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The present paper establishes in particular a relation-
ship between certain dual spreads which are not spreads
and collineations with an invariant line but without
invariant points of a desarguesian projective plane.

1. Introduction

Suppose that we are given two different planes in a
3-dimensional projective space and a collineation of
the first onto the second plane leaving invariant their
common line without fixing any point. Joining points
corresponding under this collineation yields a dual
spread generated by a collineation. This construction
is well known from classical geometry over the real
numbers and has also been discussed e.g. in finite
projective spaces. In either case such a dual spread is
even a spread. But this result does not carry over to
the general case, as will be illustrated by several
examples which are based upon the following result:
There exists a collineation which generates a dual
spread that is not a spread if, and only if, for a
plane of the given projective space there is a
collineation which has an invariant line but lacks to
have invariant points. Finally, it is shown that any

dual spread generated by a collineation determines a



translation plane which is also a dual translation
plane. Necessary and sufficient conditions for this

plane to be desarguesian or pappian are stated.

2. Dual Spreads

Throughout this section let (P,£) be a 3-dimensional
projective space. We assume that the reader is familiar
with the definitions of spread, dual spread, regular
spread and partial spread; cf. e.g. [2,86-87], [3,163],
[4,801]. AB denotes the line joining different points A
and B. The term field is used for a not necessarily

commutative field.

2.1. Main Results

THEOREM 1. Let ZBO, 581 be two different planes of P,
s := ZBOniBl and suppzse that «k : 5809581 is a
collineation such that s = s and k|s has no invariant

points. Then a dual spread is determined by

xx1x e By). (1)

We refer to the dual spread (1) as being generated by

the collineation K.

THEOREM 2. There exists a collineation which generates
a dual spread that is not a spread if, and only if, for
a plane of P there is a collineation which has an

invariant line but lacks to have invariant points.

THEOREM 3. If P is pappian and if (k|s)" is a
projectivity for some m € {1,2,3,...}, then the dual

spread (1) is a spread.

COROLLARY 1. There exist dual spreads generated by

collineations which are not spreads.

2.2. Proofs

Proof of Theorem 1. If X € ZBO\S, then XXK is skew to s.
Let ¥ € ZBO\S be a point other than X. Suppose that xx*

and YYK have a point in common. Hence X, XK, Y, YK are



incident with a plane ¥, say, and ¥ns is a k-invariant

point, a contradiction. Thus (1) is a partial spread.
-1
Putting E := (8n130)n(8n131)'< for any plane & % s shows

that the line EE® of (1) is contained in &. o

Proof of Theorem 2. Choose s, BO’ 581 subject to
conditions in Theorem 1 and fix any point
Z e ?\(@OUZBI). FEach P e ?\(@OUEBI) defines  a
collineation w(P) : BO > Bl, X = (XP)niBl. Denote by o
a collineation of BO with invariant line s but no
invariant points and put k := cw(Z). If P € 73\(580U581),
then

1(P) = ow(ZwP) ' = k() ! 2)

is a collineation of B and #(P)|ls = kl|s = o]s.

n(P) 0 K
is equivalent to FF > P. Thus

Furthermore F = F
n(Z) = ¢ implies that no element of the dual spread (1)

is incident with Z.

Conversely, any dual spread (1) which is not a spread
gives rise to at least one collineation (2) with an

invariant line but no invariant points. o

Proof of Theorem 3. We shall make use of the following
result: In an n-dimensional desarguesian pro jective
space (2=n<w) let o be a collineation with an invariant
hyperplane H. Denote by K an underlying field. So
o| (P\H), regarded as an affinity, is described, up to a
translation, by a map of TL(n,K) with companion
automorphism B € Aut(K). If B is of finite order, then
at least one point is fixed under ¢ by the first part

of a proof in [17,377].

Returning to the settings of Theorem 3 and Theorem 1,
each P € ZB’OUEB1 is on a line of the dual spread (1). If
P € 73\(580U581), then k|s = nw(P)|s by (2), whence n(P)m
is projective. The remarks given above and the
commutativity of an underlying field K, say, establish
that Tt(P)I(iBO\s) corresponds to B € Aut(K) of finite
order. Thus w(P) has an invariant point off s or,

equivalently, a line of (1) is incident with P. o



Proof of Corrollary 1. There is a 3x3 matrix (with
entries in a certain non-commutative field) which has a
right eigenvalue but no left eigenvalues [6,155],
[7,206]. This implies the existence of a projective
collineation ¢ with an invariant line but without
invariant points. Cf. also Example 5 in [17]. By
Theorem 3 in a pappian projective plane such a ¢ never
is projective. On the other hand, Example 1 in [17]
establishes that in some pappian projective plane there
exists a non-projective collineation o fitting for our

purposes. Applying Theorem 2 completes the proof. o

2.3. Comments

Clearly Theorem 1 has a dual counterpart which involves
a collineation of two different stars of planes and

yields a spread by intersecting corresponding planes.

