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Abstract

We establish that, over certain ground fields, the set of osculating tangentsof Cayley’s ruled
cubic surface gives rise to a (maximal partial) spread which is also a dual (maximal partial)
spread. It is precisely the Betten-Walker spreads that allow for this construction. Every infinite
Betten-Walker spread is not an algebraic set of lines, but it turns into such a set by adding just
one pencil of lines.
2000 Mathematics Subject Classification. 51A40, 51M30, 14J26.
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1 Introduction

1.1 In this paper we deal with a spread which was discovered independently, and approximately
at the same time, by D. Betten [2] and M. Walker [28].

Betten used the concept of atransversal homeomorphismin order to describe and classify
topological translation planes in terms of partitions of the vector spaceR4 into 2-dimensional
subspaces. What we call theBetten-Walker spread(BW-spread) is described in [2, Satz 3]. Betten’s
paper contains also a short remark that the construction of this spread works also for finite fields
of characteristic6= 3 without a primitive third root of unity [2, pp. 338–339]. We refer to [15] or
[21] for the connection between spreads and translation planes; it is due to J. André and was found
independently by R. H. Bruck and R. C. Bose.

Walker adopted the projective point of view, which leads to spreads of lines in a projective
3-space. He focussed on the case of a finite ground fieldGF(q), q ≡ −1 (mod 6), and on the
reguli contained in the spread. Thereby he laid the cornerstone fora concept which is now called
theThas-Walker construction. It links spreads withflocksof quadrics via the Klein mapping.

The BW-spread corresponds to a flock of a quadratic cone. In thefinite case this flock is due
to C. Fisher and J. A. Thas, who weakened Walker’s conditionq ≡ −1 (mod 6). We refer to [25,
pp. 334–338] for further details. Some authors use the term “FTW-spread” for a finite BW-spread.

The BW-spread and its corresponding translation plane were revisited by A. G. Spera [23].
The comprehensive paper by V. Jha and N. L. Johnson [13] (which should be read together with
its second part [14]) contains more information about the BW-spread and its associated flock. In
both papers the existence of the BW-spread is established foran arbitrary ground fieldK with
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characteristic6= 3 subject to the condition that each element ofK has precisely one third root in
K. We add in passing that the BW-spread is among the “likeable structures” of W. M. Kantor; see
[7].

Finally, there is a neat connection, found by J. A. Thas, between flocks of quadratic cones
over finite fields and certaingeneralized quadrangles; see [25, p. 334], [26], and the references
given there. The infinite case was treated by F. De Clerck and H.Van Maldeghem [5]. However,
this connection with generalized quadrangles is beyond thescope of the present paper. Let us
just add the following remark: In the finite case, the BW-spread corresponds to a generalized
quadrangle discovered by W. M. Kantor; cf. [24, p. 398]. Thussome authors speak of the “FTWKB
generalized quadrangle” in order to bring together the names of all the involved mathematicians;
see, for example, [18, p. 222].

1.2 One aim of the present note is to present a short, direct, and self-contained approach to the
BW-spread, thereby establishing a connection with an algebraic surface which was discovered
already in the 19th century, namelyCayley’s ruled cubic surface. According to [17, p. 181] this
name is not completely appropriate, since M. Chasles published his discovery of that surface in
1861, three years before A. Cayley.

Our starting point is a Cayley surfaceF , say, in the projective3-space over an arbitrary fieldK.
At each simple point ofF there is a unique osculating tangent other than a generator.The set of all
those osculating tangents, together with one particular line onF , gives then a set of lines, sayO,
which easily turns out to be a spread ifK satisfies the conditions mentioned above (characteristic
6= 3, each element ofK has precisely one third root inK). Moreover, when “precisely” is replaced
with “at most” thenO is a maximal partial spread; see Theorem 3.3 and cf. [13, Theorem 6.3]. By
our approach the maximality of such a partial spread followsfrom the observation that all points
of a distinguished plane are incident with a line of the partial spread.

By a classical result, there exists a duality which maps the Cayley surface (as a set of points)
onto the set of its tangent planes. Any mapping of this kind fixesO, as a set of lines. Therefore, all
our results hold together with their dual counterparts. So,depending on the ground field,O will
be a (maximal partial) spread and at the same time a (maximal partial) dual spread.

