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ABSTRACT. We introduce and characterize weak linear mappings of Desarguesian
projective spaces. This gives a unified treatment of several classes of map-
pings like linear mappings, injective lineations and embeddings that have been
discussed separately before.
!
!
!

1. Introduction
! !

The second fundamental theorem of projective geometry says that collineations

of Desarguesian projective spaces P,P’ (of dimension > 2) are exactly those

mappings that are induced by semilinear bijections of underlying vector

spaces. This well-known result permits several generalizations.
!

H.!BRAUNER [4] gives a geometric characterization of linear mappings, i.e.

those mappings that are induced by (not necessarily injective) semilinear

mappings of vector spaces. Cf. also [5], [6], [7], [8], the books of

N.!BOURBAKI [3], O.!GIERING [17] and papers by R.!FRANK [16], J.!HARTL [18],

[19], H.!LENZ [28], K.!SÖRENSEN [38], H.!TIMMERMANN [40] and the author [20].
!

Another generalization is concerned with injective lineations (preserving

collinearity of points). We refer to the book [1] of W.!BENZ and articles by

A.!BREZULEANU, D.C.!RADULESCU [9], [10] and D.S.!CARTER, A.!VOGT [12], [13].

Those injective lineations that are also preserving non-collinearity of points

are called embeddings and were characterized by M.!LIMBOS [30], [31], [32] for

finite Desarguesian projective spaces. See also the examples of embeddings and

injective lineations of projective spaces given by J.M.N.!BROWN [11],

J.A.!THAS [39] and the author [21], [22]. Since the pre-image of every line of
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P’ is a subspace of P, there is also a relationship to weak projective spaces

studied by H.!KARZEL and M.!MARCHI in [27].
!

In the present paper we introduce the concept of weak linear mapping of pro-

jective spaces as a generalization of the various mappings mentioned above.

Our definition is in terms of vector spaces, but we shall give a geometric

characterization of those weak linear mappings whose image set contains a

triangle. The crucial condition of this characterization is just a slight

modification of the initial result of H.!BRAUNER. What is not covered by our

approach are, e.g., those non-injective lineations of Desarguesian projective

spaces that arise from valuations. See [9], [10], [12], [13], [33], [34] and

[41] for results and references on those mappings.
!

Finally, we refer to the master’s report of T.!PFEIFFER [35] on mappings of

more general projective geometries defined via lattices (based upon papers by

S.E.!SCHMIDT [36], [37]); see also articles by H.H.!CRAPO, C.G.!ROTA [14,

ch.!9], U.!FAIGLE [15] and D.A.!HIGGS [24], [25].
!

!!
2. Weak linear mappings

! !
2.1. Suppose that A and B are sets. We shall write

vv!:!At0LtB, xt9Ltx

1 vif v is a mapping with domain dom!vtCtA; when writing x we always assume

that xtetdom!v. If dom!vt=tA then instead of "0L" also an ordinary arrow "L"

is used. Given any subset MtCtA then
!v vM t:=t{x |x!e!M!n!dom!v}tCtB

!2 vis well-defined . Thus MtCtA\dom!v if, and only if, M t=to.
!!32.2. Let V be a right vector space over a field K and W a right vector space

over a field L. If z!:!KtLtL and f!:!VtLtW are mappings such that
!f f f f f z(x+y) t=tx +y , (xa) t=tx a for all x,ytetV, atetK

!

----------------------------------------------------------------------------------------------------
1The symbol "C" does not mean strict inclusion.
2To make the definition unambiguous, assume that MtCtA never is equivalent to
MtetA.
3In this paper field always stands for not necessarily commutative field.
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then f is called a weak semilinear mapping with respect to z.
!

The zero mapping VtLtW is weak semilinear with respect to every mapping KtLtL.
fIf f is weak semilinear and if V t$t{o} then z is a ring homomorphism as

ffollows in a well known way by calculating x(a+b) and x(ab) (xeV, x $o, a,beK)
zin two different ways. Moreover z is injective, since K t$t{0}.

!
We obtain the usual definition of a semilinear (or linear) mapping by assuming

that z is surjective (or that Kt=tL, zt=tidK).
!