If P is pappian and if k is a projective collineation,
then, by [1,186], [12,53], (1) is a regular spread or,
equivalently, an elliptic linear congruence of lines.
Cf. [19,69-75] for references on earlier papers.
Conversely, assume that we are given a regular spread
of #. By I[3,163], [11,136] or [20,319], P is pappian.
In [1,189-190] it is shown that any dual elliptic
linear congruence of lines in a 3-dimensional pappian
projective space permits a representation (1) with «
being projective. The proof given there only makes use
of the fact that such a congruence is a regular spread.

Thus this result remains true for any regular spread.

If (1) contains at least one regulus, then, as above, P
is pappian. Furthermore « is projective; cf. [1,176],
[1,181] and the construction of aregular spreads in

[9], [12,64]. Thus now (1) is a regular spread.

With (P,4) = PG(3,q), g being finite, any dual spread
has q2+1 elements, whence it is a spread; cf. Theorem
3. By [5] in a 3-dimensional projective space of
infinite order the concepts of spread and dual spread

need not coincide. Corollary 1 provides some more



examples.

In [10] a definition of linear congruences of lines is
given for any 3-dimensional projective space. Theorem 1
improves a result on linear congruences of type (iii)

in that paper: Any such congruence is a dual spread.

3. The Corresponding Translation Planes

At first we repeat the construction given in Theorem 1
in terms of a 4-dimensional left vector space B over a
field K, whence B = HomK(‘B,K) is a right vector space
over K. The centre of K will be denoted by Z(K). With
M < B, write ut = {g*e’B*|<u,g*>=O, for all uell}.

Denote by ‘BO, B two different hyperplanes of B. Let

o ‘BO > ‘Bl be1 a bijective semilinear map with
(‘Boniﬁl)(p = ‘BoniBl and the property that 7, gt(p are
linearly independent for all 1 € (‘Bon‘Bl)\{o}. As we are
only interested in the collineation induced by ¢, we
may request that the companion automorphism of ¢ is

o € Aut(K), say, such that

o = idK or « is outer automorphism. (3)

Choose a non-zero vector Py € ‘BoniBl and set P, = Jpo(p.

Hence Jpl(p = ap0+bp1 with a, b € K, a # 0. Next take any
. —n @ .
vector P, € 550\551. Putting Py =P, € ‘Bl yields a
basis {po,pl,pz,p3} of B whose dual basis is written as
{po*,pl*,pz*,p;}. We deduce from g, gt(p linearly

independent for each 1 € (‘Bon‘Bl)\{o} that any matrix

u u (4)
0 1 , (u.,u,) € KxK,
u Oca u oc+u ch 0l
1 0] 1
has left row rank 2 provided that (0,0) # (uo,ul). This

is equivalent, by elementary transformations and

-1
uO =1, u1 = -a X, to

*x + x%* - a% # 0 for all x € K. (5)

Thus P, BO’ B Kk, as have been introduced in section

1’
2, now are determined via B, ‘BO, ‘Bl, ¢, respectively.

On the other hand it is easily seen that the existence



of a, b € K and a € Aut(K) such that (5) holds implies
the existence of a semilinear map ¢ with the required
properties. If « is a non-trivial inner automorphism,
then a, b, « can be replaced by a’, b’, oc’=idK in order
to satisfy (3).

Set 6% := (‘Bon‘Bl)l u. € K then write

; given ug.u,

* L _ _ oL
© (uo,ul) = {uoapo+u1:p1 pz,(uopowlpl Jpz) ¥

and denote by A(u ) : €7(0,0) > 6" the linear map

u
01
whose matrix with respect to ordered bases (Jpo*,pl*)

and (Jpz*,p;) equals (4). Hence

* *A(uo,ul

G ( ) = {s"@s )|s*ee*(o,0)}.

Ug g
Apart from  notational differences  this is  the
description of a spread given in [2,90-93], [3,154-158]

and e.g. [16,7-10]. As {6*(u0,u1)|uo,ulex}u{6*} is a

spread of ‘B*, we obtain a translation plane J; cf. e.g.
[16,2]. Let D be a 2-dimensional right vector space
over K with basis elements 1 and d; assign to

* * * *
’PO u0+:p1 ul’ 132 u0+p3 u1 the element u0+du1 € D. Note
1.t

(m.a ) ) takes Jpo* to Jpz*mowp;ml. The

01
image of Jpo*x0+p1*x1 under this map yields the

that A (m

multiplication rule

(m0+dm1)<>(x0+dx1) = m0x0+(m1a ) x, o+

o _
+ d(m1x0+m0 x +m a bxl)

making (D,+,0) a left quasifield coordinatizing J. It
is immediate from (6) that D satisfies the right
distributive law. So D is a division ring (semifield,
distributive  quasifield) and J is also a dual
translation plane. The subfield S := {x+d0O|xe€K} of D is
isomorphic to K. We shall identify K and S via
x = x+d0. The special role of d € D is illustrated by

el
dod = (a D% +da™'p), dox = dx, xod = dx* (7

for all x € K. Multiplication rule (6) is a
generalization of formula (7.17, IV) in [15,215]. Cf.
also formula (19) in [8,241]. The field K is contained

in both NI(D) and NF(D), the left and right nucleus of



D, respectively. By (7), D is a 2-dimensional left
vector space over K, whence either Nr(D) = K = N,(D) or

