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Abstract

Given two parallelisms of a projective space we describe a construction,
called blending, that yields a (possibly new) parallelism of this space. For
a projective double space (P, ‖`, ‖r) over a quaternion skew field we charac-
terise the “Clifford-like” parallelisms, i.e. the blends of the Clifford paral-
lelisms ‖` and ‖r, in a geometric and an algebraic way. Finally, we establish
necessary and sufficient conditions for the existence of Clifford-like paral-
lelisms that are not Clifford.
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1 Introduction
The first definition of parallel lines in the real projective 3-space dates back to
1873 and was introduced by W.K. Clifford in the metric framework of elliptic
geometry (see [5]): two distinct lines M and N in the real elliptic 3-space, are
said to be Clifford parallel, if the four lines M, N, M⊥ and N⊥ are elements of
the same regulus. (Here M⊥ denotes the polar line of M w.r.t. the “absolute”,
i.e. the imaginary quadric that determines the elliptic metric in the real projective
3-space).

Some years later, in 1890 F. Klein revived Clifford’s ideas and, using the com-
plexification of the real projective space, defined two lines to be parallel in the
sense of Clifford if they meet the same complex conjugate pair of generators of
the absolute (see [21]).

Depending on the kind of generators under consideration, one can speak of
right parallel, or left parallel lines, then each fixed conjugate pair of generators
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“indicates” a left (or right) parallel class, which in fact is a regular spread, namely
an elliptic linear congruence of the projective space.

Thus we can say that a Clifford parallelism in the real projective 3-space con-
sists of all regular spreads, or elliptic linear congruences, whose indicator lines are
pairs of complex conjugate lines of a regulus contained in an imaginary quadric.
Besides, Clifford parallelisms go in pairs, and also note that all (real) Clifford
parallelisms are projectively equivalent. An interesting survey on the various def-
initions of Clifford parallelisms can be found in [1].

Generalising this situation, H. Karzel, H.-J. Kroll and K. Sörensen in 1973
introduced the notion of a projective double space (P, ‖`, ‖r), that is a projective
space (of unspecified dimension, over an unspecified field) equipped with two
parallelism relations fulfilling a configurational property which can be expressed
by the axiom (DS) of Section 3 (see [17], [18]). The real projective 3-space with
left and right Clifford parallelisms is an example and it turns out that the projective
double spaces (P, ‖`, ‖r) with ‖` , ‖r are necessarily of dimension 3 and precisely
the ones that can be obtained from a quaternion skew field H over a field F as in
Section 4 (see [17], [18], [15], [22]).

In this way one obtains what in 2010 A. Blunck, S. Pasotti and S. Pianta called
generalized Clifford parallelisms in the note [4]. If the maximal commutative
subfields of H are not mutually F-isomorphic, then new “non-Clifford” regular
parallelisms can be obtained by “blending” in some suitable way the left and right
parallel classes (see [4, 4.13]). This method has no equivalent in the classical case,
since the maximal commutative subfields of the real quaternions are mutually R-
isomorphic.

Taking up this idea, we introduce here the definition of Clifford-like paral-
lelism in a projective double space (P, ‖`, ‖r), that is a parallelism ‖ on P such that

∀ M,N ∈ L : M ‖ N ⇒ (M ‖` N or M ‖r N).

In Section 2 we start from the more general setting of equivalence relations on
a set L and we define a blend of two equivalence relations π1, π2 as an equivalence
relation π3 such that each equivalence class of π3 coincides with an equivalence
class of π1 or π2. In order to obtain a characterisation of all the blends of π1 and π2

in Proposition 2.4, we use the equivalence relation π12 generated by them, which
is the join of π1 and π2 in the lattice of equivalence relations on L.

In Section 3 we study the blends of parallelisms of a projective space. By
Theorem 3.1, we can prove that the Clifford-like parallelisms of a projective dou-
ble space (P, ‖`, ‖r) are precisely the “blends” of ‖` and ‖r. Therefore Clifford-like
parallelisms are regular.

In Section 4 we connect a projective double space (P, ‖`, ‖r) with ‖` , ‖r to a
quaternion skew field H over a field F and we describe the equivalence relation
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π`r generated by ‖` and ‖r using the maximal commutative subfields of H (see
Theorem 4.2). In Theorem 4.10 we obtain a characterisation of all Clifford-like
parallelisms of

(
P(H), ‖`, ‖r

)
showing that they are precisely those introduced in

[4, 4.13]. Finally, in Theorems 4.12 and 4.15 we discuss the existence and some
properties of Clifford-like parallelisms that are not Clifford.

To conclude, we observe that it might be interesting to investigate the blends
of the left and right parallelisms of an arbitrary kinematic space in the same spirit
as in [24].

2 Blends of equivalence relations
Throughout this section we consider an arbitrary set L. Let π ⊆ L × L be an
equivalence relation on L. The partition of L associated with π is denoted by Π.
The elements of Π are called π-classes. For any M ∈ L we denote by C(M) the π-
class containing M. The same kind of notation will be used for other equivalence
relations on L by writing, for example, π1, Π1 and C1(M).

The following simple lemma will be used repeatedly.

Lemma 2.1. Let π be an equivalence relation on L and B ⊆ L. Then the follow-
ing are equivalent.

(a) B admits a partition by π-classes.