Given a weak semilinear mapping f with respect to a monomorphism z then there
zexists a right vector space Y over the field Ft:=tK and a semilinear bijec-

tion i!:!VtLtY with respect to z (regarded as isomorphism KtLtF). Define
!i-1fg!:!Y*LtLtW, (y,z)t9Lty z.

!g g gThis g is biadditive and (yc,z) t=t(y,cz) t=t(y,1) cz for all ytetY, ctetF,

ztetL. We deduce from the universal property of the tensor product Y!tF!L

(cf., e.g., [3,§3]) that there exists an L-linear mapping
!f i hh!:!(Y!tF!L)tLtW such that x t=t(x t1) for all xtetV.

!
Reversing this construction gives a procedure to construct weak semilinear

mappings.
! 4The following result, due to W.!ZICK [42] , will be used later: An additive

mapping f!:!VtLtW is weak semilinear provided that, firstly,
!f f(xK) tCt(x )L for all xtetV\{o}

!
and, secondly, the image of f contains two linearly independent vectors.

!!
2.3. Write P(X) for the projective space on any right vector space X. The

elements of P(X) are the 1-dimensional subspaces of X and are called points.

Subspaces of P(X) are regarded as sets of points and have the form P(X1) with

X1 being a subspace of the vector space X. Every weak semilinear mapping

f!:!VtLtW (cf. 2.2) gives rise to a weak linear mapping
!fv!:!P(V)t0LtP(W), xKt9Lt(x )L for all xtetV\ker!f.

!
The domain of v is P(V)\P(ker!f). Given subspaces U,TtCtP(V) then

!

----------------------------------------------------------------------------------------------------
4Cf. the proof of the theorem in that paper rather than the theorem itself.
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v ( v) v v(UvT) tCtspan (UvT) t=tspan(U )vspan(T ), (1)9 0 !
where v stands for the operation of join in the lattice of subspaces of P(V)

5and P(W), respectively. If f is semilinear then v is a linear mapping and in

formula (1) inclusion can be replaced by equality.
!

By 2.2 every weak linear mapping v!:!P(V)t0LtP(W) permits a factorization into

a collineation P(V)tLtP(Y), a strong embedding (preserving independence; cf.

[31]) P(Y)tLtP(Y!tF!L) and a linear mapping P(Y!tF!L)t0LtP(W).
!

!!
3. A characterization of weak linear mappings

! !
3.1. Suppose that P and P’ are projective spaces and that v!:!Pt0LtP’ is any

mapping. If MtCtP then put
! vMvt:=tspan(M )tCtP’.

!
Thus to every subspace UtCtP there corresponds the subspace UvtCtP’. If XtetP

6 vis a point then either Xtetdom!v, whence {X}vt=t{X }, or Xtmtdom!v, whence

{X}vt=to. In [35], where mappings of more general geometric structurs are

under discussion from a lattice-theoretical point of view, the term "point" is

being used in different way. For example, in a projective geometry on an

unitary module every cyclic submodule is called a point, whence there may be

points of "different sizes". Within the context of this paper this would mean

to consider the empty set as an "extra point" that is contained in every

"ordinary point". Cf. also [4].
!

In 3.2 - 3.4 we shall suppose that v satisfies the geometric condition
!

(WL1) ({X}v{Y})vt=t{X}vv{Y}v for all X,YtetP with Xt$tY
! !

motivated by (1). Later we shall impose the additional condition
!v(WL2) P contains a triangle.

!
But at this moment we refrain from assuming (WL2).!!!!!!!! !!!!!!!

----------------------------------------------------------------------------------------------------
5Other names are collinear mapping and regular or singular collineation. But
this list is far from being complete. If f belongs to an inner automorphism of
Kt=tL then v is also attributed to be projective.
6 vIn writing {X} we are not allowed to mix up (as is usually done) a point
XtetP and the subspace {X}tCtP. We shall, however, frequently write Xv or XvY
rather than {X}v or {X}v{Y}, respectively, since no confusion can occur.
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3.2. Let A,BtetP be distinct points and set lt:=tAvB. There are four possibi-
vlities for l tCtlv and the restriction of v to l!n!dom!v:

!v v(I) If ltCtdom!v and A t=tB then v|l is a constant mapping.
v v(II) If ltCtdom!v and A t$tB then v|l is injective, since otherwise, by (I),

vl would be a single point.
v(III) If A,Btmtdom!v then l tCtovot=to, whence ltCtP\dom!v.

v v v v v(IV) If Atetdom!v, Btmtdom!v then A tetl tCtA vo, whence l t=tA . We infer

from case (III) that l!n!dom!vt=tl\{B}.
!

