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We introduce and discuss the dual of a chain geometry. Each chain geometry is canonically
isomorphic to its dual. This allows us to show that there are isomorphisms of chain geometries
that arise from antiisomorphisms of the underlying rings.
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1 Introduction

For each left module over a ring R there is the dual module. It may be considered as a
right R-module or as a left module over the opposite ring R◦. A chain geometry Σ(K,R)
is based upon a proper subfield K of a ring R and the left R-module R2. Observe that we
do not assume that K is in the centre of R. The dual chain geometry Σ̂(K,R) of Σ(K,R)
is defined via the dual module of R2. Up to notation Σ̂(K,R) is the same as the chain
geometry Σ(K◦, R◦). There is a “canonical isomorphism” from each chain geometry onto its
dual. However, in general it seems difficult to describe it explicitly for all points in terms of
coordinates unless the underlying ring R has some additional properties.
We establish that each residue of a chain geometry can be identified with a residue of its
dual in a natural way. However, the (algebraically defined) relation of compatibility given on
the set of blocks of each residue is not always preserved under the canonical isomorphism,
whence one obtains also a notion of dual compatibility.
From [3, Theorem 4.1], the point set of each residue together with one compatibility class
of blocks forms a partial affine space which is embeddable in the affine space on the left
vector space R over K. This result remains true if “compatibility” and “left vector space”
are replaced with “dual compatibility” and “right vector space”, respectively. In addition, we
give an example of a chain geometry with the following property: The point set of a residue
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together with certain blocks of different compatibility classes forms not only a partial affine
space but a non-desarguesian affine plane.

Finally, we show that two chain geometries Σ(K,R) and Σ(K ′, R′) are isomorphic if there
is an antiisomorphism R → R′ that takes K onto a subfield of R′ which is conjugate to
K ′. Again, an explicit description in terms of coordinates of such an isomorphism of chain
geometries does not seem at hand for arbitrary rings, but we are able to give a formula which
allows to calculate the images of all points in the connected component of the point R(1, 0).
This generalizes, in part, a result on isomorphisms of chain geometries in [1].

2 Preliminaries

Throughout this paper we shall only consider associative rings with a unit element 1, which
is preserved by homomorphisms, inherited by subrings, and acts unitally on modules. The
group of invertible elements of a ring R will be denoted by R∗. We refer to [6, Chapter II]
for the basic properties of free modules.

Consider the free left R-module R2 and the group GL2(R) of invertible 2× 2-matrices with
entries in R. A pair (a, b) ∈ R2 is called admissible, if there exists a matrix in GL2(R) with
(a, b) being its first row. The projective line over R is the orbit of the free cyclic submodule
R(1, 0) under the action of GL2(R). In other words, P(R) is the set of all p ≤ R2 such that
p = R(a, b) for an admissible pair (a, b) ∈ R2; compare [10, p. 785]. From [4, Proposition 2.1],
in certain cases R(x, y) ∈ P(R) does not imply the admissibility of (x, y) ∈ R2. However, we
adopt the convention that points are represented by admissible pairs only. Two admissible
pairs represent the same point exactly if they are left-proportional by a unit in R.

Points p = R(a, b) and q = R(c, d) are called distant if
�
a b
c d

�
∈ GL2(R). The vertices of the

distant graph on P(R) are the points of P(R), the edges of this graph are the unordered pairs
of distant points. The set P(R) can be decomposed into connected components (maximal
connected subsets of the distant graph), for each connected component there is a distance
function (dist(p, q) is the minimal number of edges needed to go from vertex p to vertex q).
All connected components share a common diameter (the supremum of all distances between
its points). See [5, Theorem 3.2].