(b) {C(X) | X ∈ B} is the only partition of B by π-classes.

(c) B =
⋃

X∈B C(X).

(d) L \B admits a partition by π-classes.

Proof. (a) ⇒ (b). Let Σ be a partition of B by π-classes. Then Σ coincides with
the partition given in (b). (b) ⇒ (c). This is obvious. (c) ⇒ (d). It suffices to
observe that {C(X) | X ∈ L \ B} is a partition of L \ B by π-classes. (d) ⇒ (a).
The existence of a partition, say Σ′, of L \ B by π-classes implies that Π \ Σ′ is a
partition of B by π-classes. �

We now introduce our basic notion.

Definition 2.2. Let π1 and π2 be (not necessarily distinct) equivalence relations
on L. An equivalence relation π3 on L is called a blend of π1 and π2 if

Π3 ⊆ Π1 ∪ Π2. (2.1)
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Equivalently, condition (2.1) can be written in the form

∀ M ∈ L : C3(M) = C1(M) or C3(M) = C2(M). (2.2)

The trivial blends of π1 and π2 are the relations π1 and π2 themselves.
Our aim is to describe all blends of equivalence relations π1 and π2 on L.

We thereby use that all equivalence relations on L constitute a lattice; see, for
example, [2, Ch. I, §8, Ex. 9] or [27, Sect. 50]. In this lattice, the meet of π1 and
π2 equals π1 ∩ π2 (however, the meet of equivalence relations is irrelevant for our
investigation). The join of π1 and π2 is the intersection of all equivalence relations
on L that contain π1 ∪ π2 or, in other words, the equivalence relation generated
by π1 and π2. This join is denoted by π12. For all M,N ∈ L, we have M π12 N
precisely when there exist an integer n ≥ 1 and (not necessarily distinct) elements
N1,N2, . . . ,N2n+1 ∈ L such that

M = N1 π1 N2 π2 N3 π1 · · · π2 N2n+1 = N. (2.3)

Also, we need another elementary lemma.

Lemma 2.3. Let π1 and π2 be equivalence relations on L and denote by π12 the
equivalence relation generated by π1 and π2. Furthermore, let B ⊆ L. Then the
following statements are equivalent.

(a) B admits a partition by π12-classes.

(b) B admits a partition by π1-classes and a partition by π2-classes.

Proof. Let (a) be satisfied. For each X ∈ B, we have C1(X)∪C2(X) ⊆ C12(X) ⊆ B,
where the second inclusion follows by applying Lemma 2.1 to an existing partition
of B by π12-classes. This forces B ⊆

⋃
Y∈B C1(Y) ⊆ B and B ⊆

⋃
Z∈B C2(Z) ⊆ B.

These two formulas in combination with Lemma 2.1 establish (b).
Conversely, let us choose some M ∈ B. Then, for all N ∈ C12(M), there is

a finite sequence as in (2.3), whence N ∈ B. Thus C12(M) ⊆ B. This shows
B ⊆

⋃
X∈B C12(X) ⊆ B, and Lemma 2.1 provides the existence of a partition of B

by π12-classes. �

Proposition 2.4. Let π1 and π2 be equivalence relations on L. Furthermore, de-
note by π12 the equivalence relation generated by π1 and π2.

(a) Upon choosing any subset D of L we let

B :=
⋃
X∈D

C12(X). (2.4)
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Then the set

ΠB :=
{
C1(M) | M ∈ B

}
∪

{
C2(M) | M ∈ L \B

}
(2.5)

is a partition of L, whose associated equivalence relation πB is a blend of
π1 and π2.

(b) Conversely, any blend of π1 and π2 arises according to (a) from at least one
subset of L.

(c) Let D and D̃ be subsets of L. Applying the construction from (a) to D and
D̃ gives πB and πB̃, respectively. Then πB coincides with πB̃ if, and only if,

{C12(X) | X ∈ D \ L12} = {C12(X̃) | X̃ ∈ D̃ \ L12}, (2.6)

where L12 := {M ∈ L | C1(M) = C2(M)}.

Proof. (a) We read off from (2.4) and Lemma 2.1 that B admits a partition by π12-
classes. Now Lemma 2.3 shows that B admits a partition by π1-classes, namely{
C1(M) | M ∈ B

}
, and also a partition by π2-classes. Applying Lemma 2.1 to the

latter, gives the existence of a partition of L \ B by π2-classes, namely
{
C2(M) |

M ∈ L \ B
}
. Therefore, in accordance with (2.5), ΠB ⊆ Π1 ∪ Π2 is a partition of

L, and so πB is a blend of π1 and π2.
(b) Given any blend π3 of π1 and π2 we start by defining

D :=
{
X ∈ L | C1(X) = C3(X)

}
and B′ :=

⋃
X∈D

C1(X). (2.7)

According to its definition, B′ admits a partition Σ′ by π1-classes. From (2.7), Σ′

is a partition of B′ by π3-classes as well. Now Lemma 2.1 gives that L\B′ admits
a partition, say Σ′′, by π3-classes. No element of Σ′′ can be in Π1. Since π3 is a
blend of π1 and π2, we obtain Σ′′ ⊆ Π2. Next, by virtue of Lemma 2.1, B′ admits
also a partition by π2-classes and, finally, Lemma 2.3 provides a partition Σ′′′ of
B′ by π12-classes.

