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ELLIPTIC PLÜCKER TRANSFORMATIONS

Dedicated to Walter Benz on the occasion of his 65th birthday

Hans Havlicek

We discuss elliptic Plücker transformations of three-dimensional elliptic spaces. These are per-
mutations on the set of lines such that any two related (orthogonally intersecting or identical)
lines go over to related lines in both directions. It will be shown that for “classical” elliptic 3-
spaces a bijection of its lines is already a Plücker transformation, if related lines go over to related
lines. Moreover, if the ground field admits only surjective monomorphisms, then “bijection” can
be replaced by “injection”.

1 INTRODUCTION AND MAIN RESULTS

Let (P,L, π) be a 3-dimensional elliptic space, i.e. a projective space (P ,L) = PG(3, F )
endowed with an elliptic absolute polarity π. Points X,Y ∈ P are π-conjugate (orthogonal)
if X ∈ Y π or, equivalently, if Y ∈ Xπ. Given a subspace T ⊂ P we denote by T π its π-polar
subspace, i.e. the set of points Y ∈ P which are π-conjugate to all points of T . Due to the
absence of π-self-conjugate (π-absolute) points, T and T π are complementary subspaces.
Moreover, the field F is necessarily infinite [10, 5.3]. Let us recall the terminology and some
results of [8]: Given a, b ∈ L we put

a ≈ b :⇐⇒ a ∩ bπ 6= ∅ and a ∩ b 6= ∅ (orthogonally intersecting lines),
a ∼ b :⇐⇒ a ≈ b or a = b (related lines),
a ‖ b :⇐⇒ #{x | x ≈ a and x ≈ b} ≥ 3 (Clifford parallel lines).

The relation ≈ is symmetric and the pair (L,∼) is a Plücker space in the sense of W. Benz
[2]. An elliptic Plücker transformation is a bijection ϕ : L → L such that

a ∼ b⇐⇒ aϕ ∼ bϕ. (1)



In the sequel we shall assume that (P,L, π) is classical, i.e., the following conditions hold
true:

1. The underlying field F is commutative and CharF 6= 2.
2. π is a projective polarity.
3. There exist Clifford parallel lines a, b ∈ L with b /∈ {a, aπ}.

For example, the real elliptic 3-space fits into this concept. We shall comment on the third
condition in Section 2.
In [8] all Plücker transformations of a classical elliptic 3-space have been described in the
realm of the ambient space of the Klein quadric representing the lines of (P ,L).
The main results of this paper are:

THEOREM 1 Let (P ,L, π) be a 3-dimensional classical elliptic space. If ϕ : L → L is a
bijection satisfying

a ∼ b =⇒ aϕ ∼ bϕ, (2)

then ϕ is an elliptic Plücker transformation.

THEOREM 2 Let (P ,L, π) be a 3-dimensional classical elliptic space with underlying field
F . Suppose that there are only surjective monomorphisms F → F . If ϕ : L → L is an
injection satisfying (2), then ϕ is an elliptic Plücker transformation.

We shall establish a series of Propositions in Section 3 that end up in proofs for Theorem 1
and Theorem 2.
Let us remark that [8] contains results on generalized elliptic spaces of dimensions 2 and
≥ 4, namely a description of their Plücker transformations and characterization in the spirit
of Theorem 1. The corresponding proofs are short and straightforward, whereas the 3-
dimensional case seems to be much more involved.
For results and references on other groups of Plücker transformations see, among others, [2],
[3], [8], [9] and [16]. Finally, we refer to [5], [7], [11, p. 75], [12], [13], [14], [15] and [17] for
an axiomatic descriptions of polarities, elliptic spaces and Clifford parallelism as well as a
connection with quaternion skew fields.