Let K ⊂ R be a (not necessarily commutative) proper subfield. The projective line over K
can be embedded in P(R) via K(k, l) 7→ R(k, l). The image of P(K) under this embedding
is a subset C ⊂ P(R) called the standard chain. The orbit of C under the action of GL2(R) is
denoted by C(K,R) and each of its elements is called a chain. Altogether the chain geometry
Σ(K,R) is the incidence structure with point set P(R) and chain set C(K,R) [3]. Observe that
a chain geometry according to this definition has been called a generalized chain geometry
in [4] and [5] in order to distinguish from an “ordinary” chain geometry where K is in the
centre of R. However, in the present paper such a distinction will not be essential.
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3 The Dual of a Chain Geometry

Reversing the multiplication in the ring R yields the opposite ring R◦ and the projective
line P(R◦). Further, if K is a proper subfield of R, then the opposite field K◦ appears as
a proper subfield of R◦ and we obtain the chain geometry Σ(K◦, R◦). The left R◦-module
(R◦)2 can be considered as a right R-module in a natural way. It will then be denoted by
R̂2 and its elements will be written as columns rather than rows. The right R-module R̂2

will be identified with the dual module of R2 as usual, i.e., the image of (a, b) ∈ R2 under
(v, w)T ∈ R̂2 is given by their matrix product. For a subset U ⊂ R2 we write

U⊥ :=
{�

x
y

�
∈ R̂2 | ∀(a, b) ∈ U : (a, b) ·

�
x
y

�
= 0
}
. (1)

Furthermore, we have

(U ·M)⊥ = M−1 · U⊥ (2)

for all M ∈ GL2(R) and all U ⊂ R2.
By changing from (R◦)2 to R̂2 we obtain the dual projective line P̂(R) of P(R) as alternative
algebraic description of the projective line P(R◦). So an element of P̂(R) has the form M ·
(1, 0)TR, with M ∈ GL2(R). Similarly, one obtains Σ̂(K,R), the dual chain geometry of
Σ(K,R). Its set of chains is written as Ĉ(K,R). Since the module R2 is free, it can be
identified with its bidual module. Up to this identification, the dual of Σ̂(K,R) is again
Σ(K,R).

Theorem 3.1 Let Σ(K,R) be a chain geometry. Then the mapping

ι : P(R)→ P̂(R) : p 7→ p⊥ (3)

is an isomorphism of Σ(K,R) onto its dual.

Proof: Obviously,

(R(1, 0))ι =
�

0
1

�
R, (4)

and R(1, 0) is the only ι-preimage of (0, 1)TR. Each point p ∈ P(R) can be written in the
form p = R(1, 0) ·M with M ∈ GL2(R). So (2) implies that pι = M−1 · (0, 1)TR ∈ P̂(R) and
that ι is bijective. Let

E(t) :=
�
t 1
−1 0

�
with t ∈ R. (5)

Then E(t) ∈ GL2(R) with

E(t)−1 =
�

0 −1
1 t

�
= E(0) · E(−t) · E(0). (6)

Hence (2) and (4) imply

(R(t1, 1))ι = (−1, t1)TR (7)

for all t1 ∈ R. So ι maps the standard chain C = {R(k, 1) | k ∈ K} ∪ {R(1, 0)} ∈ C(K,R)
onto {(−1, k)TR | k ∈ K} ∪ {(0, 1)TR}, which is the standard chain in Σ̂(K,R). From the
definition of chains and (2), the mapping ι yields a bijection of C(K,R) onto Ĉ(K,R). �
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We refer to ι as the canonical isomorphism Σ(K,R)→ Σ̂(K,R).

Remark 3.2 Each point p ∈ P(R) is spanned by the first row of a matrix M ∈ GL2(R).
From (2) and (4) it follows that pι is spanned by the second column of M−1. Thus, whenever
one has an algorithm to invert matrices of GL2(R) then it is also possible to calculate
explicitly the ι-image of a point given in that form. For example, when R is commutative
then R(a, b)ι = (−b, a)TR for all admissible pairs (a, b) ∈ R2.