We now proceed as in part (a) of the current proof, commencing with the set
D given in (2.7). From Lemma 2.1 and due to the existence of the partition Σ′′′

of B′, we see that the set B from (2.4) equals the set B′ appearing in (2.7). Under
these circumstances we end up with ΠB = Σ′ ∪ Σ′′ = Π3.

(c) This is an immediate consequence of (2.5). �

The set D from Proposition 2.4 (a) merely serves the purpose of defining the
set B in (2.4). Formula (2.6) does not impose any restriction on D ∩ L12 and
D̃ ∩ L12. Therefore, whenever L12 is non-empty, there is a choice of D and D̃
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such that πB = πB̃ even though B , B̃. For example, D := ∅ and D̃ := L12 , ∅
give rise to ∅ = B , B̃, whereas πB = πB̃ = π2.

The final result in this section will lead us to a characterisation of blends of
parallelisms in Theorem 3.1. It is motivated by the following evident observation.
Let π1, π2, π3 be equivalence relations on L. If π3 is a blend of π1 and π2 then, by
(2.2),

∀ M,N ∈ L : M π3 N ⇒ (M π1 N or M π2 N). (2.8)

In our current setting, (2.8) is not sufficient for π3 to be a blend of π1 and π2. Take,
for example, as L any set with at least two elements, let π1 = π2 = L × L, and
let π3 be the equality relation on L. Then (2.8) is trivially true, but π3 fails to be a
blend of π1 and π2.

Proposition 2.5. Let π1, π2, π3 be equivalence relations on L such that (2.8) is
satisfied. Then

∀ M ∈ L : C3(M) ⊆ C1(M) or C3(M) ⊆ C2(M). (2.9)

Proof. Assume, to the contrary, that (2.9) does not hold. So, there is an M0 ∈ L

such that C3(M0) * C1(M0) and C3(M0) * C2(M0). Now C3(M0) * C1(M0) implies
the existence of an M2 ∈ C3(M0)\C1(M0). Applying (2.8) to M2 π3 M0 and taking
into account that M2 < C1(M0), we obtain M2 ∈ C2(M0). Hence

M2 ∈
(
C2(M0) ∩ C3(M0)

)
\ C1(M0). (2.10)

Likewise, C3(M0) * C2(M0) implies that there exists an element

M1 ∈
(
C1(M0) ∩ C3(M0)

)
\ C2(M0). (2.11)

All in all, M1 π3 M0 π3 M2 yields M1 π3 M2. Thus, by (2.8), at least one of the
following is satisfied.

(i) M1 π1 M2. This gives M2 ∈ C1(M1) = C1(M0) and contradicts (2.10).
(ii) M1 π2 M2. This gives M1 ∈ C2(M2) = C2(M0) and contradicts (2.11). �

3 Blends of parallelisms
We consider a projective space P with point set P and line set L. An equivalence
relation on L is called a parallelism on P if each point q ∈ P is incident with
precisely one line from each equivalence class; see, for example, [12], [13], or
[16, § 14]. The notation from the previous section will slightly be altered when
dealing with parallelisms by writing ‖ instead of π. In addition, if ‖ ⊆ L × L is a
parallelism, then the equivalence class of a line M ∈ L will be called its parallel

6



class, and it will be denoted by S(M) in order to emphasise the fact that S(M) is a
spread of P. On the other hand, the partition of L arising from ‖ will be written as
Π like before. In the presence of several parallelisms we shall distinguish between
these objects by adding appropriate indices or attributes.

As anticipated, the next theorem provides a characterisation of blends of par-
allelisms by virtue of Proposition 2.5.

Theorem 3.1. Let ‖1 and ‖2 be parallelisms on P. Then the following hold.

(a) Any blend of ‖1 and ‖2 is a parallelism on P.

(b) A parallelism ‖3 on P is a blend of ‖1 and ‖2 if, and only if,

∀ M,N ∈ L : M ‖3 N ⇒ (M ‖1 N or M ‖2 N). (3.1)

Proof. (a) All parallel classes of the given parallelisms are spreads of P. The same
applies therefore to all equivalence classes of any blend of ‖1 and ‖2, that is, such
a blend is a parallelism on P.

(b) If ‖3 is a blend of ‖1 and ‖2 then (3.1) is nothing but a reformulation of
(2.8). Conversely, we first make use of Proposition 2.5, which gives (2.9) up to
some notational differences. Next, we notice that no proper subset of a spread of
P is again a spread of P. Since all parallel classes of ‖1, ‖2, and ‖3 are spreads of
P, we are therefore in a position to infer from (2.9) that, mutatis mutandis, (2.2) is
satisfied. �

Suppose that a projective space P is endowed with parallelisms ‖` and ‖r that
are called the left and right parallelism, respectively. We speak of left (right) par-
allel lines and left (right) parallel classes. According to [17], (P, ‖`, ‖r) constitutes
a projective double space if the following axiom is satisfied.

(DS) For all triangles p0, p1, p2 in P there exists a common point of the lines
M1 and M2 that are defined as follows. M1 is the line through p2 that is
left parallel to the join of p0 and p1, M2 is the line through p1 that is right
parallel to the join of p0 and p2.

In case of a projective double space (P, ‖`, ‖r), each of ‖` and ‖r is referred to as a
Clifford parallelism of (P, ‖`, ‖r). We now generalise this notion.