According to this list we shall refer to a line of P as being of type (I) -

(IV) (with respect to v).
!!

3.3. It is immediate from 3.2 that P\dom!v is a subspace of P. Hence dom!v is

a slit space. Given subspaces U,TtCtP then
!( v) ( v) v v(UvT)vt=tspan (UvT) t=tspan (UuT) t=tspan(U uT )t=tspan(UvuTv)t=tUvvTv.9 0 9 0!

The second sign of equality follows from 3.2, the others are obvious. If U’ is

a subspace of P’ then its extended pre-image, viz. the set {X!e!P|Xv!C!U’}, is

a subspace of P.
!

Write R for a complement of P\dom!v with respect to P and
!( )p!:!Pt0LtR, Xt9Lt Xv(P\dom!v) n!R (Xtetdom!v)9 0!

for the projection with centre P\dom!v onto the subspace R. Given a point
p pXtetdom!vt=tdom!p then either XtetR, whence Xt=tX , or the line XvX meets

v pvP\dom!v at a unique point, whence X t=tX . Thus
!

vt=tp(v|R) with Rt=tdom(v|R). (2)
!

By virtue of this factorization we may restrict our attention to v|R!:!RtLtP’.

Every line in R is of type (I) or (II).

! 73.4. Let {A,B,C}tCtR be a triangle and set Et:=tAvBvC. There are four
vpossibilities for E tCtEvt=t{A,B,C}v and the restriction of v to E:

!v v v(I) If A t=tB t=tC then v|E is a constant mapping.

(II) If {A,B,C}v is a line of P’ and if v|E is not injective then assume

----------------------------------------------------------------------------------------------------
7It would be sufficient to assume EtCtdom!v. The listing of possible cases for
a plane that is not part of dom!v is left to the reader.
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v v v vA t=tB . Hence C t$tA and AvB is a line of type (I). We claim that
( ) v vv| E\(AvB) is injective: Assume to the contrary that X t=tY for distinct9 0 v vpoints X,YtetE\(AvB). Then XvY meets AvB at a point U, say, and (XvY) t=tX

v v vimplies that A t=tU t=tX . But CvX or CvY meets AvB at a point V, say, whence
v v v v vA t=tV t=tX t=tY t=tC , a contradiction.

(III) If {A,B,C}v is a line of P’ then v|E may be injective.

(IV) If {A,B,C}v is a plane then the restriction of v to every side of the

triangle {A,B,C} is an injection, whence v|E is injective and preserves non-
vcollinearity of points in E. Thus E is a subplane of Ev.

!
We shall speak of planes of type (I) - (IV) (with respect to v).

!! C3.5. If g,h are lines of a plane E and CtetE\(guh) then gt----------Lth is to denote

the perspectivity of g onto h with centre C. We shall need a
!

Lemma. Let m be a projectivity of a line l in a Desarguesian projective space

P, dimPt>t2. Assume that m can be factorized in the form
!C Dlt----------Ltft----------Ltl with Ct$tD and lt$tf.

! !
Given distinct points E,FtetP\l satisfying (CvD)!n!lt=t(EvF)!n!l then there

exists a line g which meets l at f!n!l such that m equals the projectivity
!E Flt----------Ltgt----------Ltl.

!
Proof. There exists a perspective collineation k!:!PtLtP that fixes l

kpointwise such that the lines l,EvF,(CvD) are coplanar and distinct. Set
k kZt:=t(EvC )n(FvD ) and let r!:!PtLtP be a perspective collineation with centre

k k kr krZ, C t9LtE and an axis H subject to Hn(lvC )t=tl. Then D t=tF and gt:=tf

has the required properties. P
!!

3.6. The following Theorem 1 is a collection of four propositions:
!

Theorem 1. Let R and P’ be projective spaces, and let P’ be Desarguesian.

Suppose that the mapping v!:!RtLtP’ satisfies conditions (WL1) and (WL2).
!