2 CLIFFORD PARALLELISM

In [8] we have aimed at understanding the line geometry of a classical elliptic 3-space (P,L, π)
via the ambient space (P̂ , L̂) = PG(5, F ) of the Klein quadric. Write

γ : L → P̂ , a 7→ aγ

for the Klein mapping and put Γ := Lγ = im γ for the Klein quadric. The projective polarity
associated with the Klein quadric is named κ.
The absolute polarity π gives rise to a projective collineation α : P̂ → P̂ characterized by
aγα = aπγ for all a ∈ L. Since π has no self-polar lines, there is no α-invariant point on the



Klein quadric. However, since (P ,L, π) is classical, all α-invariant points1 form two skew
planes of (P̂ , L̂), say EL and ER, with EκL = ER [8, p. 45]. We remark that in an appropriate
quadratic extension of PG(3, F ) the absolute polarity π becomes the polarity of a ruled
quadric2. The two reguli on this quadric go over to distinct conics on the Klein quadric
spanning the planes EL and ER, respectively. Cf. part IV of the fundamental paper by G.
Weiß [19] on real metric line geometry.
We infer from EL∩Γ = ∅ that the polarity of the Klein quadric induces an elliptic projective
polarity in EL, say κL, thus turning EL into an elliptic plane. By symmetry of L = “left”
and R = “right”, this carries over to ER. The planes EL and ER give rise to projections

λ : P̂ \ EL → ER, X 7→ (X ∨ EL) ∩ ER,
ρ : P̂ \ ER → EL, X 7→ (X ∨ ER) ∩ EL,

with the property that (aγλ, aγρ, aγ, aπγ) is a harmonic range of points for each a ∈ L. Let
a, b ∈ L. We define

a ‖L b :⇐⇒ aγλ = bγλ (left parallel lines),
a ‖R b :⇐⇒ aγρ = bγρ (right parallel lines).

Moreover, by [8, pp. 44–46],

a ‖ b⇐⇒ a ‖L b or a ‖R b, (3)
b ∈ {a, aπ} ⇐⇒ a ‖L b and a ‖R b, (4)

a ≈ b⇐⇒ aγλ, bγλ κR-conjugate and aγρ, bγρ κL-conjugate. (5)

Left parallelism ‖L is an equivalence relation. The equivalence class of a ∈ L is an elliptic
linear congruence of lines (regular spread) [8, Lemma 3]; this spread is denoted by

SL(a) := {x | x ‖L a}.

Given a line p ∈ L \ SL(a) then, by the regularity of the spread SL(a),

RL(a|p) := {x | x ‖L a and x ∩ p 6= ∅}

is a regulus. These results carry over to ‖R in an obvious way.
Let a ≈ b. If Q ∈ P , then there exist lines xQ ∈ SL(a) and yQ ∈ SL(b), concurrent at Q,
since SL(a) and SL(b) are spreads. According to [8, Lemma 5, I], we obtain xQ ≈ yQ, whence

SL(a) = {x ∈ SL(a) | ∃ y ∈ SL(b) with x ≈ y}; (6)
1The existence of an α-invariant point is equivalent to the existence of a π-invariant general linear complex

of lines ⊂ L or, in other words, is equivalent to the existence of a symplectic polarity of (P,L) commuting
with π. If there would be no α-invariant points, then the lines a and aπ would be the only Clifford parallel
lines for any a ∈ L [8, Lemma 2].

2If we are given an elliptic projective polarity of PG(3, F ) (F commutative), then it is possible to obtain
self-conjugate points by a single quadratic extension of PG(3, F ), but in general it takes two consecutive
quadratic extensions to get self-polar lines.



SL(b) can be described likewise. On the other hand, by [8, Lemma 5, II],

RL(a|b) = {x ∈ SL(a) | ∃ y ∈ SR(b) with x ≈ y}, (7)
RR(b|a) = {y ∈ SR(b) | ∃ x ∈ SL(a) with y ≈ x}. (8)

Consequently, RL(a|b) and RR(b|a) are mutually opposite reguli3 and

x ≈ y for all x ∈ RL(a|b) and all y ∈ RR(b|a). (9)

These results remain true if the terms “left” and “right” are interchanged.

3 PROOFS

In the subsequent Propositions let (P ,L, π) be a 3-dimensional classical elliptic space. Sup-
pose, furthermore, that ϕ : L → L is an injection satisfying (2).

