinear forms.

2 σ-Hermitian matrices
Suppose now that the field K admits an involution, i. e. an antiautomorphism σ
such that σ2 = idK . As before, we let R = Kn×n. The involution σ determines an
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antiautomorphism of R, namely the σ-transposition M = (mi j) 7→ (Mσ)T := (mσ
ji).

The elements of Hσ := {X ∈ R | X = (Xσ)T} are the σ-Hermitian matrices of
R. (In the special case that σ = idK the field K is commutative, and we obtain
the subset of symmetric matrices of Kn×n.) The set Hσ need not be closed under
matrix multiplication. In the terminology of [7, 3.1.5], Hσ is a Jordan system of
R, where R = Kn×n is considered as an algebra over the centre Z(K) of K. This
means that Hσ is a subspace of the Z(K)-vector space R which contains I, and
which has the property that

A−1 ∈ Hσ for all A ∈ GLn(K) ∩ Hσ. (6)

Moreover, Hσ is Jordan closed, i. e., it satisfies the condition

ABA ∈ Hσ for all A, B ∈ Hσ. (7)

We follow [7, 3.1.14] by defining the projective line P(Hσ) over Hσ as

P(Hσ) = {R(T2T1 − I,T2) | T1,T2 ∈ Hσ}. (8)

From (4), P(Hσ) is a subset of P(R). It is important to point out that P(Hσ) is not
defined as the set of all R(A, B) with (A, B) admissible and A, B ∈ Hσ. Neverthe-
less, all points R(A, I) and R(I, A) with A ∈ Hσ belong to P(Hσ).
We now recall the definition of the projective space of σ-Hermitian matrices from
[9, III § 3] and [14, 6.8]. Let β : K2n × K2n → K be the non-degenerate σ-anti-
Hermitian sesquilinear form given by the matrix

(
0 In

−In 0

)
∈ GL2n(K). (9)

The form β is trace-valued and has Witt index n. The subset of the Grassmannian
Gr2n,n(K) comprising all maximal totally isotropic subspaces is the point set of the
projective space of σ-Hermitian matrices or, in another terminology, the point set
of the dual polar space given by β; see [8] or [12, 4.1].
Suppose that (A, B) ∈ R2 satisfies rank(A, B) = n. By [14, Proposition 6.41], the
(n-dimensional) left row space of (A, B) ∈ Kn×2n is totally isotropic if, and only if,

A(Bσ)T = B(Aσ)T. (10)

Thus it is easy to decide whether or not an element of the Grassmannian Gr2n,n(K)
is totally isotropic. For example, all pairs (A, I) and (I, A) with A ∈ Hσ give rise
to maximal totally isotropic subspaces.
Note that our Jordan system Hσ need not be strong (in German: “starkes Jordan-
System”) in the sense of [7, 3.1.5], as we do not assume any richness conditions.
Also, we did not adopt the extra assumptions on σ from [14, p. 306].
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By the above, the set of σ-Hermitian matrices gives rise to two subsets of
Gr2n,n(K). The coincidence of these two subsets is not obvious. Indeed, in the
ring-geometric setting the subset is given in terms of a parametric representation,
whereas in the matrix-geometric setting there is a defining matrix equation. Our
main result states that the two subsets coincide.

Theorem 1 ([6]). Let K be any field admitting an involutionσ. The point set of the
projective space ofσ-Hermitian n×n matrices over K coincides with the projective
line over the Jordan system Hσ of all σ-Hermitian matrices of R = Kn×n.

Our proof of this theorem uses two auxiliary results about dual polar spaces. The
first is rather technical.

Lemma 1 ([6]). Let U = V⊕W be a maximal totally isotropic subspace of (K2n, β)
which is given as direct sum of subspaces V and W. Then there exists a maximal
totally isotropic subspace, say X, such that X ∩ V⊥ = W.

With this result at hand the following can be established:

Lemma 2 ([6]). Let U1 and U2 be two maximal totally isotropic subspaces of
(K2n, β). Then there exists a maximal totally isotropic subspace X which is a
common complement of U1 and U2.

Sketch of the proof of Theorem 1. The proof of one inclusion simply amounts to
plugging in representatives of the points from (8) in the matrix equation (10).
Conversely, let the left row space of (A, B) be a maximal totally isotropic sub-
space. By Lemma 2, there exists a maximal totally isotropic subspace of K2n

which is a common complement of the left row spaces of (I, 0) and (A, B). In
matrix form it can be written as (C, I) with C ∈ Hσ. So, in terms of P(R), we have
R(I, 0)4R(C, I)4R(A, B). Defining T1 := C and T2 := (BC − A)−1B gives after
some calculations that R(A, B) = R(T2T1 − I,T2) and R(A, B) ∈ P(Hσ). �

In view of Theorem 1 one may carry over results from P(Hσ) to the projective
space of σ-Hermitian matrices; see [6].
Finally, let us mention two open problems:

1. Is it possible to express the adjacency relation on a projective space of σ-
Hermitian matrices in terms of the distant relation on P(Hσ)?
See [6], [11] and [12, 4.7.1] for further details.

2. Is it possible to extend the present results from the matrix ring R = Kn×n to
other rings which admit an anti-automorphism?
An affirmative answer would give, mutatis mutandis, an alternative ap-
proach to projective lines over certain Jordan systems in terms of a defining
equation similar to (10).
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