DUAL SPREADS GENERATED BY COLLINEATIONS

Hans Havlicek

Dedicated to Walter Wunderlich on his 80th birthday

The present paper establishes in particular a relationship between certain dual spreads which are not spreads and collineations with an invariant line but without invariant points of a desarguesian projective plane.

1. Introduction

Suppose that we are given two different planes in a 3-dimensional projective space and a collineation of the first onto the second plane leaving invariant their common line without fixing any point. Joining points corresponding under this collineation yields a dual spread generated by a collineation. This construction is well known from classical geometry over the real numbers and has also been discussed e.g. in finite projective spaces. In either case such a dual spread is even a spread. But this result does not carry over to the general case, as will be illustrated by several examples which are based upon the following result: There exists a collineation which generates a dual spread that is not a spread if, and only if, for a plane of given projective space there is the а collineation which has an invariant line but lacks to have invariant points. Finally, it is shown that any dual spread generated by a collineation determines a translation plane which is also a dual translation plane. Necessary and sufficient conditions for this plane to be desarguesian or pappian are stated.

2. Dual Spreads

Throughout this section let (\mathcal{P}, ℓ) be a 3-dimensional projective space. We assume that the reader is familiar with the definitions of *spread*, *dual spread*, *regular spread* and *partial spread*; cf. e.g. [2,86-87], [3,163], [4,801]. AB denotes the line joining different points A and B. The term field is used for a not necessarily commutative field.

2.1. Main Results

THEOREM 1. Let \mathcal{B}_0 , \mathcal{B}_1 be two different planes of \mathcal{P} , $s := \mathcal{B}_0 \cap \mathcal{B}_1$ and suppose that $\kappa : \mathcal{B}_0 \to \mathcal{B}_1$ is a collineation such that $s^{\kappa} = s$ and $\kappa | s$ has no invariant points. Then a dual spread is determined by

$$\{XX^{\kappa} \mid X \in \mathcal{B}_{0}\}.$$
 (1)

We refer to the dual spread (1) as being generated by the collineation κ .

THEOREM 2. There exists a collineation which generates a dual spread that is not a spread if, and only if, for a plane of \mathcal{P} there is a collineation which has an invariant line but lacks to have invariant points.

THEOREM 3. If \mathcal{P} is pappian and if $(\kappa|s)^m$ is a projectivity for some $m \in \{1, 2, 3, ...\}$, then the dual spread (1) is a spread.

COROLLARY 1. There exist dual spreads generated by collineations which are not spreads.

2.2. Proofs

Proof of Theorem 1. If $X \in \mathcal{B}_0 \setminus s$, then XX^{κ} is skew to s. Let $Y \in \mathcal{B}_0 \setminus s$ be a point other than X. Suppose that XX^{κ} and YY^{κ} have a point in common. Hence X, X^{κ} , Y, Y^{κ} are incident with a plane \mathcal{F} , say, and $\mathcal{F} \cap s$ is a κ -invariant point, a contradiction. Thus (1) is a partial spread.

Putting $E := (\mathcal{E} \cap \mathcal{B}_0) \cap (\mathcal{E} \cap \mathcal{B}_1)^{\kappa^{-1}}$ for any plane $\mathcal{E} \ge s$ shows that the line EE^{κ} of (1) is contained in \mathcal{E} .

Proof of Theorem 2. Choose s, \mathcal{B}_0 , \mathcal{B}_1 subject to conditions in Theorem 1 and fix any point $Z \in \mathcal{P} \setminus (\mathcal{B}_0 \cup \mathcal{B}_1)$. Each $P \in \mathcal{P} \setminus (\mathcal{B}_0 \cup \mathcal{B}_1)$ defines a collineation $\omega(P) : \mathcal{B}_0 \to \mathcal{B}_1$, $X \mapsto (XP) \cap \mathcal{B}_1$. Denote by σ a collineation of \mathcal{B}_0 with invariant line s but no invariant points and put $\kappa := \sigma \omega(Z)$. If $P \in \mathcal{P} \setminus (\mathcal{B}_0 \cup \mathcal{B}_1)$, then

$$\pi(P) := \sigma \omega(Z) \omega(P)^{-1} = \kappa \omega(P)^{-1}$$
(2)

is a collineation of \mathcal{B}_0 and $\pi(P)|s = \kappa|s = \sigma|s$. Furthermore $F = F^{\pi(P)}$ is equivalent to $FF^{\kappa} \ni P$. Thus $\pi(Z) = \sigma$ implies that no element of the dual spread (1) is incident with Z.