PROPOSITION 1 For all a, b ∈ L the following properties hold true:

a ≈ b =⇒ aϕ ≈ bϕ, (10)
a ‖ b =⇒ aϕ ‖ bϕ, (11)

aπϕ = aϕπ, (12)
a ‖ b and b /∈ {a, aπ} =⇒ either aϕ ‖L bϕ or aϕ ‖R bϕ. (13)

Proof. We deduce (10) from the injectivity of ϕ and (2). Now (11) is immediate from the
definition of ‖, the injectivity of ϕ and (10). In order to establish (12) choose points A0 ∈ a
and A1 ∈ aπ. Setting A2 := Aπ1 ∩ aπ, a1 := A0 ∨ A1 and a2 := A0 ∨ A2 yields that

a ≈ a1 ≈ a2 ≈ a, aπ ≈ a1 ≈ a2 ≈ aπ.

Hence aϕ1 and aϕ2 are concurrent and distinct by (10). Therefore

(aϕ1 ∩ a
ϕ
2 )π ∩ (aϕ1 ∨ a

ϕ
2 ) =: a′ and a′π 6= a′

are the only two lines that are intersecting both aϕ1 and aϕ2 orthogonally. Thus {a′, a′π} =
{aϕ, aπϕ}. Now (13) follows from bϕ /∈ {aϕ, aϕπ} and (4). 2

PROPOSITION 2 If a ∈ L, then either SL(a)ϕ ⊂ SL(aϕ) or SL(a)ϕ ⊂ SR(aϕ).

Proof. Assume to the contrary that our assertion does not hold. We infer from (4), (10),
#SL(a) = #F =∞ and the injectivity of ϕ that SL(aϕ)∩SR(aϕ) = {aϕ, aϕπ} = {aϕ, aπϕ} is
a proper subset of SL(a)ϕ. Therefore SL(a)ϕ cannot be a subset of both SL(aϕ) and SR(aϕ).
Hence there exist distinct lines x, y ∈ SL(a) \ {a, aπ} such that aϕ ‖L xϕ and aϕ ‖R yϕ.
Moreover, xϕ ‖ yϕ by (3) and (11).
If xϕ ‖L yϕ, then aϕ ‖L xϕ ‖L yϕ. It follows that yϕ is both left and right parallel to aϕ.
Hence, by (4) and (12), we obtain yϕ ∈ {aϕ, aϕπ} = {aϕ, aπϕ}. This is contradicting the
injectivity of ϕ.
Likewise, xϕ ‖R yϕ yields a contradiction. 2

3In a real elliptic 3-space these two reguli are on the well-known Clifford surface. Formula (9) reflects the
fact that this quadric admits locally Cartesian coordinates.



PROPOSITION 3 If SL(a)ϕ ⊂ SL(aϕ) for at least one line a ∈ L, then

SL(b)ϕ ⊂ SL(bϕ) for all b ∈ L. (14)

Proof. At first let a ≈ b. Assume to the contrary that SL(b)ϕ 6⊂ SL(bϕ), whence Proposition
2 gives SL(b)ϕ ⊂ SR(bϕ). If SL(a) is written down according to (6), then (10) gives that for
each xϕ ∈ SL(a)ϕ ⊂ SL(aϕ) there exists a yϕ ∈ SL(b)ϕ ⊂ SR(bϕ) such that xϕ ≈ yϕ. We
infer from (7) and (8), applied to aϕ ≈ bϕ, that

SL(a)ϕ ⊂ RL(aϕ|bϕ) and SL(b)ϕ ⊂ RR(bϕ|aϕ).

There exists a line c such that a ≈ c ≈ b. Application of (9) yields (in an obvious shorthand
notation) c ≈ RL(a|c) and c ≈ RL(b|c). Therefore, by (10),

cϕ ≈ RL(a|c)ϕ ⊂ RL(aϕ|bϕ) and cϕ ≈ RL(b|c)ϕ ⊂ RR(bϕ|aϕ).

Due to the injectivity of ϕ, cϕ has to be a transversal line of two infinite sets of lines contained
in opposite reguli, respectively. This is an absurdity.
Next assume a 6≈ b. Then there is a finite sequence a ≈ a1 ≈ · · · ≈ an ≈ b, whence the proof
from above carries over to all lines. 2

PROPOSITION 4 If SL(a)ϕ ⊂ SL(aϕ) for all a ∈ L, then

SR(b)ϕ ⊂ SR(bϕ) for all b ∈ L. (15)

Proof. Given a line b ∈ L there exists a line a ∈ L with b ≈ a. By (9) and by the definition
of the relation ≈, RR(b|a) and RL(a|b) are mutually opposite reguli containing {b, bπ} and
{a, aπ}, respectively. There exist lines

b1 ∈ RR(b|a) \ {b, bπ} and a1 ∈ RL(a|b) \ {a, aπ}.