In case of characteristic three there is aline of nucleifor the Cayley surface. The existence of
that line was noted by M. de Finis and M. J. de Resmini [6] without giving a geometric interpreta-
tion. We show in Theorem 4.7 that the line of nuclei is the axisof a parabolic congruence which
contains all lines ofO.

1.3 The transversal homeomorphism used in [2] to describe the BW-spread is given in terms of
polynomial functions. This raises the question whether or not the BW-spread isalgebraic, i.e.,
its image under the Klein mapping is an algebraic variety. Inthe finite case every set of points
is an algebraic variety (by [11, Lemma 3.5 (a)], even a hypersurface), whence we exclude that
case from our investigation. On the other hand, infinite algebraic spreads seem to be rare. The
only examples known to the authors are the regular spreads (or, in other words, the elliptic linear
congruences) and some spreads found by the second author; see [19, Table 1]. Unfortunately, our
hope to find another example of an algebraic spread did not come true. However, the BW-spread
is very close to being algebraic. We establish in Theorem 4.3that the union of the BW-spread and
one pencil of lines is algebraic. More precisely, the Klein image of that set is the smallest algebraic
variety containing the Klein image of the BW-spread (Theorem4.5). When looking for equations
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describing that variety (in terms of Plücker coordinates) the thesis of R. Koch [16] turned out
extremely useful, even though we could not directly implement his results in our work. It is worth
mentioning that the BW-spread (overR) is ubiquitous in Koch’s thesis under the German name
“Schmiegtangentenkongruenz” (congruence of osculating tangents), but the property of being a
spread never seems to be mentioned in the text. Likewise, theauthors were unable to find a remark
on this property in the older literature on the Cayley surface.

2 The Cayley surface

2.1 We consider the three-dimensional projective spaceP3(K) over a commutative fieldK. As
we shall use column vectors, a point has the formKp with (0, 0, 0, 0)T 6= p = (p0, p1, p2, p3)

T ∈
K4×1. The set of lines ofP3(K) is written asL.

Let X := (X0, X1, X2, X3) be a family of independent indeterminates overK. We refer to
[10, pp. 48–51] for those basic notions of algebraic geometry which will be used in this paper.
However, in contrast to [10], we write

V
(

g1(X), g2(X), . . . , gr(X)
)

:=
{

Kp ∈ P3(K) | g1(p) = g2(p) = · · · = gr(p) = 0
}

for the set of K-rational points of the variety given by homogeneous polynomials
g1(X), g2(X), . . . , gr(X) ∈ K[X].

Each matrixM = (mij)0≤i,j≤3 ∈ GL4(K) acts on the column spaceK4×1 by multiplication
from the left hand side and therefore as a projective collineation onP3(K). Moreover,M acts
as aK-algebra isomorphism onK[X] via Xi 7→

∑

3

j=0
mijXj for i ∈ {0, 1, 2, 3}. Given a form

g(X) ∈ K[X] and its image underM , sayh(X), the collineation induced byM takesV
(

h(X)
)

to V
(

g(X)
)

.
In what follows the planeω := V(X0) will be considered asplane at infinity; thus we turn

P3(K) into a projectively closed affine space.

2.2 We refer to [1], [3], [4], [8], [20], and [22] for the definition and basic properties ofCayley’s
ruled cubic surfaceor, for short, theCayley surface. It is, to within projective collineations, the
point setF := V

(

f(X)
)

, where

f(X) := X0X1X2 − X3

1 − X2

0X3 ∈ K[X].

Let ∂i := ∂
∂Xi

. Hence we obtain

∂0f(X) = X1X2 − 2X0X3, ∂1f(X) = X0X2 − 3X2
1 ,

∂2f(X) = X0X1, ∂3f(X) = −X2
0 .

(1)

These partial derivatives vanish simultaneously at(p0, p1, p2, p3)
T ∈ K4×1 if, and only if, at least

one of the following conditions holds:

p0 = p1 = 0; (2)

p0 = p2 = 0 and Char K = 3. (3)

The parametrization

K2 → P3(K) : (u1, u2) 7→ K(1, u1, u2, u1u2 − u3

1)
T =: P (u1, u2)
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is injective, and its image coincides withF \ ω (the affine part ofF ). According to (1), all points
of F \ ω aresimple. Thetangent planeatP (u1, u2) equals

V
(

(2u3

1 − u1u2)X0 + (−3u2

1 + u2)X1 + u1X2 − X3

)

. (4)