1. R is a Desarguesian projective space, dimRt>t2, and an underlying field of

R is isomorphic to a subfield of an underlying field of P’.
!v v v vProof. There exists a triangle {A ,B ,C }tCtR , say, whence {A,B,C}tCtR is a

vtriangle too. Thus dimRt>t2, Et:=tAvBvC is a plane of type (IV) and E is a

subplane of Ev. Now the other assertions are obviously true. P
!
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A2. Let s!:!lt----------Ltm be a perspectivity of distinct lines l,mtCtR and let

lvt=tmv be a line of P’. Then the mapping
!v v v svl tLtm , X t9LtX (Xtetl)

!
extends to a projectivity of lv which permits a factorization

!C’ D’lvt--------------Ltf’t--------------Ltlv
!v vfor collinear points A ,C’,D’ and a line f’tCtP’ with lv!n!f’t=t(l!n!m) .

!
Proof. Both v|l and v|m are injective, whence the plane lvm is of type (II) or

v sv(III). By #lt>t3, X t$tX for at least one Xtetl. It follows from (WL2) that
v v vthere exists a point CtetR such that C is off lv. Then A t$tC and there is a

point Dtet(AvC)\{A,C}. Because of dim(lvmvC)t=t3, ft:=t(Cvl)n(Dvm) is a line.
C DWe infer from the collinearity of A,C,D that s coincides with lt----------Ltft----------Ltm;

cf. figure 1. The planes Cvl and Dvm are of type (IV), whence putting

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt!

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt!

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt!

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt!

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt!

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt!

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt!

Fig.!1
!v vfvt=:tf’, C t=:tC’ and D t=:tD’ completes the proof. P

!
3. If there exists a hyperplane I of R such that Ivt$tRv then Iv is a

vhyperplane of Rv. The restriction v|(R\I) is injective and (R\I) !n!Ivt=to.
!vProof. There exists a point AtetR such that A tmtIv, whence AtmtI. Writing

vRt=tAvI yields Rvt=tA vIv. Thus Iv is a hyperplane of Rv. If X,YtetR\I are
v v v vdistinct then lt:=tXvY either is of type (I) and X t=tY t=t(l!n!I) t=tl tCtIv,

vor l is of type (II) and v|l is injective. Putting Yt:=tA shows X tmtIv for

all XtetR\I. Hence only the second possibility can occur. Thus v|(R\I) is
vinjective and (R\I) !n!Ivt=to. P

!
4. Suppose that P’t$tRvt=tHv for all hyperplanes H of R. Choose a hyperplane

I’ of P’ which contains Rv and a point Z’tetP’\I’. Denote by
!

w!:!P’t0LtI’
!

! !!!!!! !!!!!!
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the projection with centre Z’ onto I’. Then there exists a mapping

l!:!RtLtP’ which satisfies (WL1) and (WL2) such that
!v lwX t=tX for all XtetR (3)

!
and there is a hyperplane of R, say I, such that Ilt=tI’t$tRl.

!
Proof. (a) Fix any hyperplane ItCtR and any point AtetR\I. Write A for the

vpre-image of A and denote by
!

j!:!Rt0LtI
!

the projection with centre A onto the hyperplane I. In P’ fix a point
!v vA’tet(A vZ’)\{A ,Z’}.

!
In a first step (cf. figure 2) we define a mapping

!!& A’ if Xt=tA ,vt!:!{A}!u!I!u!(R\A)tLtP’, Xt9Lt{ X if XtetI , (4)v jv! 7(Z’vX )n(A’vX ) if XtetR\(AuI)).
!

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt!

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt!

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt!

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt!

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt!

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt!

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt!

Fig.!2
!

This mapping t will be extended in (c) to give the required mapping l.
!t(b) We discuss the image set l of a line ltCtR that is neither a part of the

hyperplane I nor contained in the subspace A.
! j. Suppose that l!n!At=to. We infer from Atmtl that l is a line of I. The

plane Et:=tAvl cannot of type (I).
!v jIf E is of type (II) and l is a single point then l vt=tEv is a line through

v t vA . Hence l tCtZ’vl .
! jvIf E is of type (II) and l is a single point then lvt=tEv is a line through

v t jvA . Hence l tCtA’vl .
! jIf E is of type (II) and both lv and l v are lines of P’, or if E is of type

! !!!!!! !!!!!!
!
!
!
! !!!!



!!!!!!!!! !!! !!!!!!!!!!!!! !!!!!!! !!! !!! !!!! !!!!!
! !