Remark 3.3 We recall that the elementary subgroup E2(R) of GL2(R) is generated by the
set of all matrices (5); cf. [8, p. 5]. Each pair

(a, b) := (1, 0) · E(tn) · E(tn−1) · · ·E(t1) (8)

with t1, t2, . . . , tn ∈ R and n ≥ 0 is admissible. A point of P(R) is in the connected component
of R(1, 0) if, and only if, it has a representative (a, b) of this form; see [5, Theorem 3.2].
Suppose now that (a, b) ∈ R2 is given according to (8). From (2), (6), and E(0)2 = −I,
where I denotes the identity in GL2(R), the point R(a, b)ι is represented by�

v
w

�
:= (−I)n−1E(0) · E(−t1) · E(−t2) · · ·E(−tn) · E(0) ·

�
0
1

�
. (9)

Clearly, the irrelevant factor (−I)n−1 may be omitted. In particular, this includes formulae
(4) and (7) by letting n = 0 and n = 1, respectively. On the other hand, for n = 2, 3 we get
from (8) and (9)

(R(t2t1 − 1, t2))ι = (−t2, t1t2 − 1)TR, (10)
(R(t3t2t1 − t3 − t1, t3t2 − 1))ι = (−t2t3 + 1, t1t2t3 − t1 − t3)TR (11)

for all t1, t2, t3 ∈ R.
If the connected component of R(1, 0) has finite diameter m then each of its points has a
representative of the form (8) with 0 ≤ n ≤ m. See [5, formula (10)]. Also, from E(0)2 = −I
and (1, 0) ·E(t) = (1, 0) ·E(1) ·E(t+1) for all t ∈ R, it is enough to consider products where
n = max{2,m}.
The explicit formula (10) describes the ι-images of all points of P(R) if R is a ring of
stable rank 2, since here P(R) is connected and m ≤ 2. See [10, Proposition 1.4.2] and [5,
Example 5.2 (b)]. We add in passing that the stable rank of R equals the stable rank of its
opposite ring R◦ [14, 2.2]. See Example 5.5 below for an application of formula (11).

4 Compatibility and Dual Compatibility

We consider a chain geometry Σ(K,R). For a fixed point p ∈ P(R) the set P(R)p consists
of all points distant from p, and C(K,R)p consists of all sets D \ {p}, where D is a chain
through p. An element of C(K,R)p will be called a block. Altogether the residue of Σ(K,R)
at p is the incidence structure

Σ(K,R)p = (P(R)p,C(K,R)p). (12)
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Cf. [3, Section 4].
Let ∞ := R(1, 0). The chains D1,D2 through ∞ are called compatible at ∞ if they belong
to the same orbit under the action of the group

∆ := {
�
a 0
c 1

�
| a ∈ R∗, c ∈ R} ⊂ GL2(R) (13)

on C(K,R). Then also the blocks D1 \ {∞} and D2 \ {∞} of Σ(K,R)∞ will be called
compatible. By definition, the compatibility of chains (at a common point) is a GL2(R)-
invariant notion (see [3, Section 3]), whence one has a compatibility relation on the set of
blocks of each residue Σ(K,R)p.
It suffices to consider the case where p = ∞. A point R(a, b) is distant from ∞ exactly if b
is a unit in R. The bijection

P(R)∞ → R : R(x, 1) 7→ x (14)

will be used to identify P(R)∞ with R. By [3, Theorem 4.1], a subset of C(K,R)∞ is a
compatibility class exactly if it has the form

{(u−1Ku)a+ c | a ∈ R∗, c ∈ R} with u ∈ R∗. (15)

Recall that a partial affine space is an incidence structure resulting from an affine space by
removing certain parallel classes of lines (but no points). If K∗ is not normal in R∗ then
the residue Σ(K,R)∞ cannot be embedded in any affine space, since the points 0, 1 ∈ R
are joined by more than one block, namely by all subfields u−1Ku, where u ∈ R∗. However,
the point set P(R)∞ together with one compatibility class (15) forms a partial affine space
which extends to the affine space A(u−1Ku,R) on the left vector space R over u−1Ku; see
[3, Theorem 4.2].
The construction described above can be carried over to the dual chain geometry Σ̂(K,R).
We restrict ourselves to the residue of Σ̂(K,R) at ∞ι = (0, 1)TR, where ι is the canonical
isomorphism. The counterpart of (14) is the bijection

P̂(R)∞ι → R :
�
−1
x

�
R 7→ x. (16)

Two chains of Σ̂(K,R) through (1, 0)TR are compatible at (1, 0)TR, if they belong to the
same orbit with respect to the group ∆T := {DT | D ∈ ∆} acting on P̂(R) from the left; cf.
(13). So the compatibility in Σ̂(K,R)∞ι is governed by the group