The points subject to (2) comprise the lineV(X0, X1) = F ∩ ω =: g∞. They are easily seen to be
double pointsof F . Thetangent cone(or tangent space[10, p. 49]) at a pointU := K(0, 0, s2, s3)

T,
(s2, s3) 6= (0, 0), is

V
(

X0(s2X1 − s3X0)
)

; (5)

this is either a pair of distinct planes (ifU 6= Z := K(0, 0, 0, 1)T) or a repeated plane (ifU = Z).
We call each of these planes atangent planeat U . The pointZ is a so-calledpinch point[17,
p. 76], and its tangent plane isω. See Figure 1 which displays the Cayley surface inP3(R) in an
affine neighbourhood ofZ. (The planeV(X3) is at infinity in this illustration.)

The tangent plane ofF at P (0, 0) is V(X3); this plane meetsF along the lineV(X1, X3) and
the parabola

l := V(X0X2 − X2

1 , X3). (6)

For each(s0, s1) ∈ K2 \ {(0, 0)} the line

g(s0, s1) := K(s2

0, s0s1, s
2

1, 0)T + K(0, 0, s0, s1)
T

is ageneratorof F . There are no other lines onF . The lineg(0, 1) = g∞ is not only a generator
of F , but also adirectrix, as it has non-empty intersection with every generator. Each point ofg∞,
except the pointZ, is on precisely two generators ofF ; each affine point ofF is incident with
precisely one generator (Figure 2).

Z
g∞

ω

F

Figure 1

Z
g∞

F

Figure 2

Next we describe the automorphic projective collineationsof F : The set of all matrices

Ma,b,c :=









1 0 0 0
a c 0 0
b 3 ac c2 0

ab − a3 bc ac2 c3









wherea, b ∈ K andc ∈ K \ {0} is a group, sayG, under multiplication. Each matrix inG leaves
invariant the cubic formf(X) = X0X1X2 − X3

1 − X2
0X3 to within the factorc3. Consequently,

the groupG acts onF as a group of projective collineations. Under the action ofG, the points of
F fall into three orbits:F \ ω, g∞ \ {Z}, and{Z}. Except for the case when|K| ≤ 3, the group
G yields all projective collineations ofF ; see [8, Section 3].

Observe that the following holds irrespective of the characteristic ofK.
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Lemma 2.3 There exists a duality which maps the set of points of the CayleysurfaceF onto the
set of its tangent planes. Thus the set of all tangent planes of F is a Cayley surface in the dual
projective space.

Proof. By (4) and (5), a planeV
(
∑

3

i=0
aiXi

)

, whereai ∈ K, is a tangent plane ofF if, and only
if, a1a2a3 − a3

2 − a0a
2
3 = 0. Consequently, the linear bijection

K4×1 → K1×4 : (x0, x1, x2, x3)
T 7→ (x3, x2, x1, x0)

gives a duality ofP3(K) with the required properties. ¤

We note that the duality from the above takes, for all(u1, u2) ∈ K2, the pointP (u1, u2) to the
tangent plane at the pointP (−u1, 3u

2
1 − u2).

3 Osculating tangents and the Betten-Walker spread

3.1 If a line t meetsF at a simple pointP with multiplicity ≥ 3 then it is called anosculating
tangentatP . Such a tangent line is either a generator or it meetsF atP only. In the latter case it
will be called aproper osculating tangentof F . Observe that we are not dealing with those lines
which meetF with multiplicity ≥ 3 at a double point. In fact,g∞ is the set of double points, and
at any pointU ∈ g∞, the lines meetingF at U with multiplicity ≥ 3 comprise two pencils (one
pencil if U = Z) lying in the two tangent planes atU (only tangent plane atU = Z); see formula
(5). The following is part of the folklore:

Lemma 3.2 At each pointP (u1, u2) ∈ F \g∞ there is a unique proper osculating tangent, namely
the line which joinsP (u1, u2) with the pointK(0, 1, 3u1, u2)

T.

Proof. Let (u1, u2) = (0, 0). The tangent plane atP (0, 0) isV(X3). Any proper osculating tangent
throughP (0, 0) is necessarily incident with this plane, and it meetsF at P (0, 0) only. By (6),
only the tangentt of the parabolal at P (0, 0) can be a proper osculating tangent, since every
other tangent ofF at P (0, 0) meetsl residually at a point6= P (0, 0). The point at infinity oft is
K(0, 1, 0, 0). It is straightforward to verify thatt meetsF at P (0, 0) with multiplicity three. By
the action of the matrixMu1,u2,1 ∈ G the assertion follows for any pointP (u1, u2) ∈ F \ g∞. ¤

Theorem 3.3 Let

O := {t ∈ L | t is a proper osculating tangent ofF} ∪ {g∞}.