Definition 3.2. Let (P, ‖`, ‖r) be a projective double space. A Clifford-like paral-
lelism ‖ of (P, ‖`, ‖r) is a parallelism on P such that

∀ M,N ∈ L : M ‖ N ⇒ (M ‖` N or M ‖r N).
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By Theorem 3.1, the Clifford-like parallelisms of (P, ‖`, ‖r) are precisely the
blends of ‖` and ‖r. In particular, ‖` and ‖r themselves are the trivial examples of
Clifford-like parallelisms of (P, ‖`, ‖r).

Next, we recall that there exist projective double spaces (P, ‖`, ‖r) such that ‖`
coincides with ‖r. See [8], [14] and [22] for further details, an algebraic character-
isation, and geometric properties. Such a double space has only one Clifford-like
parallelism, namely ‖` = ‖r. We therefore exclude this kind of double space from
our further discussion.

The projective double spaces (P, ‖`, ‖r) with ‖` , ‖r are precisely the ones that
can be obtained from quaternion skew fields (see [17], [18], [15], [22]). A detailed
account is the topic of the next section.

Finally, we observe that the “left and right Clifford parallelisms” introduced
in [3] and defined by an octonion division algebra do not give rise to a projective
double space. For further details, see [3] and the references therein.

Remark 3.3. In [10, Rem. 3.7 and Thm. 3.8] the authors gave examples of piece-
wise Clifford parallelisms with two pieces. Without going into details, let us point
out that (in our terminology) these parallelisms arise from a three-dimensional
Pappian projective space P that is made into a projective double space in two dif-
ferent ways, say (P, ‖`,1, ‖r,1) and (P, ‖`,2, ‖r,2). Thereby, it has to be assumed that
‖`,1 and ‖`,2 share a single parallel class. The piecewise Clifford parallelisms with
two pieces are blends of ‖`,1 and ‖`,2, but none of these is Clifford-like with respect
to any double space structure on P. The proof of the last statement is beyond the
scope of this article, since the methods utilised in [10] are totally different from
ours.

4 Clifford-like parallelisms from quaternion skew fields
In this section we deal with a quaternion skew field H with centre F. We thereby
stick to the terminology and notation from [4] and [9]. Also, we use the abbrevi-
ations H∗ := H \ {0} and F∗ := F \ {0}. For a detailed account on quaternions we
refer, among others, to [28, pp. 46–48] and [29, Ch. I].

The F-vector space H is equipped with a quadratic form H → F, called the
norm form, sending q 7→ qq = qq. Here denotes the conjugation, which is an
antiautomorphism of the skew field H. The conjugation is of order two and fixes
F elementwise. Polarisation of the norm form yields the symmetric bilinear form

〈 · , · 〉 : H × H → F : (p, q) 7→ 〈p, q〉 := pq + qp = pq + qp. (4.1)

For any subset X ⊆ H we denote by X⊥ the set of those quaternions that are
orthogonal to all elements of X with respect to 〈 · , · 〉.
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The projective space P(H) is understood to be the set of all subspaces of the
F-vector space H and incidence is symmetrised inclusion. We adopt the usual
geometric language: points, lines and planes are the subspaces of vector dimen-
sion one, two, and three, respectively. The set of lines of P(H) will be written as
L(H). Furthermore, we shall regard ⊥ as a polarity of P(H) sending, for example,
any line M to its polar line M⊥. For one kind of line this will now be made more
explicit.

Lemma 4.1. For any line L = F1 ⊕ Fg, where 1 ∈ H and g ∈ H \ F, the line L⊥

is the set of all u ∈ H subject to the condition

ug = gu. (4.2)

Proof. From L⊥ = 1⊥ ∩ g⊥ and (4.1), a quaternion u ∈ H belongs to L⊥ precisely
when the following system of equations is satisfied:

u + u = 0, gu + ug = 0. (4.3)

It is immediate from (4.3) that any u ∈ L⊥ satisfies (4.2). Conversely, if (4.2)
holds for some u ∈ H then g(u + u) = gu + gu = gu + ug ∈ F. Together with g < F
and u + u ∈ F this forces u + u = 0, whence the system (4.3) is satisfied. �

Let M,N ∈ L(H). Then the line M is left parallel to the line N, in symbols
M ‖` N, if there is a c ∈ H∗ with cM = N. Similarly, M is right parallel to N,
in symbols M ‖r N, if there is a d ∈ H∗ with Md = N. The relations ‖` and ‖r
make P(H) into a projective double space

(
P(H), ‖`, ‖r

)
, that is, ‖` and ‖r are its

Clifford parallelisms (see [15]). In accordance with the terminology and notation
from Section 3, each line M ∈ L(H) determines its left parallel class S`(M) and
its right parallel class Sr(M). All left (right) parallel classes are regular spreads
of P (see [4, 4.8 Cor.] or [9, Prop. 4.3]), that is, ‖` and ‖r are regular parallelisms
[13, Ch. 26].

For any choice of c, d ∈ H∗ we can define the F-linear bijection µc,d : H →
H : p 7→ cpd, which acts as a projective collineation on P(H) preserving both
the left and the right Clifford parallelism as a straightforward computation shows.
Also, µc,d preserves the norm form of H up to the factor ccdd ∈ F∗ so that orthog-
onality of subspaces of H is preserved too. Two particular cases deserve special
mention. For d ∈ F∗, in particular for d = 1, the mapping µc,d is a left translation.
A right translation arises in a similar way for c ∈ F∗.