N (D) = D = N,(D).
r 1

THEOREM 4. The division ring D is a field if, and only

if, one of the following conditions holds true:

b=O/\a=aoc/\xmx=axa_1foralleK; (8)

b¢0/\a,beZ(K)/\oc=idK. (9)

Proof. The associator (cf. e.g. [14,140]) of x0+dx1,

y0+dy1, zo+dz1 € D equals

S| S| S| B
(x.a 1)0c ((ay a 1)0c -y “+(by.a 1)0c -y.a 1b)z +
1 0 0] 1 1 1(10)
-1, -1, « -1 « -1.a7t
+ d(x1 (yoa b-a "by,+a 'y, -(yja ) )Zl).
Thus D is a field if, and only if,
y = a_lymxa, y = (a—l)ocyococa (11)
and
ya_lb = a_lby, a_lby = a_l(ya_lb)(xa (12)

for all y € K. If b = 0, then (12) holds trivially and
conditions (8) and (11) are equivalent. Now let b # O.
We infer from the first equation of (12) that « is an
inner automorphism. But this forces o« = idK and
a_lb € Z(K) by (3). Finally a, b € Z(K) follows from
the second equation of (12). Conversely, (11) and (12)

are implied by (9). o

We remark that, by (10), D never is a proper alter-
native field. If D is a commutative division ring, then
K is commutative too, and « = idK by (7). Hence D is a
commutative field. Conversely, commutativity of K and
o = idK make D being a commutative field. These remarks
together with Theorem 4 give neccessary and sufficient
conditions for the translation plane ¥ to be pappian or

desarguesian, respectively.

If K is finite, then (5) and (8) cannot be fulfilled
simultaniously. On the other hand, let K = C be the
field of complex numbers, a = -1, b = 0 and « the
conjugation in C. Then (5) and (8) hold and D is the

skew field of real quaternions.



O,u1 € K then write

Set 6 := (EBOn‘Bl); given u
= 4
G(UO’U1) : span{u0p0+u1p1+3p2,(u0p0+u1p1+p2) *.
Now regard (4) as the matrix of a linear map

v(uo,ul) : 6(0,0) > 6 with respect to ordered bases

(132,133) and (Jpo,pl). Thus

6( ) = (sps” HOUL)| 5€6(0,0)}.

Ug g
Let D’ be a 2-dimensional left vector space over K with
basis elements 1 and d’; assign UgPy*U Pgy, UGPa*U, P to
the element u0+u1d’ e D’. If we pick any vector
mpgtm P, € ©, then v(mo,ml) takes Py to this chosen
vector. This permits to define a multiplication on D’

by the action of V(mO’ml) on X P,+x . One obtains

o™X 1P3

(x +x.d’ )*(m +m_d’) :=
01 01 (13)

= x.m +x.m. Ya+t(e.m. +x,m Frx m. *b)d’ .
0011 o1 10 11
Cf. formulae (1) in [13,390] (reverse multiplication),
(7.17,11) in [15,215], (17) in [8,241] and (3) in
[14,191] with K being finite or commutative,

respectively. It is easily seen that

{G(uo,ul)lu uleK}u{G} (14)

o’
is a spread of B if, and only if, (D’,+%*) is a right
quasifield; see Theorem 3, Theorem 9.7 in [14,191] for
sufficient conditions. An alternative proof of Theorem
3 is possible by virtue of that Theorem 9.7. Moreover,
if D is a field, then all matrices (4) form a subfield
F of the ring of 2x2 matrices over K, whence

D= F = D'

With (14) being a partition of B, we get a translation
plane J’ and a division ring D’ whose left and middle
nuclei contain {x+0d’ |xeK}, a subfield of D’ isomorphic
to K. Generalizing the terminology in [15,205], 7’ s
the transpose translation plane of J; cf. [4,531],
[18,366]. If we would have changed from the left vector
space B over K to the associated right vector space
over the opposite field of K, then transposition of the

matrices (4) would have become necessary.



By combination of various results, we finally state

COROLLARY 2. lLet o be a collineation of a projective
plane with underlying field K. Suppose that o has an
invariant line s. Then o has an invariant point if
either 0“2 is a perspective collineation with axis s, or
ol|s is induced by Yy € GL(2,K) with l[lz = a-id+b-y, where

a, b are non-zero elements in the centre of K.

Proof. Suppose that ¢ has no invariant point on s and
regard ¢ as a collineation of a plane within a
3-dimensional projective space P. According to the
construction in Theorem 2 we get a dual spread. Writing
down a vector space representation, as has been done at
the beginning of this section, yields that (8) or (9)
holds. Thus D and D’ are isomorphic fields which in
turn shows that (14) is a partition of B or, in other

words, ¢ has an invariant point off s. o
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