This set of lines has the following properties.

(a) O is a partial spread ofP3(K) if, and only if,Char K 6= 3 andK does not contain a third
root of unity other than1.

(b) If O is a partial spread then it is maximal, i.e., it is not a propersubset of any partial spread
of P3(K).

(c) O is a covering ofP3(K) if, and only if,Char K 6= 3 and each element ofK has a third
root in K.
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Proof. (a) It is immediate from Lemma 3.2 that all proper osculating tangents ofF are skew tog∞.
So it suffices to discuss whether or not two distinct proper osculating tangents ofF have a point
in common. As the groupG acts transitively onF \ g∞, all proper osculating tangents ofF are
in one orbit ofG. So it is enough consider the osculating tangents at distinct pointsP (0, 0) and
P (u1, u2). By Lemma 3.2, these lines are skew if, and only if,

det









1 0 1 0
0 1 u1 1
0 0 u2 3u1

0 0 u1u2 − u3
1 u2









= u2

2 − 3u2

1u2 + 3u4

1 6= 0. (7)

If u1 = 0 thenu2 6= 0, whence (7) holds irrespective of the ground field. Otherwise we substitute
u2 = (2 + y)u2

1 with y ∈ K. Hence (7) turns intou4
1(y

2 + y + 1) 6= 0. Observing(X2 + X +
1)(X−1) = X3−1 ∈ K[X], we see thatX2+X+1 has a zero inK precisely when the following
holds: EitherChar K = 3, since in this caseX2 + X + 1 = (X − 1)2, or Char K 6= 3 and there
exists a third root of unityw 6= 1 in K, since then12 + 1 + 1 6= 0.

(b) We infer from (a) thatChar K 6= 3. Thus Lemma 3.2 implies that each point at infinity is
incident with a proper osculating tangent or just with the lineg∞. As every line ofP3(K) has a
point in common with the plane at infinity and each point of theplane at infinity is on a line of the
partial spread, the partial spreadO is maximal.

(c) First, letChar K = 3. It suffices to show thatO cannot be a covering ofP3(K). By
Lemma 3.2, all proper osculating tangents meet the line

n := V(X0, X2). (8)

Clearly, there exists a point inω \ (n ∪ g∞). This point is not incident with any line ofO.
Next, assumeChar K 6= 3. By the proof of (b), we may restrict ourselves to affine points. A

point K(1, p1, p2, p3) is on a line ofO if, and only if, there is a pair(u1, u2) ∈ K2 and ans ∈ K
such that

(1, p1, p2, p3)
T = (1, u1, u2, u1u2 − u3

1)
T + s(0, 1, 3u1, u2)

T.

So we obtain the following system of equations in the unknownsu1, u2, s:

u1 = p1 − s, u2 = p2 − 3s(p1 − s), s3 = p3 − (p1p2 − p3

1).

This system has a solution precisely whenp3−(p1p2−p3
1) has a third root inK. Asp3−(p1p2−p3

1)
can assume any value inK, the assertion follows. ¤

3.4 By the above, an affine point lies on a line ofO if, and only if, it can be written in the form
K(1, p1, p2, p1p2 − p3

1 + s3) with p1, p2, s ∈ K.
The results of Theorem 3.3 were established in [13, Theorem 6.1] and [23, Teorema 1] in a

completely different way. In those papers the reader will also find conditions for a fieldK to meet
one of the algebraic conditions given in (a), (b), or (c).

We noted in Lemma 2.3 thatF admits a duality which is easily seen to fixO, as a set of lines.
Hence the dual counterparts of the characterizations givenin Theorem 3.3 hold as well. ThusO
is a (maximal partial) spread if, and only if, it is a (maximalpartial) dual spread. Observe that the
pointZ = K(0, 0, 0, 1)T takes over the role of the planeω in the dual setting.
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3.5 Let Char K = 3. Recall from (8) thatn = V(X0, X2). By (3), every point ofn \ {Z} is a
nucleusof F , i.e. a point offF , where all partial derivatives (1) vanish; see [10, p. 50]. We refer
also to [6, Proposition 3.17], where nuclei are defined in a slightly different way (including double
points ofF ). Even thoughZ is not a nucleus according to our definition, we shall refer ton as
being theline of nuclei. We established in the proof of Theorem 3.3 (c) that all proper osculating
tangents meet the line of nuclei. This result will be improved in Theorem 4.7.