Let A(H) be the star of lines with centre F1 (with 1 ∈ H), that is, the set of
all lines of L(H) passing through the point F1. From an algebraic point of view,
each left (right) parallel class has a distinguished representative, namely its only
line belonging to A(H). The star A(H) is precisely the set of all two-dimensional
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F-subalgebras of H or, in other words, the set of all maximal subfields of H.
Given L1, L2 ∈ A(H) we remind that an F-isomorphism of L1 onto L2 is a ring
isomorphism L1 → L2 fixing F elementwise. If such an isomorphism exists then
L1 and L2 are called F-isomorphic, in symbols L1 � L2.

Let π`r denote the equivalence relation on L(H) that is generated by the left
and right Clifford parallelism on P(H). If M π`r N applies, then we say that M is
left-right equivalent to N.

We now present several characterisations of left-right equivalent lines.

Theorem 4.2. Let M1,M2 ∈ L(H) and let L1 and L2 be the uniquely determined
lines through the point F1 such that L1 ‖` M1 and L2 ‖r M2. Then the following
are equivalent.

(a) M1 π`r M2.

(b) There exist e1, e2 ∈ H∗ with e1M1 = M2e2.

(c) S`(M1) ∩ Sr(M2) , ∅.

(d) There exists a line M ∈ L(H) such that S`(M1) ∩ Sr(M2) = {M,M⊥}.

(e) L1 � L2.

(f) There exists an e ∈ H∗ with e−1L1e = L2.

Proof. (a) ⇒ (b). By the definition of ‖` and ‖r and by virtue of (2.3), we ob-
tain that M1 π`r M2 implies the existence of an integer n ≥ 1 and elements
g1, g2, . . . , g2n such that

M1 ‖` g1M1 ‖r g1M1g2 ‖` · · · ‖r g2n−1g2n−3 · · · g1M1g2g4 · · · g2n = M2

With e1 := g2n−1g2n−3 · · · g1 and e2 := (g2g4 · · · g2n)−1 the assertion follows.
(b)⇒ (c). Clearly, e1M1 = M2e2 ∈ S`(M1) ∩ Sr(M2).
(c)⇒ (d). By our assumption, there exists a line M, say, belonging to S`(M1)∩

Sr(M2). Also, there is a left translation µc1,1 taking M to L1, i.e., c1M = L1.
Since µc1,1 preserves not only the left and right Clifford parallelism but also the
orthogonality of lines in both directions, it suffices to verify that

S`(L1) ∩ Sr(L1) = {L1, L⊥1 }.

To this end we pick a quaternion g ∈ L1 \ F, which is maintained throughout this
part of the proof.

First, we take any line N ∈ S`(L1) ∩ Sr(L1). For all u ∈ N∗ we obtain from
1 ∈ L1 that N = uL1 = L1u. Thus the inner automorphism µu−1,u of H restricts to
an automorphism of L1. There are two possibilities.
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Case (i). µu−1,u fixes L1 elementwise. Consequently, u commutes with all
elements of L1 or, equivalently, u ∈ L1. Therefore N = L1.

Case (ii). µu−1,u fixes F elementwise, but not L1. Due to [L1 : F] = 2, the
identity on L1 and the restriction of µu−1,u to L1 are all the elements of the Ga-
lois group Gal(L1/F). The restriction of the conjugation to L1 belongs also to
Gal(L1/F). We proceed by showing that g , g. If Char F , 2 then this immediate
from g ∈ L \ F. If Char F = 2 then g ∈ L \ F implies g , u−1gu. Since g and
u−1gu are distinct zeros in L1 of the minimal polynomial of g over F, which reads
X2 + (g + g)X + gg, the coefficient g + g in this polynomial does not vanish. This
implies g = −g , g. Irrespective of Char F we therefore have that µu−1,u and
restrict to the same automorphism of L1. In particular, u−1gu = g, that is, u ∈ L⊥1
by (4.2). Therefore N = L⊥1 .

Finally, it remains to establish that L⊥1 ∈ S`(L1) ∩ Sr(L1). There exists a non-
zero h ∈ L⊥1 , whence hg = gh holds according to (4.2). Due to g ∈ L1 this
yields, for all v ∈ L1, on the one hand (hv)g = g(hv) and, on the other hand,
(vh)g = g(vh). As L⊥1 is characterised by (4.2), we obtain hL1 ⊆ L⊥1 and L1h ⊆ L⊥1 .
Thus L⊥1 = hL1 = L1h, as required.

(d) ⇒ (e). From M = c−1
1 L1 ∈ S`(M1) ∩ Sr(M2) = S`(L1) ∩ Sr(L2) there is a

c2 ∈ H∗ such that M = L2c−1
2 . Therefore L1 = c1L2c−1

2 , and 1 ∈ L2 gives c1c−1
2 ∈

L∗1. We read off from 1 ∈ L1 that L1 is a subalgebra of H, and so L1 = L1c1c−1
2 .

