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Abstract

As has already been pointed out by Birkhoff and von Neumann, quantum
logic can be formulated in terms of projective geometry. In three-dimensional
Hilbert space, elementary logical propositions are associated with one-dimensional
subspaces, corresponding to points of the projective plane. It is shown that,
starting with three such propositions corresponding to some basis {~u,~v, ~w},
successive application of the binary logical operation (x, y) 7→ (x∨ y)⊥ gener-
ates a set of elementary propositions which is countable infinite and dense in
the projective plane if and only if no vector of the basis {~u,~v, ~w} is orthogonal
to the other ones.

1 Introduction

The geometrization of quantum logic was initiated by Birkhoff and von Neumann [1].
In their “top-down” approach, the logical entities are identified with Hilbert space
entities as follows. Elementary propositions are identified with one-dimensional
subspaces or with the vector spanning that subspace. The binary logical operations
“and” (∧) and “or” (∨) correspond to the set theoretic intersection and to the
linear span, respectively. The unary logical operation “not” ( ⊥ ) corresponds to
the orthogonal subspace. The proposition which is always false is identified with
the null vector. The proposition which is always true is identified with the entire
Hilbert space. In that way, the geometry of Hilbert space induces a logical structure
which, if Hilbert space quantum mechanics [17] is an appropriate theory of quantum
physics, describes correctly the logical structure of measurements (cf. [8, 14, 9, 3, 5]).

In what follows, we concentrate on the following question. Assume we start with
a set {u, v, w} of three elementary quantum mechanical propositions representable
as one-dimensional subspaces of three-dimensional Hilbert space. New proposi-
tions can be formed from the old ones by the logical operations “and, or, not.”
In particular, the operation (x ∨ y)⊥ corresponding to “not (x or y)” is just the
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subspace spanned by the vector product ~x × ~y. Suppose this operation is carried
out recursively. That is, at each step we form the vector product of all (nonparallel)
vectors and add the (nonparallel) results to the previous set of vectors. One may
ask, what are the conditions for the resulting set (of intersection points with the
unit ball) to be dense? Evidently, the set of one-dimensional subspaces spanned by
the recursive application of the vector product can at most be countable (cardinality
ℵ0). It is less obvious if there can be any regions or “holes” formed by the recursively
obtained set of one-dimensional subspaces which are unreachable. An answer is
given in theorem 3.

As has been already pointed out by Birkhoff and von Neumann [17], the structure
obtained for three-dimensional Hilbert space is essentially a projective plane. Points
of the projective geometry are identified with elementary propositions, and lines
are identified with two-dimensional subspaces. We emphasize this point of view by
reformulating the above problem into the geometric language of the real projective
plane endowed with the elliptic metric.

The original motivation for this question originates from the consideration of
Kochen-Specker type constructions [11, 13]. It has been conjectured that every set
of three nonorthogonal one-dimensional subspaces generates a Kochen-Specker para-
dox [16]. More generally, one could ask if any single elementary proposition (cor-
responding to a one-dimensional subspace of three-dimensional Hilbert space) can
be approximated by a logical construction originating from just three propositions
(corresponding to nonorthogonal one-dimensional subspaces of three-dimensional
Hilbert space).

It has to be kept in mind, however, that a consistent two-valued measure—
serving as a classical truth function—will in general not be definable on the set of
recursively generated one-dimensional subspaces identifiable with elementary propo-
sitions. Indeed, due to complementarity, even for the generating set of three vectors,
such an identification of truth functions will only have an operational (physical)
meaning if these vectors were mutually orthogonal—a condition which would yield
a trivial orthogonal tripod configuration, for which any recursion does not produce
any additional vectors.

2 Subplanes of projective planes

A projective plane is formally a geometric structure (P,L, I) consisting of a set
P of elements called points, a set L of elements called lines and a binary relation
I ⊂ P × L called incidence satisfying the following axioms:

(P1) Any two distinct points are incident with exactly one common line.
(P2) Any two distinct lines are incident with a common point.
(P3) There are four points, no three of which are incident with a common line.

Instead of (p, L) ∈ I we also write p I L and use familiar expressions like “p
is on L”, “L is running through p” etc. A set of points is said to be collinear, if
all points are on a common line, a triangle is a set of three non-collinear points, a
quadrangle is a set of four points satisfying the condition of axiom (P3). If we are
given two distinct points p1, p2 ∈ P then p1 ∨ p2 denotes the unique line joining
these two points. By (P1) and (P2), two distinct lines L1, L2 ∈ L meet at a unique
point which is written as L1 ∧ L2. For basic properties of projective planes see [2,
Chapter 4], [7] or [18].

