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The present paper establishes in particular a relation-
ship between certain dual spreads which are not spreads
and collineations with an invariant line but without
invariant points of a desarguesian projective plane.

!
1. Introduction

!
Suppose that we are given two different planes in a

3-dimensional projective space and a collineation of

the first onto the second plane leaving invariant their

common line without fixing any point. Joining points

corresponding under this collineation yields a dual

spread generated by a collineation. This construction

is well known from classical geometry over the real

numbers and has also been discussed e.g. in finite

projective spaces. In either case such a dual spread is

even a spread. But this result does not carry over to

the general case, as will be illustrated by several

examples which are based upon the following result:

There exists a collineation which generates a dual

spread that is not a spread if, and only if, for a

plane of the given projective space there is a

collineation which has an invariant line but lacks to

have invariant points. Finally, it is shown that any

dual spread generated by a collineation determines a
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translation plane which is also a dual translation

plane. Necessary and sufficient conditions for this

plane to be desarguesian or pappian are stated.
!
!
!

2. Dual Spreads
!

Throughout this section let (P,l) be a 3-dimensional

projective space. We assume that the reader is familiar

with the definitions of spread, dual spread, regular

spread and partial spread; cf. e.g. [2,86-87], [3,163],

[4,801]. AB denotes the line joining different points A

and B. The term field is used for a not necessarily

commutative field.
!
!
2.1. Main Results

!
THEOREM 1. Let B , B be two different planes of P,0 1
st:=tB nB and suppose that kt:tB tLtB is a0 1 0 1kcollineation such that s t=ts and k|s has no invariant

points. Then a dual spread is determined by
!k{XX |XtetB }. (1)0 ! !

We refer to the dual spread (1) as being generated by

the collineation k.
!

THEOREM 2. There exists a collineation which generates

a dual spread that is not a spread if, and only if, for

a plane of P there is a collineation which has an

invariant line but lacks to have invariant points.
!mTHEOREM 3. If P is pappian and if (k|s) is a

projectivity for some mtet{1,2,3,...}, then the dual

spread (1) is a spread.
!

COROLLARY 1. There exist dual spreads generated by

collineations which are not spreads.
!
!

2.2. Proofs
! kProof of Theorem 1. If XtetB \s, then XX is skew to s.0 kLet YtetB \s be a point other than X. Suppose that XX0k k kand YY have a point in common. Hence X, X , Y, Y are
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incident with a plane F, say, and Fns is a k-invariant

point, a contradiction. Thus (1) is a partial spread.
-1kPutting Et:=t(EnB )n(EnB ) ! for any plane Etyts shows0 1kthat the line EE of (1) is contained in E. p

!
Proof of Theorem 2. Choose s, B , B subject to0 1
conditions in Theorem 1 and fix any point

ZtetP\(B uB ). Each PtetP\(B uB ) defines a0 1 0 1
collineation w(P)t:tB tLtB , Xt9Lt(XP)nB . Denote by s0 1 1
a collineation of B with invariant line s but no0
invariant points and put kt:=tsw(Z). If PtetP\(B uB ),0 1
then

!-1 -1p(P)t:=tsw(Z)w(P) t=tkw(P) (2)
!

is a collineation of B and p(P)|st=tk|st=ts|s.0p(P) kFurthermore Ft=tF is equivalent to FF trtP. Thus

p(Z)t=ts implies that no element of the dual spread (1)

is incident with Z.
!

Conversely, any dual spread (1) which is not a spread

gives rise to at least one collineation (2) with an

invariant line but no invariant points. p
!

Proof of Theorem 3. We shall make use of the following

result: In an n-dimensional desarguesian projective

space (2<n<8) let s be a collineation with an invariant

hyperplane H. Denote by K an underlying field. So

s|(P\H), regarded as an affinity, is described, up to a

translation, by a map of GL(n,K) with companion

automorphism btetAut(K). If b is of finite order, then

at least one point is fixed under s by the first part

of a proof in [17,377].
!