Conversely, any dual spread (1) which is not a spread gives rise to at least one collineation (2) with an invariant line but no invariant points.

Proof of Theorem 3. We shall make use of the following result: In an *n*-dimensional desarguesian projective space $(2 \le n \le \infty)$ let σ be a collineation with an invariant hyperplane \mathcal{H} . Denote by K an underlying field. So $\sigma \mid (\mathcal{P} \setminus \mathcal{H})$, regarded as an affinity, is described, up to a translation, by a map of $\Gamma L(n, K)$ with companion automorphism $\beta \in \operatorname{Aut}(K)$. If β is of finite order, then at least one point is fixed under σ by the first part of a proof in [17,377].

Returning to the settings of Theorem 3 and Theorem 1, each $P \in \mathcal{B}_0 \cup \mathcal{B}_1$ is on a line of the dual spread (1). If $P \in \mathcal{P} \setminus (\mathcal{B}_0 \cup \mathcal{B}_1)$, then $\kappa | s = \pi(P) | s$ by (2), whence $\pi(P)^m$ is projective. The remarks given above and the commutativity of an underlying field *K*, say, establish that $\pi(P) | (\mathcal{B}_0 \setminus s)$ corresponds to $\beta \in \operatorname{Aut}(K)$ of finite order. Thus $\pi(P)$ has an invariant point off *s* or, equivalently, a line of (1) is incident with *P*. Proof of Corrollary 1. There is a 3×3 matrix (with entries in a certain non-commutative field) which has a right eigenvalue but no left eigenvalues [6,155], [7,206]. This implies the existence of a projective collineation σ with an invariant line but without invariant points. Cf. also Example 5 in [17]. By Theorem 3 in a pappian projective plane such a σ never is projective. On the other hand, Example 1 in [17] establishes that in some pappian projective plane there exists a non-projective collineation σ fitting for our purposes. Applying Theorem 2 completes the proof.

2.3. Comments

Clearly Theorem 1 has a dual counterpart which involves a collineation of two different stars of planes and yields a spread by intersecting corresponding planes.

If \mathcal{P} is pappian and if κ is a projective collineation, then, by [1,186], [12,53], (1) is a regular spread or, equivalently, an elliptic linear congruence of lines. Cf. [19,69-75] for references on earlier papers. Conversely, assume that we are given a regular spread of \mathcal{P} . By [3,163], [11,136] or [20,319], \mathcal{P} is pappian. In [1,189-190] it is shown that any dual elliptic linear congruence of lines in a 3-dimensional pappian projective space permits a representation (1) with κ being projective. The proof given there only makes use of the fact that such a congruence is a regular spread. Thus this result remains true for any regular spread.

If (1) contains at least one regulus, then, as above, \mathcal{P} is pappian. Furthermore κ is projective; cf. [1,176], [1,181] and the construction of *aregular spreads* in [9], [12,64]. Thus now (1) is a regular spread.

With $(\mathcal{P}, \ell) = PG(3, q)$, q being finite, any dual spread has q^2+1 elements, whence it is a spread; cf. Theorem 3. By [5] in a 3-dimensional projective space of infinite order the concepts of spread and dual spread need not coincide. Corollary 1 provides some more examples.

In [10] a definition of linear congruences of lines is given for any 3-dimensional projective space. Theorem 1 improves a result on linear congruences of type (iii) in that paper: Any such congruence is a dual spread.