∆̂ := M ·∆T ·M−1 = {
�

1 0
c d

�
| c ∈ R, d ∈ R∗} ⊂ GL2(R), (17)

where M ∈ GL2(R) is any matrix taking (1, 0)TR to ∞ι = (0, 1)TR. The partial affine
spaces defined by the compatibility classes in Σ̂(K,R)∞ι are embedded in affine spaces
Â(uKu−1, R), where R is considered as right vector space over uKu−1.
Let D1,D2 be chains of Σ(K,R) with common point p. We say that D1,D2 are dually
compatible at p if, and only if, Dι1,Dι2 ∈ Ĉ(K,R) are compatible at pι. Analogously, we define
dual compatibility of blocks of a residue.
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Theorem 4.1 Suppose that P(R)∞ and P̂(R)∞ι are identified with the ring R according to
(14) and (16), respectively. Then the following holds:

(a) Each point of P(R)∞ and its ι-image are the same.

(b) The residue of Σ(K,R) at ∞ coincides with the residue of Σ̂(K,R) at ∞ι.

(c) The equivalence relations of “compatibility” and “dual compatibility” on the set of blocks
are the same exactly if the multiplicative group K∗ is normal in the multiplicative group
R∗.

Proof: (a) This is obviously true.
(b) In both residues the blocks are exactly the sets dKa+ c with a, d ∈ R∗ and c ∈ R.
(c) Suppose that K∗ is not normal in R∗. Then there is a u ∈ R∗ with uK 6= Ku. The
compatibility class of the block K contains exactly the blocks Ka + c with a ∈ R∗ and
c ∈ R. The only block of this class running through 0 and u is Ku. We read off from
0, u ∈ uK 6= Ku that the block uK is not compatible to K. However, the dual compatibility
class of K contains uK. Therefore the relations are different. On the other hand, if K∗ is
normal in R∗ then all blocks are compatible and dually compatible; see [3, Theorem 4.2].
This completes the proof. �

Remark 4.2 From Theorem 4.1(c) and formula (2) we obtain the following: The canonical
isomorphism ι : Σ(K,R) → Σ̂(K,R) preserves compatibility (at all points) if, and only if,
K∗ is normal in R∗. In particular, this shows that the notion of compatibility needs not be
invariant under isomorphisms of chain geometries.

Let S∞ be the set of all L ⊂ C(K,R)∞ such that (P(R)∞,L) is a partial affine space. We have
seen before that each (dual) compatibility class of blocks belongs to S∞. From [3, Lemma
2.1] and [3, Proposition 2.2], two distinct points R(x, 1), R(y, 1) of the residue are joined by
at least one block exactly if they are distant. This is equivalent to y − x ∈ R∗. From (15),
the set of blocks through two distant points of P(R)∞ has exactly one element in common
with each (dual) compatibility class. This means that each (dual) compatibility class is a
maximal element of S∞ with respect to inclusion. One could conjecture that the maximal
elements of S∞ were exactly the (dual) compatibility classes. However, there may also be
other maximal elements of S∞:

Example 4.3 Let R = H be the field of real quaternions with the usual R-basis {1, i, j, k}.
Further, let K = C = R + Ri be a subfield of complex numbers. The blocks of C(C,H)∞
compatible to C are exactly the lines of the complex affine plane A(C,H). Put

B := {a(R+ Rj) + c | a ∈ C∗, c ∈ H}. (18)

Each element of B is a block, since R+ Rj = (1 + k)−1C(1 + k), but not a line of A(C,H).
Obviously, the elements of B are Baer subplanes of A(C,H). We apply the well known
procedure of derivation: All lines of A(C,H) that are parallel to a line of the Baer subplane
R+Rj are removed and instead the Baer subplanes belonging to B are introduced as “new
lines”. This gives a (non-desarguesian) affine plane with point set H. Cf. [11, Theorem 3.14].
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We now study the case of antiisomorphisms.