Returning to the settings of Theorem 3 and Theorem 1,

each PtetB uB is on a line of the dual spread (1). If0 1 mPtetP\(B uB ), then k|st=tp(P)|s by (2), whence p(P)0 1
is projective. The remarks given above and the

commutativity of an underlying field K, say, establish

that p(P)|(B \s) corresponds to btetAut(K) of finite0
order. Thus p(P) has an invariant point off s or,

equivalently, a line of (1) is incident with P. p
!
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Proof of Corrollary 1. There is a 3*3 matrix (with

entries in a certain non-commutative field) which has a

right eigenvalue but no left eigenvalues [6,155],

[7,206]. This implies the existence of a projective

collineation s with an invariant line but without

invariant points. Cf. also Example 5 in [17]. By

Theorem 3 in a pappian projective plane such a s never

is projective. On the other hand, Example 1 in [17]

establishes that in some pappian projective plane there

exists a non-projective collineation s fitting for our

purposes. Applying Theorem 2 completes the proof. p
!
!

2.3. Comments
!

Clearly Theorem 1 has a dual counterpart which involves

a collineation of two different stars of planes and

yields a spread by intersecting corresponding planes.
!

If P is pappian and if k is a projective collineation,

then, by [1,186], [12,53], (1) is a regular spread or,

equivalently, an elliptic linear congruence of lines.

Cf. [19,69-75] for references on earlier papers.

Conversely, assume that we are given a regular spread

of P. By [3,163], [11,136] or [20,319], P is pappian.

In [1,189-190] it is shown that any dual elliptic

linear congruence of lines in a 3-dimensional pappian

projective space permits a representation (1) with k

being projective. The proof given there only makes use

of the fact that such a congruence is a regular spread.

Thus this result remains true for any regular spread.
!

If (1) contains at least one regulus, then, as above, P

is pappian. Furthermore k is projective; cf. [1,176],

[1,181] and the construction of aregular spreads in

[9], [12,64]. Thus now (1) is a regular spread.
!

With (P,l)t=tPG(3,q), q being finite, any dual spread
2has q +1 elements, whence it is a spread; cf. Theorem

3. By [5] in a 3-dimensional projective space of

infinite order the concepts of spread and dual spread

need not coincide. Corollary 1 provides some more
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examples.
!

In [10] a definition of linear congruences of lines is

given for any 3-dimensional projective space. Theorem 1

improves a result on linear congruences of type (iii)

in that paper: Any such congruence is a dual spread.
!
!
!

3. The Corresponding Translation Planes
!

At first we repeat the construction given in Theorem 1

in terms of a 4-dimensional left vector space V over a
*field K, whence V t=tHom (V,K) is a right vector spaceK

over K. The centre of K will be denoted by Z(K). With
1 * * *UtCtV, write U t:=t{x eV |<u,x >=0, for all ueU}.

!
Denote by B , B two different hyperplanes of V. Let0 1
vt:tB tLtB be a bijective semilinear map with0 1v v(B nB ) t=tB nB and the property that x, x are0 1 0 1
linearly independent for all xtet(B nB )\{o}. As we are0 1
only interested in the collineation induced by v, we

may request that the companion automorphism of v is

atetAut(K), say, such that
!

at=tid or a is outer automorphism. (3)K ! vChoose a non-zero vector p tetB nB and set p t:=tp .0 0 1 1 0vHence p t=tap +bp with a,tbtetK, at$t0. Next take any1 0 1 vvector p tetB \B . Putting p t:=tp tetB yields a2 0 1 3 2 1
basis {p ,p ,p ,p } of V whose dual basis is written as0 1 2 3* * * * v{p ,p ,p ,p }. We deduce from x, x linearly0 1 2 3
independent for each xtet(B nB )\{o} that any matrix0 1 !

& u u * (4)0 1? ?, (u ,u )tetK*K,a a a 0 17 u a u +u b 81 0 1 !
has left row rank 2 provided that (0,0)t$t(u ,u ). This0 1
is equivalent, by elementary transformations and

-1u t:=t1, u t:=t-a x, to0 1 !a a ax xt+tx bt-ta t$t0 for all xtetK. (5)
!