Analogously, the distinct related lines bϕ and aϕ give rise to mutually opposite reguli
RR(bϕ|aϕ) and RL(aϕ|bϕ) containing {bϕ, bπϕ} = {bϕ, bϕπ} and {aϕ, aπϕ} = {aϕ, aϕπ}, re-
spectively; cf. (12). Now a1 ‖L a, a1 ≈ b, the present assumption on SL(a)ϕ and (10)
yield

aϕ1 ∈ RL(aϕ|bϕ) \ {aϕ, aϕπ}.
Since b1 ≈ {a, aπ, a1}, we infer from (10) that bϕ1 ≈ {aϕ, aϕπ, a

ϕ
1}. Therefore bϕ1 is a transversal

line of the regulus RL(aϕ|bϕ). So

bϕ1 ∈ (RR(bϕ|aϕ) \ {bϕ, bϕπ}) ⊂ (SR(bϕ) \ {bϕ, bϕπ})

and bϕ1 6 ‖L bϕ by (4). Proposition 2 extends to the ϕ-images of right parallel classes in an
obvious way. Hence the assertion follows. 2

Propositions 3 and 4 hold true, mutatis mutandis, if SL(a)ϕ ⊂ SR(aϕ). Therefore, the
injection ϕ is either preserving or interchanging left and right parallelism. According to
these possibilities ϕ will be called direct or opposite.
In the sequel we shall confine our attention on a direct mapping ϕ. The subsequent Propo-
sitions remain true when the terms “left” and “right” are interchanged.



PROPOSITION 5 If ϕ is direct, then

a 6 ‖R b and a ‖L b =⇒ aϕ 6 ‖R b
ϕ for all a, b ∈ L. (16)

Proof. We infer from a 6 ‖R b, a ‖L b and (4) that b /∈ {a, aπ}. By the injectivity of ϕ and
(12), we obtain bϕ /∈ {aϕ, aϕπ}. Now aϕ ‖L bϕ and (4) yield aϕ 6 ‖R bϕ. 2

PROPOSITION 6 If ϕ is direct, then

ϕL : EL → EL, aγρ 7→ aϕγρ (a ∈ L)

is a well-defined mapping.

Proof. By (15), the definition of ϕL is unambiguous for all points in im γρ. The restriction
of ρ to the Klein quadric Γ is surjective, since Γ contains a plane. Thus the assertion follows.
2

PROPOSITION 7 Let a ∈ L. Then ϕL|SL(a)γρ is injective.

Proof. Two distinct points of SL(a)γρ can be written as bγρ1 6= bγρ2 with b1, b2 ∈ SL(a). Hence
b1 ‖L b2, but b1 6 ‖R b2. By (16), bϕ1 6 ‖R b

ϕ
2 . Now bϕγρ1 6= bϕγρ2 follows from the definition of ‖R.

2

We remark that SL(a)γρ is in general a proper subset of EL: The image of SL(a) under the
Klein mapping γ is an oval quadric in the 3-dimensional subspace T := EL ∨ aγ of (P̂ , L̂);
cf. the proof of [8, Lemma 3]. The restriction of the projection ρ to SL(a)γ may be seen as a
gnomonic projection, since ER ∩ T (the centre of the projection) is an interior point of that
oval quadric. The surjectivity of this gnomonic projection is equivalent to the fact that every
right parallel class has non-empty intersection with SL(a). We state two sufficient conditions
for SL(a)γρ = EL: If F is a Euclidean field, then any line through an interior point of an
oval quadric is a secant; cf., for example, [4, vol. II, p. 54]. Hence any gnomonic projection
is surjective. If F is a Pythagorean field and if the absolute polarity π can be described by
the standard bilinear form on F 4, then a line joining any point of EL with any point of ER
is a secant of the Klein quadric; cf. [8, Remark 4]. Thus the gnomonic projections arising
from ρ are then surjective.

PROPOSITION 8 The mapping ϕL : EL → EL takes κL-conjugate points to κL-conjugate
points. Moreover, ϕL is a full lineation.