Summing up, we have

L2 = c−1
1 L1c2 = c−1

1 (L1c1c−1
2 )c2 = c−1

1 L1c1.

This allows us to define a mapping L1 → L2 : x 7→ c−1
1 xc1, which is an F-

isomorphism.
(e) ⇒ (f). By the Skolem-Noether theorem (see [11, Thm. 4.9]), any F-

isomorphism L1 → L2 can be extended to an inner automorphism of H. So there
is an e ∈ H∗ with L2 = e−1L1e.

(f) ⇒ (a). By our assumptions, there exist d1, d2, e ∈ H∗ with d1M1 = L1,
M2d2 = L2, and e−1L1e = L2. This implies e−1d1M1ed−1

2 = M2. Thus

M1 ‖` e−1d1M1 ‖r e−1d1M1ed−1
2 = M2,

and (2.3) gives M1 π`r M2. �

Corollary 4.3. For all lines M1,M2 ∈ L(H) the left parallel class S`(M1) is dif-
ferent from the right parallel class Sr(M2).

Proof. As H is infinite, so are S`(M1) and Sr(M2). By Theorem 4.2, S`(M1) and
Sr(M2) have at most two lines in common, whence they cannot coincide. �

Corollary 4.4. Let N ∈ L(H). Then S`(N) ∩ Sr(N) = {N,N⊥}.
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Proof. We consider Theorem 4.2 for M1 = M2 = N. Then (c) holds and, by
N ∈ S`(N) ∩ Sr(N), the assertion follows from (d). �

Note that the result from the previous corollary is established also in [15, (2.6)]
but using methods different from ours.

Corollary 4.5. Let L be a maximal subfield of H, that is, L is a line through the
point F1. The field extension L/F is separable if, and only if, the parallel classes
S`(L) and Sr(L) have two distinct lines in common.

Proof. From Corollary 4.4, S`(L)∩Sr(L) = {L, L⊥}. We consider Theorem 4.2 for
M1 = M2 := L, and so L1 = L. Then (c) holds, and we can repeat the proof of
(c)⇒ (d) with M := L and g ∈ L \ F. If L/F is separable then g , g and L , L⊥.
Otherwise g = g and L = L⊥. �

Corollary 4.6. Let L be a maximal subfield of H and let u ∈ H∗. Then u−1Lu = L
is equivalent to u ∈ (L ∪ L⊥) \ {0}.

Proof. If u ∈ L \ {0} then u−1Lu = L is obviously true. If u ∈ L⊥ \ {0} then (4.2)
implies u−1Lu = L. The converse follows from cases (i) and (ii) in the proof of
Theorem 4.2, (c)⇒ (d). �

By the theorem of Cartan-Brauer-Hua [23, (13.17)], for each maximal subfield
L of H there exists a c ∈ H∗ with c−1Lc , L. Corollary 4.6 shows how all such
elements c can be found.

Corollary 4.7. Let L1 and L2 be maximal subfields of H. Then L1 π`r L2 is
equivalent to L1 � L2.

All maps µc,d, with c, d varying in H∗, constitute a subgroup of the general
linear group GL(H). This subgroup acts on the line set L(H) in a natural way,
thereby splitting L(H) into line orbits. From Theorem 4.2, these line orbits are
precisely the classes of left-right equivalent lines. The next result gives another
interpretation in terms of flags, that is, incident point-line pairs.

Proposition 4.8. Let (F p1,M1) and (F p2,M2) be flags of the 3-dimensional pro-
jective space P(H). There exists a map µc,d, with c, d ∈ H∗, taking (F p1,M1) to
(F p2,M2) if, and only if, M1 π`r M2.

Proof. First, note that there always exists the left translation µp−1
1 ,1 taking F p1

to F1 and the right translation µ1,p−1
2

taking F p2 to F1. So, L1 := p−1
1 M1 and

L2 := M2 p−1
2 are the uniquely determined lines appearing in Theorem 4.2.

From Theorem 4.2, M1 π`r M2 implies e−1L1e = L2 for some e ∈ H∗. Letting
c := e−1 p−1

1 and d := ep2 gives cp1d = p2 and cM1d = M2, that is, the map µc,d

has the required properties.
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Conversely, if µc,d takes (F p1,M1) to (F p2,M2) then cM1 = M2d−1 forces
M1 π`r M2 according to Theorem 4.2. �

Remark 4.9. The group Γ of all collineations of P(H) that preserve both the left
and the right parallelism was described in [25, Thm. 1] in terms of the factor group
H∗/F∗, which thereby serves as a model for the point set P(H) by identifying F∗c
with Fc for all c ∈ H∗. By [26, Prop. 4.1 and Prop. 4.2], a collineation γ of P(H)
belongs to Γ if, and only if, γ can be induced by an F-semilinear transformation
of H that is the product of an automorphism of the skew field H and a map µc,d for
some c, d ∈ H∗ (see also [3, Thm. 4.3]).

In particular, the maps µc,d induce exactly the F-linear part of the group Γ. If
Char F , 2 then we know by [19, (4.16)] that they induce precisely the proper
motions of the elliptic 3-space P(H), so the classes of left-right equivalent lines
turn out to be the line orbits under the action of the elliptic proper motion group.

The following result describes all Clifford-like parallelisms of
(
P(H), ‖`, ‖r

)
.

Theorem 4.10. Let A(H) be the subset of all lines of P(H) through the point F1.