3.6 Let K = R so thatO is a spread. In order to show that this is in fact the BW-spread,as
described in [2, Satz 3], we apply the collineation

α : P3(K) → P3(K) : K(x0, x1, x2, x3)
T 7→ K

(

x0, x1,
x2

3
,
x3

3

)T

which fixes the lineg∞. By Lemma 3.2, any line ofα(O \ {g∞}) has the form

K

(

1, u1,
u2

3
,
u1u2

3
−

u3
1

3

)T

+ K
(

0, 1, u1,
u2

3

)T

with (u1, u2) ∈ R
2. By joining this line withZ = K(0, 0, 0, 1)T andK(0, 0, 1, 0)T, we obtain two

distinct planes with equations

x2 =
(u2

3
− u2

1

)

x0 + u1x1 andx3 = −
u3

1

3
x0 +

u2

3
x1,

respectively. The substitutionsx0 =: x, x1 =: y, x2 =: u, x3 =: v, u2/3 − u2
1 =: t, andu1 =: s

turn these equations into

u = tx + sy andv = −
s3

3
x + (s2 + t)y.

These are the formulas from [2, Satz 3]. In particular, we have the transversal homeomorphism of
R

2 with (t, s) 7→ (−s3/3, s2 + t).

V(X1)

F

g(1, s)

R−(s)

Figure 3
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It is also easy to see that our results coincide with [28], where homogeneous coordinates with
indices running from1 to 4, sayx′

1, x
′
2, x

′
3, x

′
4, were used. The appropriate transformation from

our coordinatesx0, x1, x2, x3 is given byx′
1 = x3/3, x′

2 = x2/3, x′
3 = x1, andx′

4 = x0. The
groupS1 used in [28] is a subgroup of our groupG, whereas the reguliRi from [28] arise in our
setting as follows: Take the set of all proper osculating tangents at the points of a generatorg(1, s),
s ∈ K, together withg∞. This is easily seen to be a regulus, sayR−(s), which clearly is contained
in O. In affine terms each such regulus is one family of generatorson a hyperbolic paraboloid.
These hyperbolic paraboloids haveg∞ as a common generator and they share a common tangent
plane at each point ofg∞. Thus, for example, each such paraboloid meets the planeV(X1) ⊃ g∞
residually in a line; all these lines are parallel, as they pass throughK(0, 0, 1, 0)T. This is depicted
in Figure 3.

3.7 AssumeChar K 6= 3. Then the lines ofO other thang∞ define (by intersection) an injective
mappingω \ g∞ → V(X1) \ g∞; compare with the construction of a spread via a transversal
mapping due to N. Knarr [15, pp. 26–29]. An illustration is given in Figure 4, where temporarily
V(X0 + X1) takes over the role of the plane at infinity. (The curves inV(X1) are semicubical
parabolas.)

ω

V(X1)

Figure 4

4 The Klein image of the Betten-Walker spread

4.1 In terms of coordinates, the exterior squareK4×1 ∧ K4×1 coincides withK6×1 by setting

p ∧ q = (p0, p1, p2, p3)
T ∧ (q0, q1, q2, q3)

T = (y01, y02, y03, y12, y13, y23)
T

whereyij = piqj − pjqi. Given thatp, q are linearly independent the entries of the column vector
(y01, y02, . . . , y23)

T are the well known Plücker coordinates of the lineKp + Kq. The Klein
mappingκ : L → Q : Kp + Kq 7→ K(p ∧ q) is a bijection from the line setL of P3(K) onto
Klein quadricQ := V(k(Y )) ⊂ P5(K), whereY = (Y01, Y02, . . . , Y23) denotes a family of six
independent indeterminates overK and

k(Y ) := Y01Y23 − Y02Y13 + Y03Y12.
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The polarity of the Klein quadric will be denoted by⊥. Observe that⊥ is symplectic if, and only
if, Char K = 2. Table 15.10 in [9, pp. 29–31] contains all the information on the Klein mapping
which we shall use in this section without further reference.

A set of lines inP3(K) is said to bealgebraicif its Klein image is the set ofK-rational points
of an algebraic variety inP5(K).