(III), then we apply Theorem 1.2 to the mapping
!v jv v jvl tLtl , X t9LtX (Xtetl)

!
and the Lemma to the extending projectivity and points A’,Z’. This shows that
tl is part of a line that runs neither through A’ nor through Z’.

!v v j j tIf E is of type (IV) then A tmtlv, A tmtl v, lvt$tl v and l is a subset of
jthe line (A’vl v)n(Z’vlv).

!
. Suppose that l!n!At=:tA1 is a single point. Hence lv is a line of type (IV).

!jIf A1t$tA then Et:=tAvl is a plane of type (II) and l v is a line. As before,
tby Theorem 1.2 and the Lemma, l is part of a line that meets A’vZ’ at a

vunique point A1’, say. This A1’ is distinct from A ,A’ and Z’.
!jv v t jvIf A1t=tA then l t$tA is a single point and l tCtA’vl is part of a line.

!
Irrespective of the various cases the restriction t|(l!n!dom!t) is injective:

If lv is a line then this implied by the injectivity of v|l and the fact that
v t jZ’,X ,X are collinear for all Xtetl!n!dom!t. If lv is not a line then v|l is

jv tinjective and A’,X ,X are collinear for all Xtetl!n!dom!t. Thus lt is always

a line.
! v v v(c) Given A1tetA\dom!t there exists a point BtetI\A, whence B t$tA1 t=tA . As

follows from (b), (A1vB)t is a line and there exists a point
!

A1’t:=t(A’vZ’)n(A1vB)t.
!

We show that A1’ does not depend on the choice of BtetI\A.
!vIf B is replaced by CtetI\A such that {A,B,C} is a triangle then Et:=tA1vBvC

is a plane of type (IV). Hence E!n!At=tA1. Choose a point B1tet(A1vB)\{A1,B}

as well as a point C1tet(A1vC)\{A1,C}. Lines B1vC1 and BvC meet at some point

Dt$tB,C. Now, going over to the t-images, the lines (BvC)ttCtI’ and

(B1vC1)ttltI’ are distinct and they are spanning a plane E’ that contains

(A1vB)t and (A1vC)t. But E’n(A’vZ’) is a single point, whence A1’tet(A1vC)t.
!vIf B is replaced by CtetI\A such that {A,B,C} is not a triangle then, by

vIvt=tRv, there exists a point EtetI\A for that {A,B,E} is a triangle, whence
v{A,C,E} is a triangle too. Repeated application of the arguments used above

shows A1’tet(A1vC)t.
!

Hence we may unambigously define
!
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( tX if Xtetdom!tl!:!RtLtP’, Xt9Lt{ (5)(A’vZ’)n(XvB)t if Xtmtdom!t (BtetI\Atarbitrary)9!l v l ( )l vThus (A!n!I) t=tA , A t=tA’ and A\(Iu{A}) tCt(A’vZ’)\{A ,Z’,A’}. Conditions9 0
(3), Ilt=tI’t$tRl and (WL2) obviously are true for l.

!
(d) Finally, we have to check if l satisfies (WL1). By the definition of l it

is sufficient to show that (WL1) holds for distinct points X,Y in A, but not

both in I. Put lt:=tXvY. We are finished if we can show that l|l is injective.
!v vThere exists a point BtetI such that A t$tB . Hence Et:=tBvl is a plane and

E!n!At=tl. The restriction of l to E preserves collinearity of points, since
ll tCtA’vZ’. Choose a line ktCtE through l!n!I, but not through B and distinct

vfrom the line l. Hence kl lies in the plane (A’vZ’vB ), runs through
v v vA t=t(lnI) , but is not incident with A’ or B . The restriction of l to k is

vinjective and, by perspectivity kltLt(A’vZ’) with centre B , also l|l is in-

jective. P
!!

3.7. The mapping l, as has been defined before, will be called a lifting of

the mapping v. Provided that P’t=tRvt=tHv for all hyperplanes H of R, the

Desarguesian projective space P’ may be embedded as hyperplane in a projective

space P". Thus the condition P’t$tRv is not essential. We remark that the

technique for defining l generalizes a construction used in [31]. An algebraic

approach to certain liftings was given in [21].