3. The Corresponding Translation Planes

At first we repeat the construction given in Theorem 1 in terms of a 4-dimensional left vector space \mathfrak{B} over a field K, whence $\mathfrak{B}^* = \operatorname{Hom}_K(\mathfrak{B}, K)$ is a right vector space over K. The centre of K will be denoted by Z(K). With $\mathfrak{U} \subset \mathfrak{B}$, write $\mathfrak{U}^{\perp} := \{\mathfrak{x}^* \in \mathfrak{B}^* | < \mathfrak{u}, \mathfrak{x}^* >= 0, \text{ for all } \mathfrak{u} \in \mathfrak{U}\}.$

Denote by \mathfrak{B}_0 , \mathfrak{B}_1 two different hyperplanes of \mathfrak{B} . Let $\varphi : \mathfrak{B}_0 \to \mathfrak{B}_1$ be a bijective semilinear map with $(\mathfrak{B}_0 \cap \mathfrak{B}_1)^{\varphi} = \mathfrak{B}_0 \cap \mathfrak{B}_1$ and the property that $\mathfrak{x}, \mathfrak{x}^{\varphi}$ are linearly independent for all $\mathfrak{x} \in (\mathfrak{B}_0 \cap \mathfrak{B}_1) \setminus \{\mathfrak{o}\}$. As we are only interested in the collineation induced by φ , we may request that the companion automorphism of φ is $\alpha \in \operatorname{Aut}(K)$, say, such that

$$\alpha = id_{V}$$
 or α is outer automorphism. (3)

Choose a non-zero vector $\mathfrak{p}_0 \in \mathfrak{B}_0 \cap \mathfrak{B}_1$ and set $\mathfrak{p}_1 := \mathfrak{p}_0^{\varphi}$. Hence $\mathfrak{p}_1^{\varphi} = a\mathfrak{p}_0 + b\mathfrak{p}_1$ with $a, b \in K, a \neq 0$. Next take any vector $\mathfrak{p}_2 \in \mathfrak{B}_0 \setminus \mathfrak{B}_1$. Putting $\mathfrak{p}_3 := \mathfrak{p}_2^{\varphi} \in \mathfrak{B}_1$ yields a basis $\{\mathfrak{p}_0, \mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3\}$ of \mathfrak{B} whose dual basis is written as $\{\mathfrak{p}_0^*, \mathfrak{p}_1^*, \mathfrak{p}_2^*, \mathfrak{p}_3^*\}$. We deduce from $\mathfrak{x}, \mathfrak{x}^{\varphi}$ linearly independent for each $\mathfrak{x} \in (\mathfrak{B}_0 \cap \mathfrak{B}_1) \setminus \{0\}$ that any matrix

$$\begin{pmatrix} u_0 & u_1 \\ u_1^{\alpha} & \alpha & \alpha \\ u_1^{\alpha} a & u_0^{\alpha} + u_1^{\alpha} b \end{pmatrix}, \ (u_0, u_1) \in K \times K,$$

$$(4)$$

has left row rank 2 provided that $(0,0) \neq (u_0,u_1)$. This is equivalent, by elementary transformations and $u_0 := 1, u_1 := -a^{-1}x$, to

$$x^{\alpha}x + x^{\alpha}b - a^{\alpha} \neq 0 \text{ for all } x \in K.$$
 (5)

Thus \mathcal{P} , \mathcal{B}_0 , \mathcal{B}_1 , κ , as have been introduced in section 2, now are determined via \mathfrak{B} , \mathfrak{B}_0 , \mathfrak{B}_1 , φ , respectively. On the other hand it is easily seen that the existence

of $a, b \in K$ and $\alpha \in Aut(K)$ such that (5) holds implies the existence of a semilinear map φ with the required properties. If α is a non-trivial inner automorphism, then a, b, α can be replaced by $a', b', \alpha' = \operatorname{id}_{K}$ in order to satisfy (3).