(a) Upon choosing any subset D of A(H) we let

F :=
⋃

X∈D, c∈H∗
c−1Xc. (4.4)

Then
ΠF :=

{
S`(L) | L ∈ F

}
∪

{
Sr(L) | L ∈ A(H) \ F

}
(4.5)

is the set of parallel classes of a Clifford-like parallelism ‖F, say, of the
projective double space

(
P(H), ‖`, ‖r

)
.

(b) Conversely, any Clifford-like parallelism ‖ of
(
P(H), ‖`, ‖r

)
arises according

to (a) from at least one subset of A(H).

(c) Let D and D̃ be subsets of A(H). Applying the construction from (a) to D

and D̃ gives parallelisms ‖F and ‖F̃, respectively. Then ‖F coincides with ‖F̃
if, and only if, F = F̃.

Proof. (a) We apply the construction from Proposition 2.4 (a) to D; thereby we
replace π1 and π2 with ‖` and ‖r, respectively. So, starting with B :=

⋃
X∈D C`r(X),

we finally arrive at the partition ΠB from (2.5), whose associated equivalence
relation on L(H) is a blend of ‖` and ‖r. By Theorem 3.1, this ΠB is the set of
parallel classes of a Clifford-like parallelism of

(
P(H), ‖`, ‖r

)
. Each of its parallel

classes has a unique line in common with A(H). Therefore

ΠB =
{
S`(L) | L ∈ B ∩A(H)

}
∪

{
Sr(L) | L ∈ A(H) \B

}
. (4.6)
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Theorem 4.2 and Corollary 4.7 show that

∀ X ∈ A(H) : {c−1Xc | c ∈ H∗} = {Y ∈ A(H) | X � Y} = C`r(X) ∩A(H).

So, substituting in (4.4) gives

F =
⋃
X∈D

(
C`r(X) ∩A(H)

)
= B ∩A(H). (4.7)

Now, by comparing (4.5) with (4.6), we obtain ΠF = ΠB.
(b) The given parallelism ‖ is a blend of ‖` and ‖r by Theorem 3.1. Thus ‖

allows a construction as described in Proposition 2.4 (a) using ‖`, ‖r, and some
subset, say D̃, of L(H). Replacing D̃ with the set

D :=
(⋃

X∈D̃

C`r(X)
)
∩A(H) (4.8)

does not alter this result, as has been pointed out in Proposition 2.4 (c). The first
part of the current proof shows that we also get the parallelism ‖ by applying the
construction from (a) to the set D from (4.8).

(c) By the first part of the proof, we obtain ‖F and ‖F̃ from D and D̃, respec-
tively, also via the construction in Proposition 2.4 (a). In our current setting the
condition (2.6) simplifies to

{C`r(X) | X ∈ D} = {C`r(X̃) | X̃ ∈ D̃}, (4.9)

since L(H)`r = ∅ by Corollary 4.3. From (4.7), equation (4.9) is equivalent to
F = F̃. It therefore suffices to make use of Proposition 2.4 (c), with (2.6) to be
replaced by F = F̃, in order to complete the proof. �

Remark 4.11. Theorem 4.10 (a) was sketched without a strict proof in [4, 4.13].
However, there are some formal differences to our approach, as we avoid the indi-
cator lines of regular spreads that have been used there. Our set of lines A(H) is,
from an algebraic point of view, the family of all quadratic extensions L of F with
F ⊆ L ⊆ H from [4, 4.13]. In this way, our F turns into a family of subfields of
H. Equation (4.4) guarantees that no subfield in F is F-isomorphic to a subfield in
A(H) \ F. The latter condition is mentioned in the sketch of proof from [4, 4.13],
but is missing there at that point, where the family F is fixed for the first time.
(F-isomorphic subfields of H are termed as being “conjugate” in [4].)

Below we shall make use of the ordinary quaternion algebra over a formally
real field F, i.e. −1 is not a square in F. This kind of algebra will be denoted as
(K/F,−1). According to [28, pp. 46–48] it arises (up to F-isomorphism) in the
following way. The field F is extended to K := F(i), where i is a square root of

14



−1 ∈ F. One defines (K/F,−1) as the subring of the ring of 2× 2 matrices over K
consisting of all matrices(

x1 + ix2 y1 + iy2

−y1 + iy2 x1 − ix2

)
with x1, x2, y1, y2 ∈ F

and identifies any x ∈ F with the matrix diag(x, x) ∈ (K/F,−1). The F-algebra
(K/F,−1) is a skew field if, and only if, −1 is not a sum of two squares in F. If the
latter condition applies then (K/F,−1) is called the ordinary quaternion skew field
over F. For example, an ordinary quaternion skew field exists over any formally
real Pythagorean field. We recall that a field is Pythagorean when the sum of any
two squares is a square as well (see e.g. [20, p. 204]).

Theorem 4.12. Let H be a quaternion skew field with centre F. Then the following
are equivalent.

(a) F is a formally real Pythagorean field, and H is the ordinary quaternion
skew field over F.

(b) All maximal subfields of H are mutually F-isomorphic.

(c) The Clifford parallelisms ‖` and ‖r are the only Clifford-like parallelisms of
the projective double space

(
P(H), ‖`, ‖r

)
.

Proof. (a)⇔ (b). This was established in [7, Thm. 1 and Lemma 1] (but note that
the definition of Pythagorean field used there is slightly different from ours). See
also [3, Thm. 9.1] for a proof in a more general situation.