!
3.8. Recall the notations introduced in 2.2. Here is our main result:

!
Theorem 2. Let P(V) and P(W) be projective spaces on vector spaces V over K

and W over L, respectively. Assume that v!:!P(V)t0LtP(W) satisfies (WL1) and

(WL2). Then v is a weak linear mapping.
!

Proof. (a) At first we make the additional assumptions that dom!vt=tP(V) and

that there exist a hyperplane ItCtP(V) with Ivt$tP(V)v. Hence we may put

Vt=tvKsV1, where V1 is a hyperplane of V with P(V1)t=tI and vtetV\V1. Simila-

rily Wt=twKsW1 for some hyperplane W1 with P(W1)t=:tI’, Ivt=tP(V)v!n!I’ and
vwtet(vK) \{o}.

!
We shall regard I as hyperplane at infinity and P(V)\I as an affine space.

Also V1 may be viewed as an affine space and, mutatis mutandis, this carries

over to W. It is well known that
!

! !!!!!! !!!!!!
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a!:!V1tLtP(V)\I, xt9Lt(v+x)K and b!:!W1tLtP(W)\I’, yt9Lt(w+y)K
! !

are affinities (i.e. collineations preserving parallelism). We use a and b to

define
! -1avb t=:tg!:!V1tLtW1. (6)

! ( )vThis definition does make sense, since P(V)\I tCtP(W)\I’. By (6) we have9 0 !( )v g(v+x)K t=t(w+x )L for all xtetV1.9 0 !( )Thus g is injective, because v| P(V)\I is an injection by Theorem 1.3.9 0 !
By (WL2) and Theorem 1.3 the subspace Iv contains a line. Hence there are at

gleast two linearly independent vectors in V1 . We claim that g is additive:
g vo t=to follows from wtet(vK) \{o}. So we have to show additivity for

x,ytetV1\{o} only:
!g gIf x ,y are linearly independent then {o,x,y,x+y} is a parallelogram and this

property is shared by the image under av, since the action of v on the hyper-

plane at infinity shows that v takes parallel lines in P(V)\I to parallellines
-1 g g gin P(W)\I’. The affinity b preserves parallelograms, whence (x+y) t=tx +y .

!g gIf yt=t-x then there exists ztetV1 such that z tmtx L. Thus {o,-x,x+z,z} is a
g g ( )g g gparallelogram, whence (-x) t=t-(x ) and x+(-x) t=tx +(-x) .9 0 !g g gIf x ,y t$t-x are linearly dependent then there exists a vector ztetV1 such

g gthat z tmtx L. By the injectivity of g we obtain x+yt$to and
!g g g g g g g g g g g g g(x+y) t=t(x+y-z+z) t=t(x+y-z) +z t=tx +(y-z) +z t=tx +y -z +z t=tx +y .

!
Given xtetV1\{o} then xKtCtV1 is a line of the affine space on V1 and its

g-image is part of a line of the affine space on W1 that is passing through
g gotetW. We deduce (xK) tCt(x )L from the injectivity of g. By ZICK’s result,

8stated in 2.2, g is a weak semilinear mapping with respect to a monomorphism

z!:!KtLtL.
!

Finally, define
! z gf!:!VtLtW, vx+x1t9Ltwx +x1 (xtetK, x1tetV1).

! v fThis f is a weak semilinear mapping and (xK) t=t(x )L for all xtetV\{o}.
!

(b) Now the general case is studied: We use a factorization vt=tp(v|R) as

----------------------------------------------------------------------------------------------------
8Alternatively, this may be shown by modifying the proof in [29,104f].
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described in formula (2); when dom!vt=tP(V) then Rt=tP(V) and p is the iden-

tity in P(V). If Rvt=tHv for all hyperplanes H of R then write v|R as product

of a lifting, say l!:!RtLtP(LsW), and a projection w!:!P(LsW)t0LtP(W). Other-

wise let lt:=tv|R and let w be the identity of P(W). So under all circumstan-

ces we have
!

vt=tplw.
!

Projections are induced by idempotent linear mappings of vector spaces and,

according to (a), l is induced by a weak semilinear mapping. P
!

!!
4. Remarks

! !
4.1. We use the notations of Theorem 2. If v!:!P(V)t0LtP(W) is a weak linear

mapping and if one line of P(V) is mapped onto a line of P(W) then z!:!KtLtL

is surjective, whence v is linear. Conversely, if z is surjective then v is

linear. Thus, especially for real projective spaces, Theorem 2 characterizes

linear mappings with non-collinear image set, since every monomorphism RtLtR

is an identity mapping. Cf., e.g., [1,88f]. See also [9] and [10] for other

examples of fields that admit only surjective monomorphisms.
!