Proof. Let F ⊂ L be a ruled plane. The restriction of γρ to F is a collineation of F (regarded
as dual projective plane) onto EL. Given points U, V ∈ EL there exist lines u, v ∈ F with
uγρ = U and vγρ = V . The set {x | x ∈ F , x ≈ u} is a pencil of lines. Its image under γρ is
a line. More precisely, this is the polar line of U with respect to κL; see (5). It follows from
(10) and (5) that

U, V κL-conjugate ⇐⇒ u ≈ v =⇒ aϕ ≈ vϕ =⇒ UϕL , V ϕL κL-conjugate. (17)





Put u :=W ∩ EL and write m for the polar line of u with respect to the polarity of SL(a)γ.
Then m ∩ W is the pole of u with respect to RL(a|t)γ. AsER ∩ T is on m, the point
U := m ∩ EL = (m ∩ W)ρ is the pole of u with respect to k and κL. The elliptic polarity
κL and the polarity of the conic RL(a|t)γ induce the same elliptic involutory projectivity on
u, since both are arising from the polarity κ of the Klein quadric. The gnomonic projection
fixes u pointwise, whence this involutory projectivity on u is also induced by the polarity of
the conic4 k. Hence U is an interior point of k. By Proposition 7 and (19),

ϕL|k is injective. (20)

Since k is infinite, we may find points A,B ∈ k, collinear with U , such that AϕL , BϕL and
UϕL are mutually distinct. By Proposition 8,

UϕL ∈ AϕL ∨BϕL . (21)

Let X ∈ k \ {A,B}. As U is interior point of k, the line X ∨ U meets k at one more point
X 6= X. Then {A,B,X,X} ⊂ k is a quadrangle, whence its diagonal points form a self-polar
triangle with respect to k, say {U,XA, XB}. Hence u = XA ∨XB, and {U,XA, XB} is also
a κL-self-polar triangle. We infer from (20) that AϕL , BϕL , XϕL , X

ϕL are mutually distinct.
Proposition 8 tells us that {UϕL , XϕL

A , XϕL
B } is a κL-self-polar triangle. We claim that

XϕL /∈ AϕL ∨BϕL ; (22)

otherwise we would have

XϕL
A ∈ AϕL ∨XϕL = AϕL ∨BϕL and XϕL

B ∈ BϕL ∨XϕL = AϕL ∨BϕL ,

whence XϕL
A , XϕL

B and UϕL would be collinear, an absurdity.
Since X ∈ k \ {A,B} has been chosen arbitrarily, we can deduce from (21) and (22) that

PϕL 6= UϕL for all P ∈ k. (23)

It is obvious now that AϕL , BϕL , XϕL , X
ϕL is a quadrangle with UϕL being one of its diagonal

points. Thus we have arrived at the well-known construction of the fourth harmonic point
for AϕL , BϕL , UϕL . Setting

u′ := UϕLκL = XϕL
A ∨X

ϕL
B

yields that
u′ 6= AϕL ∨BϕL . (24)

With C := u ∩ (A ∨B), we obtain CϕL = u′ ∩ (AϕL ∨BϕL) and

CϕL 6= XϕL
A . (25)

As X varies in k \ {A,B}, the point XA is running in u \ ({C} ∪ (CκL ∩ u)), that is, we are
reaching all points of u but two. By (25), CϕL ∈ u′ has only a finite number of pre-images
on the line u. Now [1, Satz 3.2] establishes that ϕL is injective. 2

4k is a circle of the elliptic plane EL.



PROPOSITION 10 If ϕ : L → L is direct, then any two points of EL that are not κL-
conjugate remain non-conjugate under ϕL.

Proof. The injective and full lineation ϕL is preserving non-collinearity of points [6, p. 4]. If
U, V ∈ EL are not κL-conjugate, then V /∈ UκL , whence V ϕL /∈ span (UκLϕL) = UϕLκL . Thus
UϕL , V ϕL are not κL-conjugate. 2

PROPOSITION 11 If ϕ : L → L is direct, then

a 6∼ b =⇒ aϕ 6∼ bϕ for all a, b ∈ L. (26)

Proof. We infer from the left hand side of (26) and from (5) that (up to interchanging the
terms “left” and “right”) aγρ, bγρ are not κL-conjugate. Under ϕL this property remains
unchanged by Proposition 10, whence the assertion follows from (5) and the definition of ϕL
in Proposition 6. 2

We recall a concept introduced in [8]: Two collineations ζ : EL → EL and η : ER → ER are
called admissible if the following conditions hold true:

Ad1. ζ and η are commuting with κL and κR, respectively.
Ad2. (X ∨ Y ) ∩ Γ 6= ∅ =⇒ (Xζ ∨ Y η) ∩ Γ 6= ∅ for all X ∈ EL, Y ∈ ER.