Theorem 5.2 Let ϕ : R → R′ be an antiisomorphism of rings such that Kϕ = u′−1K ′u′

for some u′ ∈ R′∗. Then the product of the canonical isomorphism ι : P(R)→ P̂(R) and the
mapping

ϕ̂ : P̂(R)→ P(R′) :
�
v
w

�
R 7→ R′(vϕ, wϕ). (20)

is an isomorphism of Σ(K,R) onto Σ(K ′, R′).

Proof: The antiisomorphism ϕ : R→ R′ is an isomorphism R◦ → R′. So, from Remark 5.1,
the mapping ϕ̂ is an isomorphism of Σ̂(K,R) onto Σ(K ′, R′), whence ιϕ̂ has the required
properties. �

Remark 5.3 We conclude from Remark 4.2 and Remark 5.1 that the isomorphism ιϕ̂ pre-
serves compatibility if, and only if, K∗ is normal in R∗.

Theorem 5.2 does not give an explicit description of the isomorphism ιϕ̂ from Σ(K,R) onto
Σ(K ′, R′), since we did not describe the canonical isomorphism ι explicitly either. As in
Remark 3.3, we know more for certain points:

Remark 5.4 Let ϕ : R → R′ be given as in Theorem 5.2. For M ∈ GL2(R) let Mϕ be the
matrix in GL2(R′) obtained by applying ϕ to the entries of M . We observe that M 7→ (MT)ϕ

is an antiisomorphism of groups. Also, for each point q ∈ P̂(R) and each matrix M ∈ GL2(R)
we have

(M · q)bϕ = q bϕ · (MT)ϕ. (21)

The product ιϕ̂ is an isomorphism of Σ(K,R) onto Σ(K ′, R′). However, by (4) and (20), it
takes R(1, 0) to R′(0′, 1′) rather than to R′(1′, 0′). So let η : R′(a′, b′) 7→ R′(b′,−a′) be the
transformation of P(R′) induced by E(0′)−1. We focus our attention to the isomorphism

σ := ιϕ̂η (22)

of Σ(K,R) onto Σ(K ′, R′). By construction,

(R(1, 0))σ = R′(1′, 0′). (23)

We aim at an explicit computation of the σ-images of all points in the connected component
of R(1, 0): Let p = R(a, b) with (a, b) as in (8), whence pι = (v, w)TR with (v, w)T as in (9).
Using (21) and E(−t)T = (−I) · E(t) we obtain from (9) and (22) that

pσ = R′(1′, 0′) · E(tϕn) · E(tϕn−1) · · ·E(tϕ1 ). (24)

In particular, we have

(R(t1, 1))σ = R′(tϕ1 , 1
′), (25)

(R(t2t1 − 1, t2))σ = R′(tϕ2 t
ϕ
1 − 1′, tϕ2 ), (26)

R((t3t2t1 − t3 − t1, t3t2 − 1))σ = R′(tϕ3 t
ϕ
2 t
ϕ
1 − t

ϕ
3 − t

ϕ
1 , t

ϕ
3 t
ϕ
2 − 1′) (27)
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for all t1, t2, t3 ∈ R, as counterparts of formulae (7), (10), and (11).
From [1, Theorem 2.4], for rings of stable rank 2 an isomorphism of Σ(K,R) onto Σ(K ′, R′)
can be defined according to (26), even when ϕ : R→ R′ is a Jordan isomorphism satisfying
certain conditions on the image of K. See also [2], [10, 9.1], and [13] for related results.

Example 5.5 Let R = EndK(V ) be the endomorphism ring of an infinite dimensional
vector space V over a commutative field K. For each a ∈ R the transpose mapping aT is
an endomorphism of the dual vector space. We put R′ := {aT | a ∈ R} so that ϕ : R →
R′ : a 7→ aT is an antiisomorphism of rings. The field K =: K ′ can be embedded in R via
k 7→ k · idV and in R′ via k 7→ k · (idV )T (k ∈ K), whence Kϕ = K ′. Then an isomorphism σ
of the corresponding chain geometries is given by (20) and (22). From [5, Theorem 5.3], the
projective line P(R) is connected and its diameter equals 3. So formula (27) can be used to
calculate the σ-images of all points. Further, the canonical isomorphism Σ(K,R)→ Σ̂(K,R)
is given by (11).
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