On the other hand let L be a proper extension field of a field K. Assume that
n nnt>t2, Vt=tL (viewed as vector space over K), Wt=tL (viewed as vector space

over L) and that f is the identity mapping of Vt=tW. Then f is a weak semi-

linear bijection with respect to the inclusion mapping of K into L. The in-

duced mapping v!:!P(V)tLtP(W) is surjective although a line of P(V) never is

mapped onto a line of P(W).

!
4.2. Obviously (WL1) is not sufficient to characterize weak linear mappings

whose image set is part of a line. To illustrate this just take an injective

mapping of a real projective line that is not a projectivity.
!

Moreover we want to point out that (WL1) does not even characterize those

mappings that are products of a weak linear mapping into a line and an injec-

tion of that line into itself.
!

To this end let L be an extension of K with right degree 2, dimKVt=t4,

dimLWt=t2 and let v!:!P(V)tLtP(W) be a weak linear mapping with more than one

image point. Hence, with the notations of 2.2, there exists a projective space

! !!!!!! !!!!!!
!
!
!
! !!!!



!!!!!!!!! !!! !!!!!!!!!!!!! !!!!!!! !!! !!! !!!! !!!!!
! !

P(Y) over F that is an isomorphic copy of P(V), a semilinear bijection
v i hi!:!VtLtY and a linear mapping h!:!Y!tF!LtLtW such that (xK) t=t((x t1) )L.

The rank of h equals 2, since a basis {b0,...,b3} of Y gives rise to a basis

{b0t1,...,b3t1} of Y!tF!L. Thus P(ker!h) is a line of P(Y!tF!L). It follows

from dom!vt=tP(V) and [23] that P(ker!h) is an indicator set of a Desarguesian

spread of P(Y), whence the set of fibres of v is a Desarguesian spread too.
!

Next we specialize as follows: Let K, L be commutative and let Kt$tGF(2).

Hence the fibres of v form an elliptic linear congruence of lines (regular

spread) S; cf., e.g., [2], [23]. If we replace one regulus M of S by its
------- ------opposite regulus M then we obtain a subregular spread S. There exists a

-------bijection d!:!MtLtM; use, e.g., a non-identical automorphic perspective col-
-------lineation of the doubly ruled quadric Q carrying M and M. Now define

!( v----- Xt9Lt X if Xtm Q,v!:!P(V)tLtP(W) { ------- ----d v ------ -------Xt9Lt( l nl ) if Xtet ltetM.! 9!----- ------ -----The fibres of v are exactly the lines of the spread S, whence v satisfies
------(WL1). However, by Kt$tGF(2), the spread S is not Desarguesian; cf., e.g.,

-----[26,§17]. Thus the mapping v cannot be the product of a weak linear mapping

and an injection of P(W).
!

On the other hand BRAUNER’S Theorem [4] includes a characterization of those

mappings P(V)t0LtP(W) that are the product of a linear mapping onto a line and

a bijection of that line onto itself.
!!

4.3. The description of v in 4.2 looks rather complicated, for it involves not

only a field L and its subfield K, but also a subfield F of L that is iso-

morphic to K.
!

If there exists an automorphism of L that takes K to F then the semilinear

bijection i!:!VtLtY and the linear mapping h!:!Y!tF!LtLtW can be replaced by a
^semilinear mapping h!:!V!tK!LtLtW to obtain an algebraic description of v.

However, such an automorphism need not exist. Take, e.g., an element t, trans-
2 4cendental over GF(2), and set Lt:=tGF(2)(t), Kt:=tGF(2)(t ), Ft:=tGF(2)(t ).

2 zIf f is weak semilinear with respect to z!:!KtLtL, xt9Ltx then Ft=tK , but

there is no automorphism of L that takes K to F, since |L!:!K|t=t2 and

|L!:!F|t=t4.
!

Other counterexamples (with |L!:!K|t$t2) are given for Lt=tR and choosing K

! !!!!!! !!!!!!
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and F as two subfields of R that are distinct simple transcendental extensions

of Q.
!
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