Let F be a skewfield (division ring). Then F 3 (regarded as left vector space over
F ) gives rise to a projective plane as follows: Define P as set of all one-dimensional
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subspaces of F 3, viz.
P := {F~a | ~o 6= ~a ∈ F 3}, (1)

and L as the set of all two-dimensional subspaces of F 3. Incidence is defined by

I := {(F~a, L) ∈ P × L | F~a ⊂ L}. (2)

We set (P,L, I) =: PG(2, F ). See e.g. [6, p. 29], [12, p. 222] or the textbooks
mentioned above for more details.

We remark that there are also projective planes that are not isomorphic to any
plane of the form PG(2, F ). Such projective planes are called Non-Desarguesian
and will not be of interest in this paper.

Suppose that (P,L, I) is a projective plane and that P̃ is any subset of P. Put

L̃ := {p1 ∨ p2 | p1, p2 ∈ P̃, p1 6= p2} and Ĩ := I ∩ (P̃ × L̃). (3)

The substructure (P̃, L̃, Ĩ) is satisfying axiom (P1), but not necessarily (P2) or (P3).
If (P̃, L̃, Ĩ) is a projective plane, then it is called a projective subplane of (P,L, I).
A degenerate subplane (P̃, L̃, Ĩ) is satisfying (P2), but not (P3).

All degenerate subplanes are easily described: If #L̃ ≤ 1, then P̃ is a set of
collinear points. If #L̃ ≥ 2, then P̃ is formed by a set of two or more points on a
line, say L, plus one more point, say u, off the line L. This L is the only line in L̃
not running through u.

In PG(2, F ) we may obtain a projective subplane as follows: Let {~b1,~b2,~b3} ⊂ F 3

be a basis and let F̃ ⊂ F be a sub-skewfield of F . Then set

P̃ = {F~a | ~a =
3∑
i=1

ξi~bi, (0, 0, 0) 6= (ξ1, ξ2, ξ3) ∈ F̃ 3} (4)

and define L̃, Ĩ according to (3). The verification of (P2) amounts to solving a
homogeneous system of linear equations within the sub-skewfield F̃ . A quadrangle
in P̃ is given by {R~b1,R~b2,R~b3,R(~b1 +~b2 +~b3)}.

The backbone of this article is the following innocently looking result [18, p.
266]: Any projective subplane of PG(2, F ) is of the form (4). See also [15, p. 1008].
This allows to recover an algebraic structure, namely a sub-skewfield of F , from
a projective subplane of PG(2, F ). Let us add, for the sake of completeness, the
following remark: If in (4) the basis {~b1,~b2,~b3} is replaced by {α~b1, α~b2, α~b3} for
some non-zero α ∈ F and if F̃ is modified to the sub-skewfield αF̃α−1, then P̃
remains unchanged. Actually, a projective subplane of PG(2, F ) determines “its”
sub-skewfield of F only to within transformation under inner automorphisms of F .
Clearly, for a (commutative) field F this means uniqueness.

We confine our attention to the real projective plane PG(2,R). The elliptic
metric on P is given by

d : P × P → R, (R~a,R~b) 7→ arccos
|~a ·~b|
‖~a‖ ‖~b‖

∈
[
0,
π

2

]
, (5)

where · denotes the standard dot product and ‖ ‖ stands for the Euclidean norm of
R3. The elliptic distance d(R~a,R~b) of two points of PG(2,R) is just the Euclidean
angle of the corresponding one-dimensional subspaces through the origin of R3. It is
invariant under transformations (e.g., rotations) which preserve normality. Besides,
a connection can be made between the elliptic distance and the more physically
motivated statistical distance [19].

For each point R~a of PG(2,R) there are exactly two unit vectors in R~a. This
gives the well-known alternative description of the real projective plane: The “points”
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may be viewed as unordered pairs of opposite points of the unit sphere, the “lines”
are the great circles and incidence is defined via inclusion. In this interpretation
the elliptic distance is equal to the spherical distance [4, Chapter VI].

If T is a subset of R3 then T⊥ := {~a | ~a · ~t = 0 for all ~t ∈ T} is a subspace.
In geometric terms ⊥ is a polarity of the projective plane PG(2,R); cf. [2, Chapter
17], [4, p. 52], [6, p. 110] or [7, p. 45]. Points and lines are interchanged bijectively
subject to the rule R~a (∈ P) 7→ ~a⊥ (∈ L). The geometric operations of “join”
(∨) and “meet” (∧) therefore allow a simple algebraic description: Given linearly
independent vectors ~a,~b ∈ R3 then

R~a ∨ R~b = (~a×~b)⊥, (6)

~a⊥ ∧~b⊥ = R(~a×~b). (7)

The following result is essentially (F̃ = Q) due to A.F. Möbius:

Lemma 1 If (P̃, L̃, Ĩ) is a projective subplane of (P,L, I) = PG(2,R), then P̃ is
dense in P.