Set
$$\mathcal{G}^* := (\mathcal{B}_0 \cap \mathcal{B}_1)^{\perp}$$
; given $u_0, u_1 \in K$ then write
 $\mathcal{G}^*(u_0, u_1) := \{u_0 \mathfrak{p}_0 + u_1 \mathfrak{p}_1 - \mathfrak{p}_2, (u_0 \mathfrak{p}_0 + u_1 \mathfrak{p}_1 - \mathfrak{p}_2)^{\varphi}\}^{\perp}$

and denote by $\lambda(u_0, u_1) : \mathcal{C}^*(0, 0) \to \mathcal{C}^*$ the linear map whose matrix with respect to ordered bases $(\mathfrak{p}_0^*, \mathfrak{p}_1^*)$ and $(\mathfrak{p}_2^*, \mathfrak{p}_3^*)$ equals (4). Hence

$$\mathcal{G}^{*}(u_{0}, u_{1}) = \{\mathfrak{s}^{*} \oplus \mathfrak{s}^{*\lambda(u_{0}, u_{1})} | \mathfrak{s}^{*} \in \mathcal{G}^{*}(0, 0) \}.$$

Apart from notational differences this is the description of a spread given in [2,90-93], [3,154-158] and e.g. [16,7-10]. As $\{G^*(u_0,u_1)|u_0,u_1\in K\}\cup\{G^*\}$ is a spread of \mathfrak{B}^* , we obtain a *translation plane* \mathcal{T} ; cf. e.g. [16,2]. Let D be a 2-dimensional right vector space over K with basis elements 1 and d; assign to $\mathfrak{p}_0^*u_0+\mathfrak{p}_1^*u_1, \mathfrak{p}_2^*u_0+\mathfrak{p}_3^*u_1$ the element $u_0+du_1\in D$. Note that $\lambda(m_0,(m_1a^{-1})^{\alpha^{-1}})$ takes \mathfrak{p}_0^* to $\mathfrak{p}_2^*m_0+\mathfrak{p}_3^*m_1$. The image of $\mathfrak{p}_0^*x_0+\mathfrak{p}_1^*x_1$ under this map yields the multiplication rule

$$(m_0 + dm_1) \circ (x_0 + dx_1) := m_0 x_0 + (m_1 a^{-1})^{\alpha^{-1}} x_1 + d(m_1 x_0 + m_0^{\alpha} x_1 + m_1 a^{-1} bx_1)$$
(6)

making $(D,+,\circ)$ a left quasifield coordinatizing \mathcal{T} . It is immediate from (6) that D satisfies the right distributive law. So D is a division ring (semifield, distributive quasifield) and \mathcal{T} is also a dual translation plane. The subfield $S := \{x+d0 | x \in K\}$ of D is isomorphic to K. We shall identify K and S via $x \equiv x+d0$. The special role of $d \in D$ is illustrated by

$$d \circ d = (a^{-1})^{\alpha^{-1}} + d(a^{-1}b), \ d \circ x = dx, \ x \circ d = dx^{\alpha}$$
(7)

for all $x \in K$. Multiplication rule (6) is a generalization of formula (7.17, IV) in [15,215]. Cf. also formula (19) in [8,241]. The field K is contained in both $N_1(D)$ and $N_r(D)$, the left and right nucleus of

D, respectively. By (7), D is a 2-dimensional left vector space over K, whence either $N_r(D) = K = N_l(D)$ or $N_r(D) = D = N_l(D)$.

THEOREM 4. The division ring D is a field if, and only if, one of the following conditions holds true:

$$b = 0 \wedge a = a^{\alpha} \wedge x^{\alpha \alpha} = axa^{-1} \text{ for all } x \in K; \quad (8)$$
$$b \neq 0 \wedge a, b \in Z(K) \wedge \alpha = \mathrm{id}_{K}. \quad (9)$$

Proof. The associator (cf. e.g. [14,140]) of $x_0^+ dx_1$, $y_0^+ dy_1$, $z_0^+ dz_1 \in D$ equals

$$(x_1a^{-1})^{\alpha^{-1}}((ay_0a^{-1})^{\alpha^{-1}}-y_0^{\alpha}+(by_1a^{-1})^{\alpha^{-1}}-y_1a^{-1}b)z_1^{+}$$

+ $d(x_1(y_0a^{-1}b-a^{-1}by_0^{\alpha}+a^{-1}y_1^{\alpha}-(y_1a^{-1})^{\alpha^{-1}})z_1).$