4.2 Let us first calculate the Klein image of the set of generatorsof F : We obtain, for all(s0, s1) ∈
K2 \ {(0, 0)}, that

κ(g(s0, s1)) = K(0, s3

0, s
2

0s1, s
2

0s1, s0s
2

1, s
3

1)
T ∈ P5(K). (9)

So we get a twisted cubic [9, Chapter 21] lying in the three-dimensional subspace

C := V(X01, X03 − X12) ⊂ P5(K).

The intersectionC ∩ Q is a quadratic cone with vertexW∞ := κ(g∞) = Kw∞, where

w∞ := (0, 0, 0, 0, 0, 1)T. (10)

This cone is the Klein image of a parabolic linear congruencewith axis g∞, which contains all
generators ofF . The subspaceC⊥ is the line spanned byW∞ andW := Kw, where

w := (0, 0, 1,−1, 0, 0)T.

This line meets the Klein quadric atW∞ only. We haveC⊥ ∩ C = {W∞} for Char K 6= 2, but
C⊥ ⊂ C otherwise.

In the subsequent theorem we exhibit algebraic equations which are satisfied by the Klein
image ofO; we shall explain in 4.4 how these equations were found.

Theorem 4.3 SupposeChar K 6= 3. LetO be given as in Theorem3.3, and letL[Z, ω] be the
pencil of lines in the planeω = V(X0) with centreZ = K(0, 0, 0, 1)T. Consider the polynomials

h1(Y ) := 3Y01(Y12 + Y03) − Y 2

02, (11)

h2(Y ) := 3Y02Y13 − (Y12 + Y03)
2, (12)

h3(Y ) := 9Y01Y13 − Y02(Y12 + Y03). (13)

Thenκ(O ∪ L[Z, ω]) equals the intersection of the variety

J := V(h1(Y ), h2(Y ), h3(Y )) ⊂ P5(K)

with the Klein quadricQ = V(k(Y )).

Proof. (a) For all(u1, u2) ∈ K2, the Klein image of the only proper osculating tangent atP (u1, u2)
is the point with coordinates

(1, 3u1, u2, 3u
2

1 − u2, u
3

1, 3u
4

1 − 3u2

1u2 + u2

2)
T. (14)

The Klein image of the pencilL[Z, ω] is the line spanned byK(0, 0, 0, 0, 1, 0) andKw∞ = κ(g∞);
see (10). Now a direct verification showsκ(O ∪ L[Z, ω]) ⊂ (J ∩ Q).
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(b) In order to show(J ∩ Q) ⊂ κ(O ∪ L[Z, ω]) we determine all vectors

y := (y01, y02, y03, y12, y13, y23)
T ∈ K6×1

subject toh1(y) = h2(y) = h3(y) = k(y) = 0.
In a first step we determine all such vectors withy01 6= 0. Without loss of generality we may

assumey01 = 1; also we lety02 =: u1 andy03 =: u2. Fromh1(y) = 3y12 + 3u2 − 9u2
1 follows

y12 = 3u2
1−u2 which can be substituted inh3(y) = 9y13−9u3

1. This givesy13 = u3
1. We calculate

k(y) = y23 − 3u4
1 + u2(u

2
1 − u2) which yieldsy23 = 3u4

1 − 3u2
1u2 + u2

2. Altogether, we obtain
precisely the vectors given in (14), whenceh2(y) = 0 holds too.

The second step is to look for all solutions withy01 = 0. We infer fromh1(y) = −y2
02 that

y02 = 0, from which we obtainh2(y) = −(y12 + y03)
2. Soy12 = −y03. Now k(y) = −y2

03 gives
y03 = −y12 = 0. Summing up we obtain

y := (0, 0, 0, 0, y13, y23)
T ∈ K6×1

which is either the zero vector or a representative of a pointin κ(L[Z, ω]). Consequently, also
h3(y) = 0 is satisfied. ¤

4.4 Let us shortly describe how the polynomialshi(Y ) were found: We noted already in 3.7 that
all proper osculating tangents at the points of a generatorg(1, s), s ∈ K, together withg∞ form a
regulusR−(s) ⊂ O. The opposite regulusR+(s), say, contains the generatorg(1, s). Both reguli
lie on a hyperbolic paraboloid which is known in differential line geometry under the nameLie
quadric of F along the generatorg(1, s); cf., among others, [12, pp. 33–37] or [22, pp. 67–68].
In Figure 5 some reguliR−(s) are visualized in an affine neighbourhood of the pointZ. In this
picture the planeV(X3) appears at infinity. See also Figures 3 and 4 for a different view of these
reguli.