Proof. Let P̃ be given according to (4) with F̃ ⊂ R. The field Q of rational numbers
equals the intersection of all subfields of R, whence Q ⊂ F̃ . Given a point R~a ∈ P
we obtain

~a = ξ1~b1 + ξ2~b2 + ξ3~b3 with (ξ1, ξ2, ξ3) ∈ R3. (8)

There exist three sequences

(ξj,i)i∈N, with ξj,i ∈ Q \ {0} and lim
i→∞

ξj,i = ξj (j ∈ {1, 2, 3}). (9)

Defining
~ai := ξ1,i~b1 + ξ2,i~b2 + ξ3,i~b3 6= ~o (i ∈ N) (10)

yields a sequence of points R~ai ∈ P̃ with (R~ai)i∈N → R~a, since, by the continuity
of dot product and norm,

lim
i→∞

~a · ~ai
‖~a‖ ‖~ai‖

=
~a · ~a
‖~a‖ ‖~a‖

= 1. (11)

This completes the proof. 2

The projective subplanes of PG(2,R) belonging to the rational number field are
called Möbius nets. They allow a simple recursive geometric construction [10, p.
140]: Starting with a quadrangle one draws all the lines spanned by these points.
Next mark all points of intersection arising from these lines. With this set of points
the procedure is repeated, and so on. The set of all points that can be reached in
a finite number of steps gives then a projective subplane over Q.

3 Main theorems

Theorem 1 Let V1 = {~u,~v, ~w} be a basis of R3. Define subsets Vi, V of R3 as
follows:

Vi+1 := Vi ∪ {~r × ~s | ~r,~s ∈ Vi, ~r × ~s 6= ~o} (i ∈ N), V :=
∞⋃
i=1

Vi. (12)

Then
P̃ := {R~a | ~a ∈ V } (13)

yields a projective or degenerate subplane (P̃, L̃, Ĩ) of PG(2,R) which is ortho-closed.
That is, R~a ∈ P̃ implies ~a⊥ ∈ L̃.
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Proof. Let L1, L2 ∈ L̃ be distinct. By (6) and the definition of L̃, there are
vectors ~p1, ~q1, ~p2, ~q2 ∈ V with

L1 = (~p1 × ~q1)⊥, L2 = (~p2 × ~q2)⊥. (14)

Now (7) yields
L1 ∧ L2 = R((~p1 × ~q1)× (~p2 × ~q2)) ∈ P̃. (15)

This establishes (P2).
Given a point R~a ∈ P̃, there exist two vectors in V1, say ~u,~v, such that {~a, ~u,~v}

is a basis of R3. Then u /∈ span {~a,~v} = (~a×~v)⊥, but ~u ∈ (~a× ~u)⊥. Thus R(~a×~v)
and R(~a× ~v) are distinct points of P̃ on the line ~a⊥. 2

Observe that axiom (P2) may be derived alternatively from the well-known
formula

(~p1 × ~q1)× (~p2 × ~q2) = det(~p1, ~q1, ~q2)~p2 − det(~p1, ~q1, ~p2)~q2
= det(~p1, ~p2, ~q2)~q1 − det(~q1, ~p2, ~q2)~p1,

(16)

since linearly dependent vectors yield collinear points.

Theorem 2 The subplane (P̃, L̃, Ĩ) described in Theorem 1 is degenerate if and
only if one vector of the basis {~u,~v, ~w} is orthogonal to the other ones.

Proof. Let (P̃, L̃, Ĩ) be degenerate. {R~u,R~v,R~w} being a triangle forces #L̃ ≥ 3.
We read off from the description of degenerate subplanes in section 2 that P̃ has
to consist of one point of this triangle, say R~u, and a subset of points on the line
joining R~v and R~w. The line ~u⊥ belongs to L̃ by Theorem 1. Now ~u /∈ ~u⊥ tells us
that the point R~u is off that line. Since R~u is on all lines of L̃ but one, we obtain
~v, ~w ∈ ~u⊥.

Conversely, assume that ~v, ~w ∈ ~u⊥. Then

P̃ = {R~u,R~v,R~w,R(~u× ~v),R(~u× ~w)} (17)

is a set of five points if ~v 6⊥ ~w, and it is a set of just three points if ~u,~v, ~w are
mutually orthogonal. Thus P̃ yields a degenerate subplane. 2

Summing up, gives this final result:

Theorem 3 With the settings of Theorem 1 the following assertions are equivalent:
1. The basis {~u,~v, ~w} of R3 does not contain a vector that is orthogonal to the

remaining ones.
2. The point set P̃ given by (13) is dense in PG(2,R).
3. The point set P̃ given by (13) is infinite.
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