Thus D is a field if, and only if,

$$y = a^{-1}y^{\alpha\alpha}a, y = (a^{-1})^{\alpha}y^{\alpha\alpha}a$$
 (11)

and

$$ya^{-1}b = a^{-1}by, a^{-1}by = a^{-1}(ya^{-1}b)^{\alpha}a$$
 (12)

for all $y \in K$. If b = 0, then (12) holds trivially and conditions (8) and (11) are equivalent. Now let $b \neq 0$. We infer from the first equation of (12) that α is an inner automorphism. But this forces $\alpha = \operatorname{id}_{K}$ and $a^{-1}b \in Z(K)$ by (3). Finally $a, b \in Z(K)$ follows from the second equation of (12). Conversely, (11) and (12) are implied by (9).

We remark that, by (10), D never is a proper alternative field. If D is a commutative division ring, then K is commutative too, and $\alpha = \operatorname{id}_{K}$ by (7). Hence D is a commutative field. Conversely, commutativity of K and $\alpha = \operatorname{id}_{K}$ make D being a commutative field. These remarks together with Theorem 4 give neccessary and sufficient conditions for the translation plane \mathcal{T} to be pappian or desarguesian, respectively.

If K is finite, then (5) and (8) cannot be fulfilled simultaniously. On the other hand, let $K = \mathbb{C}$ be the field of complex numbers, a = -1, b = 0 and α the conjugation in \mathbb{C} . Then (5) and (8) hold and D is the skew field of real quaternions. Set $\mathcal{G} := (\mathcal{B}_0 \cap \mathcal{B}_1)$; given $u_0, u_1 \in K$ then write

$$\mathcal{G}(u_0, u_1) := \operatorname{span}\{u_0 \mathfrak{p}_0 + u_1 \mathfrak{p}_1 + \mathfrak{p}_2, (u_0 \mathfrak{p}_0 + u_1 \mathfrak{p}_1 + \mathfrak{p}_2)^{\varphi}\}.$$

Now regard (4) as the matrix of a linear map $\nu(u_0, u_1) : \mathfrak{G}(0, 0) \rightarrow \mathfrak{G}$ with respect to ordered bases $(\mathfrak{p}_2, \mathfrak{p}_3)$ and $(\mathfrak{p}_0, \mathfrak{p}_1)$. Thus

$$\mathcal{G}(u_0, u_1) = \{ s \oplus s^{\nu(u_0, u_1)} | s \in \mathcal{G}(0, 0) \}.$$

Let D' be a 2-dimensional left vector space over K with basis elements 1 and d'; assign $u_0 \mathfrak{p}_2 + u_1 \mathfrak{p}_3$, $u_0 \mathfrak{p}_0 + u_1 \mathfrak{p}_1$ to the element $u_0 + u_1 d' \in D'$. If we pick any vector $m_0 \mathfrak{p}_0 + m_1 \mathfrak{p}_1 \in \mathbb{G}$, then $v(m_0, m_1)$ takes \mathfrak{p}_0 to this chosen vector. This permits to define a multiplication on D' by the action of $v(m_0, m_1)$ on $x_0 \mathfrak{p}_2 + x_1 \mathfrak{p}_3$. One obtains

Cf. formulae (1) in [13,390] (reverse multiplication), (7.17,II) in [15,215], (17) in [8,241] and (3) in [14,191] with K being finite or commutative, respectively. It is easily seen that

$$\{ \mathcal{G}(u_0, u_1) \mid u_0, u_1 \in K \} \cup \{ \mathcal{G} \}$$
(14)

is a spread of \mathfrak{B} if, and only if, (D',+,*) is a *right quasifield*; see Theorem 3, Theorem 9.7 in [14,191] for sufficient conditions. An alternative proof of Theorem 3 is possible by virtue of that Theorem 9.7. Moreover, if D is a field, then all matrices (4) form a subfield F of the ring of 2×2 matrices over K, whence $D \cong F \cong D'$.