Z

?

g∞

Figure 5

Given a pointκ(g(1, s)) of the twisted cubic (9) let us denote byπ(s) the osculating plane at this
point. The planeπ(s) meets the coneC ∩ Q in a conic which is the Klein image of the regulus
R+(s). The Klein image of its opposite regulusR−(s) is a conic lying in the planeπ(s)⊥ ⊃ C⊥.
We choose the three-dimensional subspace

B := V(Y03, Y23)

10



which is skew toC⊥. Thusπ(s)⊥ meetsB at a unique point. We obtain this point by lettingu1 = s
in (14) and by projecting throughC⊥ to B. This gives (for everyu2 ∈ K)

K(1, 3 s, 0, 3 s2, s3, 0)T. (15)

Now we considers ∈ K to be variable. Up to the exceptional case whenChar K = 3, the planes
π(s) belong to a cubic developable, so that the points of intersection π(s)⊥ ∩ B will belong to
a twisted cubic. This is also immediate from (15). It is well known, that a twisted cubic can be
obtained as the intersection ofthreequadrics inB. (We used two quadratic cones projecting the
cubic from two different points, and a hyperbolic quadric.)Each of these three quadrics inB gives
rise to a quadratic cone inP5(K) by joining it with the lineC⊥. The quadratic polynomials in
Theorem 4.3 describe these three quadratic cones inP5(K) so thatJ actually is a cone with vertex
C⊥ having a twisted cubic inB as its base.

We wish to emphasize that our approach is motivated by the Thas-Walker construction linking
flocks of cones with spreads: The osculating planesπ(s) yield a flock of the quadratic coneC ∩Q
if, and only if, the setO is a spread ofP3(K). See [25, pp. 334–338] and [13, Theorem 6.2].

It should be noted here that we did not use results from the thesis of R. Koch [16, pp. 18–19].
He described, over the real numbers, the congruence of osculating tangents in terms of a cubic and
a quadratic form (equations (2.27) and (2.28) loc. cit.). Infact, his equation (2.28) corresponds,
up to a change of coordinates, to our polynomial (11). However, the two equations of Koch are
also satisfied by the Plücker coordinates ofall lines through the pointZ, whereas our system of
equations yields less lines through that point.

The next result says that, from an algebraic point of view, our system of equations (11) – (13)
is the best possible:

Theorem 4.5 Suppose thatK is an infinite field withChar K 6= 3. LetO andL[Z, ω] be given as
in Theorems3.3and4.3, respectively. Ifh(Y ) ∈ K[Y ] is a form such thatκ(O) ⊂ V(h(Y )) then
κ(L[Z, ω]) ⊂ V(h(Y )).

Proof. Given such a formh(Y ) ∈ K[X] we obtain from (14) the identity

h((1, 3u1, u2, 3u
2

1 − u2, u
3

1, 3u
4

1 − 3u2

1u2 + u2

2)
T) = 0 for all (u1, u2) ∈ K2. (16)

Due toChar K 6= 3 there exists a field extensionK/K of degree[K : K] ≤ 2 containing a third
root of unity w 6= 1. We infer from a standard result on zeros of polynomials overan infinite
domain (see, for example, [27,§ 28]) that (16) holds also for all(u1, u2) ∈ K

2
. We allowu1 ∈ K

and replaceu2 with (1−w)u2
1 +mu1 in (14), wherem ∈ K is fixed, but arbitrary. Thus (14) turns

into
(1, 3u1, (1 − w)u2

1 + mu1, (2 + w)u2

1 − mu1, u
3

1,−(2w + 1)mu3

1 + m2u2

1)
T.

This is for u1 ∈ K a rational parametrization of all but one points of a twistedcubic which is
contained in the variety ofP3(K) determined byh(Y ) considered as an element ofK[Y ]. As K
is infinite, also the remaining point of the twisted cubic, namely

K(0, 0, 0, 0, 1,−(2w + 1)m)T,

is a point of that variety. We claim that2w + 1 6= 0: This is trivial whenChar K = 2. For
Char K 6= 2 the assertion holds, because our assumptionChar K 6= 3 guarantees that(−1/2)3 6=
1, whencew 6= −1/2.
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Thus, for appropriate values ofm ∈ K, we see that all points of the lineκ(L[Z, ω]) except
κ(g∞) belong to the varietyV(h(Y )). Finally, sinceK is infinite, we obtainκ(g∞) ∈ V(h(Y )).¤

Corollary 4.6 Infinite Betten-Walker spreads are not algebraic sets of lines.