When writing [8], the author considered the next Proposition to be self-evident. It seems,
however, that it deserves a formal proof.

PROPOSITION 12 If collineations ζ : EL → EL and η : ER → ER are admissible, then
their inverse mappings are also admissible.

Proof. Condition Ad1 is evidently true for ζ−1, η−1. Given X ∈ EL and Y ∈ ER such that
(X ∨ Y ) ∩ Γ = ∅, then, by the surjectivity of γλ, there is a line a ∈ L with Y = aγλ. By
Ad2, there exists a line a′ ∈ L with a′γ ∈ (aγρζ ∨Y η)∩Γ. It is straightforward to verify that
ζ extends to a collineation

δ : Y ∨ EL → Y η ∨ EL
with Y 7→ Y η and aγ 7→ a′γ. Under δ the elliptic quadric SL(a)γ goes over to an elliptic
quadric within Y η ∨EL. This quadric coincides with the quadric (Y η ∨EL)∩Γ, since a′γ is a
common point, EL is the common polar plane of Y η and κL = ζ−1κLζ is the induced polarity
in EL for both quadrics5; cf., e.g., [4, vol. I, p. 191]. Thus (Xζ∨Y η)∩Γ = ((X∨Y )∩Γ)δ = ∅.
2

Proof of Theorem 1. If ϕ is direct, then the result is immediate from (26). Otherwise
choose a point Q ∈ P . The harmonic homology with centre Q and axis Qπ is an elliptic
reflection and yields an opposite Plücker transformation χ. By (26), χϕ is a direct Plücker
transformation so that ϕ too is a Plücker transformation. 2

Proof of Theorem 2. If ϕ is direct, then EϕLL is a subplane of EL isomorphic to EL. Hence
the underlying field of EϕLL is a subfield of F isomorphic to F [18, p. 266]. This implies, by

5This is a projective generalization of the well-known fact that a sphere in Euclidean space is uniquely
determined by one point and its mid-point.



our assumption on F , that ϕL is surjective. We infer from Propositions 8 and 9 that ϕL is a
collineation of EL commuting with κL. Similarly, ϕR is a collineation of ER commuting with
κR. By their definition, ϕL and ϕR are admissible.
Given a line a′ ∈ L we may apply ϕ−1

L and ϕ−1
R to the points a′γρ and a′γλ, respectively. Thus

we obtain points X ∈ EL and Y ∈ ER, say. By Proposition 12, there exists a line a ∈ L
such that aγ is on the line X ∨Y . Therefore {a, aπ}ϕ = {a′, a′π} so that ϕ is surjective. The
assertion follows now from Theorem 1.
If ϕ is opposite, then let χ be an elliptic reflection. Hence both χϕ and ϕ are Plücker
transformations. 2
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[1] André, J.: Über Homomorphismen projektiver Ebenen. Abh. Math. Sem. Univ. Ham-
burg 34 (1970), 98–114.

[2] Benz, W.: Geometrische Transformationen. B.I. Wissenschaftsverlag, Mannheim
Leipzig Wien Zürich, 1992.
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[13] Lenz, H.: Über die Einführung einer absoluten Polarität in die projektive und affine
Geometrie des Raumes. Math. Annalen 128 (1954), 363–372.



[14] Lenz, H.: Zur Begründung der analytischen Geometrie. Sitzungsber. Bayer. Akad.
Wiss. München, math.-naturw. Kl. 1954, 17–72.

[15] Lenz, H.: Axiomatische Bemerkung zur Polarentheorie. Math. Annalen 131 (1957),
39–40.

[16] Lester, J.A.: Distance Preserving Transformations. Chapter 16 in: Buekenhout,

F. (ed.): Handbook of Incidence Geometry, Elsevier, Amsterdam, 1995.
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