With (14) being a partition of \mathfrak{B} , we get a translation plane \mathcal{T}' and a division ring D' whose left and middle nuclei contain $\{x+0d' \mid x \in K\}$, a subfield of D' isomorphic to K. Generalizing the terminology in [15,205], \mathcal{T}' is the transpose translation plane of \mathcal{T} ; cf. [4,531], [18,366]. If we would have changed from the left vector space \mathfrak{B} over K to the associated right vector space over the opposite field of K, then transposition of the matrices (4) would have become necessary. By combination of various results, we finally state

COROLLARY 2. Let σ be a collineation of a projective plane with underlying field K. Suppose that σ has an invariant line s. Then σ has an invariant point if either σ^2 is a perspective collineation with axis s, or $\sigma \mid s$ is induced by $\psi \in GL(2,K)$ with $\psi^2 = a \cdot id + b \cdot \psi$, where a, b are non-zero elements in the centre of K.

Proof. Suppose that σ has no invariant point on s and regard σ as a collineation of a plane within a 3-dimensional projective space \mathcal{P} . According to the construction in Theorem 2 we get a dual spread. Writing down a vector space representation, as has been done at the beginning of this section, yields that (8) or (9) holds. Thus D and D' are isomorphic fields which in turn shows that (14) is a partition of \mathfrak{B} or, in other words, σ has an invariant point off s.

REFERENCES

1. H. BRAUNER: Geometrie projektiver Räume II, Mannheim Wien Zürich, BI-Wissenschaftsverlag, 1976.

2. R.H. BRUCK, R.C. BOSE: The Construction of Translation Planes from Projective Spaces, *J. Algebra* 1, 85-102 (1964).

3. R.H. BRUCK, R.C. BOSE: Linear Representations of Projective Planes in Projective Spaces, *J. Algebra* 4, 117-172 (1966).

4. A. BRUEN: Spreads and a Conjecture of Bruck and Bose, *J. Algebra* **23**, 519-537 (1972).

5. A. BRUEN, J.C. FISHER: Spreads which are not Dual Spreads, *Can. J. Math.* **12**, 801-803 (1969).

6. P.M. COHN: The Similarity Reduction of Matrices over a Skew Field, *Math. Z.* **132**, 151-163 (1973).

7. P.M. COHN: Skew Field Constructions, Cambridge University Press, Cambridge, 1977.

8. P. DEMBOWSKI: *Finite Geometries*, Berlin Heidelberg New York, Springer, 1968.

9. R.H.F. DENNISTON: Spreads which are not Subregular, *Glas. Mat.* **8**, 3-5 (1973).

10. H. HAVLICEK: On Sets of Lines Corresponding to Affine Spaces, in: *Proceedings of "Combinatorics '88"* (*Ravello, Italy*), to appear.

G. HESSENBERG, J. DILLER: Grundlagen der Geometrie,
 Aufl., Berlin, de Gruyter, 1967.

12. J.W.P. HIRSCHFELD: Finite Projective Spaces of Three Dimensions, Oxford, Clarendon Press, 1985.

13. D.R. HUGHES, E. KLEINFELD: Seminuclear Extensions of Galois Fields, Am. J. Math. 82, 389-392 (1960).

14. D.R. HUGHES, F.C. PIPER: *Projective Planes*, New York Heidelberg Berlin, Springer, 1973.

15. D.E. KNUTH: Finite Semifields and Projective Planes, J. Algebra 2, 182-217 (1965).

16. H. LÜNEBURG: *Translation Planes*, Berlin Heidelberg New York, Springer, 1980.

17. H. MÄURER: Collineations of Projective Planes with Different Numbers of Fixed Points and Fixed Lines, *Euro. J. Comb.* 9, 375-378 (1988).

18. R. METZ: Der affine Raum verallgemeinerter Reguli, *Geom. Dedicata* **10**, 337-367 (1981).

19. E. MÜLLER: Vorlesungen über Darstellende Geometrie, Bd. 1, Die linearen Abbildungen, Leipzig Wien, Deuticke, 1923.

20. B. SEGRE: Lectures on Modern Geometry, Roma, Ed. Cremonese, 1961.

Hans Havlicek Institut für Geometrie Technische Universität Wiedner Hauptstraße 8-10 A-1040 Wien