(b) ⇔ (c). From Theorem 4.2, all maximal subfields of H are F-isomorphic
if, and only if, for all L ∈ A(H) we have A(H) =

⋃
c∈H∗ c−1Lc. The last equa-

tion holds precisely when there are only two possibilities for the set F appear-
ing in (4.4), namely either F = A(H) or F = ∅. This in turn is equivalent, by
Theorem 4.10, to saying that ‖` and ‖r are the only Clifford-like parallelisms of(
P(H), ‖`, ‖r

)
. �

We continue by giving some explicit examples of Clifford-like parallelisms
using the construction from Theorem 4.10 (a).
Example 4.13. Let Char H = 2. We define

D := {L ∈ A(H) | L is a separable extension of F}.

The set A(H) \ F comprises precisely the inseparable quadratic extensions of F
that are contained in H. We get F = D, since the group of inner automorphisms
of H, in its natural action on A(H), leaves both D and A(H) \D invariant. Both F

and A(H) \ F are non-empty; see, among others, [6, pp. 103–104] or [28, pp. 46–
48]. So D gives rise to a Clifford-like parallelism of

(
P(H), ‖`, ‖r

)
other than ‖`

and ‖r.
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Example 4.14 (see [4, 4.12]). Let H be the ordinary quaternion skew field over
the field Q of rational numbers. Then each quadratic field extension Q(

√
−q) with

q ∈ Q∗ sum of three squares appears as a subfield of H. Any two such extensions
Q(
√
−q1) and Q(

√
−q2) are Q-isomorphic if, and only if, q1 and q2 are in the same

square class of Q∗, i.e., there exists c ∈ Q∗ such that q1 = c2q2. Since we have
many non Q-isomorphic quadratic extensions of Q contained in H, we also have
many possible choices for the set F and consequently many different Clifford-like
parallelisms.

Take notice that Clifford-like parallelisms of
(
P(H), ‖`, ‖r

)
always come in

pairs. We just have to change the roles of F and A(H) \ F in (4.5). However,
with two obvious exceptions, the two parallelisms of such a pair do not make
P(H) into a projective double space. This follows from our final theorem, which
contains an even stronger result.

Theorem 4.15. Let ‖ be a Clifford-like parallelism of
(
P(H), ‖`, ‖r

)
other than ‖`

and ‖r. Then there is no parallelism ‖′ on P(H) that makes P(H) into a projective
double space

(
P(H), ‖, ‖′

)
.

Proof. We assume, to the contrary, that there is a projective double space
(
P(H), ‖, ‖′

)
.

Also, for all M,N ∈ L(H) let R`(M,N) denote the set of all lines in S`(M)
that have at least one common point with N. The sets Rr(M,N), R(M,N), and
R′(M,N) are defined in an analogous way by replacing ‖` with ‖r, ‖, and ‖′, re-
spectively.

We claim that there exist three distinct lines L1, L2, L3 through the point F1
such that

S`(L1) = S(L1), S`(L2) = S(L2), Sr(L3) = S(L3). (4.10)

Indeed, the existence of L1 and L3 is clear from ‖ being different from ‖` and ‖r.
By Corollary 4.6, L2 can be chosen as L2 := c−1L1c with c ∈ H∗ \ (L1 ∪ L⊥1 ). We
distinguish two cases.

Case (i). The parallelisms ‖ and ‖′ coincide. In
(
P(H), ‖, ‖

)
the double space

axiom holds. This gives that each line of R(L1, L2) has a point in common with
each line of R(L2, L1). Since the lines of R(L1, L2) are mutually skew, we obtain
that R(L1, L2) and R(L2, L1) are mutually opposite reguli. The same kind of rea-
soning in

(
P(H), ‖`, ‖r

)
gives that R`(L1, L2) and Rr(L2, L1) are mutually opposite

reguli. From the first equation in (4.10), R`(L1, L2) = R(L1, L2) and, since a reg-
ulus has a unique opposite regulus, Rr(L2, L1) = R(L2, L1). The second equation
in (4.10) gives Rr(L2, L1) ⊆ S`(L2). By Theorem 4.2, S`(L2) ∩ Sr(L2) contains at
most two lines, whereas the cardinality of the regulus Rr(L2, L1) ⊆ S`(L2)∩Sr(L2)
is |F| + 1. So, this case is impossible.

Case (ii). The parallelisms ‖ and ‖′ are different. We proceed like before and
obtain in a first step that R`(L1, L3) = R(L1, L3) and Rr(L3, L1) = R′(L3, L1) are
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mutually opposite reguli. The third equation in (4.10) gives R′(L3, L1) ⊆ S(L3).
Taking into account that

(
P(H), ‖, ‖′

)
admits a description in terms of some quater-

nion skew field, we apply Theorem 4.2 and get |S(L3) ∩ S′(L3)| ≤ 2, whereas
R′(L3, L1) ⊆ S(L3) ∩ S′(L3) has |F| + 1 elements, a contradiction. �

As a consequence of Theorems 4.12 and 4.15, we obtain the following:

Corollary 4.16. A projective double space
(
P(H), ‖`, ‖r

)
, where H does not satisfy

condition (a) from Theorem 4.12, admits Clifford-like parallelisms that are not
Clifford w.r.t. any double space structure on P.
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