We now turn to the remaining case of characteristic3. Here the situation is completely different:

Theorem 4.7 LetChar K = 3. ThenO ∪L[Z, ω] is a subset of a parabolic linear congruenceN
whose Klein image equals the quadratic coneQ ∩ D, where

D := V(X02, X03 + X12)

is a three-dimensional subspace ofP5(K). The axis of the congruenceN is the linen of nuclei.
The congruenceN coincides withO ∪ L[Z, ω] if, and only if, each element ofK has a third root
in K.

Proof. The polar subspaceD⊥ (with respect to the Klein quadricQ) is the line joining

κ(n) = K(0, 0, 0, 0, 1, 0)T ∈ Q andK(0, 0, 1, 1, 0, 0)T 6∈ Q.

SoD⊥ 6⊂ Q is a tangent of the Klein quadric andD ∩ Q is a quadratic cone with vertexκ(n). For
all (u1, u2) ∈ K2, the Klein image of the only proper osculating tangent atP (u1, u2) is the point
with coordinates

(1, 0, u2,−u2, u
3

1, u
2

2)
T. (17)

The Klein image of the pencilL[Z, ω] is the line spanned byκ(n) andKw∞ = κ(g∞); see (10).
Now a direct verification shows(O ∪ L[Z, ω]) ⊂ N .

We read off from the penultimate coordinate in (17) thatN = O ∪ L[Z, ω] holds precisely
when every element ofK has a third root inK. ¤

Of course, whenK is finite with characteristic3 then each of its elements has a third root inK.
The lineD⊥ has yet another natural interpretation: Formula (9) can be rewritten in the form

κ(g(s0, s1)) = K(s3

0v0 + s2

0s1v1 + s0s
2

1v2 + s3

1v3) (18)

with linearly independentvi ∈ K6×1. By the above, we obtain a twisted cubic as(s0, s1) 6= (0, 0)
varies inK2. Due toChar K = 3 all osculating planes of this cubic belong to the pencil of planes
(see [9, Theorem 21.1.2]) with axisKv1 + Kv2 = D⊥.
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Verein., 70:61–85, 1967.

[5] F. De Clerck and H. Van Maldeghem. On flocks of infinite quadratic cones.Bull. Belg. Math.
Soc. Simon Stevin, 1:399–415, 1994.

[6] M. de Finis and M. J. de Resmini. On cubic surfaces over a field of characteristic3. Ann.
Discrete Math., 18:241–277, 1983.

[7] H. Gevaert and N. L. Johnson. Flocks of quadratic cones, generalized quadrangles and trans-
lation planes.Geom. Dedicata, 27:301–317, 1988.

[8] J. Gmainer and H. Havlicek. Isometries and collineations of the Cayley surface.Innov.
Incidence Geom., to appear.

[9] J. W. P. Hirschfeld.Finite Projective Spaces of Three Dimensions. Oxford University Press,
Oxford, 1985.

[10] J. W. P. Hirschfeld. Projective Geometries over Finite Fields. Clarendon Press, Oxford,
second edition, 1998.

[11] J. W. P. Hirschfeld and R. Shaw. Projective geometry codes over prime fields. In G. Mullen
and P. J.-S. Shiue, editors,Finite fields: theory, applications, and algorithms (Las Vegas, NV,
1993), volume 168 ofContemp. Math., pages 151–163. Amer. Math. Soc., Providence, RI,
1994.

[12] J. Hoschek.Liniengeometrie. Bibliographisches Institut, Z̈urich, 1971. B. I. Hochschul-
skripten, 733 a/b.

[13] V. Jha and N. L. Johnson. Infinite flocks of a quadratic cone. J. Geom., 57:123–150, 1996.

[14] V. Jha and N. L. Johnson. Infinite flocks of quadratic cones–II Generalized Fisher flocks.J.
Korean Math. Soc., 39:653–664, 2002.

[15] N. Knarr. Translation Planes, volume 1611 ofLecture Notes in Mathematics. Springer,
Berlin, 1995.

[16] R. Koch.Geometrien mit einer CAYLEYschen Fläche 3. Grades als absolutem Gebilde. PhD
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