Thus P, B , B , k, as have been introduced in section0 1
2, now are determined via V, B , B , v, respectively.0 1
On the other hand it is easily seen that the existence
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of a,tbtetK and atetAut(K) such that (5) holds implies

the existence of a semilinear map v with the required

properties. If a is a non-trivial inner automorphism,

then a, b, a can be replaced by a’, b’, a’=id in orderK
to satisfy (3).

!* 1Set S t:=t(B nB ) ; given u ,u tetK then write0 1 0 1!* v 1S (u ,u )t:=t{u p +u p -p ,(u p +u p -p ) }0 1 0 0 1 1 2 0 0 1 1 2! * *and denote by l(u ,u )t:tS (0,0)tLtS the linear map0 1 * *whose matrix with respect to ordered bases (p ,p )0 1* *and (p ,p ) equals (4). Hence2 3 !* * *l(u0,u1) * *S (u ,u )t=t{s ss |s eS (0,0)}.0 1 !
Apart from notational differences this is the

description of a spread given in [2,90-93], [3,154-158]
* *and e.g. [16,7-10]. As {S (u ,u )|u ,u eK}u{S } is a0 1 0 1*spread of V , we obtain a translation plane T; cf. e.g.

[16,2]. Let D be a 2-dimensional right vector space

over K with basis elements 1 and d; assign to
* * * *p u +p u , p u +p u the element u +du tetD. Note0 0 1 1 2 0 3 1 0 1-1( -1 a ) * * *that l m ,(m a ) ! takes p to p m +p m . The9 0 1 0 0 2 0 3 1* *image of p x +p x under this map yields the0 0 1 1

multiplication rule
-1-1 a(m +dm )q(x +dx )t:=t m x +(m a ) x t+0 1 0 1 0 0 1 1! (6)a -1!!!!!!!! !!!!!!!! +td(m x +m x +m a bx )1 0 0 1 1 1 !

making (D,+,q) a left quasifield coordinatizing T. It

is immediate from (6) that D satisfies the right

distributive law. So D is a division ring (semifield,

distributive quasifield) and T is also a dual

translation plane. The subfield St:=t{x+d0|xeK} of D is

isomorphic to K. We shall identify K and S via

xt_tx+d0. The special role of dtetD is illustrated by
-1-1 a -1 adqdt=t(a ) +d(a b), dqxt=tdx, xqdt=tdx (7)

!
for all xtetK. Multiplication rule (6) is a

generalization of formula (7.17,tIV) in [15,215]. Cf.

also formula (19) in [8,241]. The field K is contained

in both N (D) and N (D), the left and right nucleus ofl r
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D, respectively. By (7), D is a 2-dimensional left

vector space over K, whence either N (D)t=tKt=tN (D) orr l
N (D)t=tDt=tN (D).r l !
THEOREM 4. The division ring D is a field if, and only

if, one of the following conditions holds true:
!a aa -1bt=t0 ^ at=ta ^ x t=taxa for all xtetK; (8)

bt$t0 ^ a, btetZ(K) ^ at=tid . (9)K!
Proof. The associator (cf. e.g. [14,140]) of x +dx ,0 1
y +dy , z +dz tetD equals0 1 0 1 !-1 -1 -1-1 a ( -1 a a -1 a -1 )(x a ) (ay a ) -y +(by a ) -y a b z +1 9 0 0 1 1 0 1-1 (10)( ( -1 -1 a -1 a -1 a ) )+td x y a b-a by +a y -(y a ) z .9 19 0 0 1 1 0 10
Thus D is a field if, and only if,

! -1 aa -1 a aayt=ta y a, yt=t(a ) y a (11)

and
-1 -1 -1 -1 -1 aya bt=ta by, a byt=ta (ya b) a (12)

!
for all ytetK. If bt=t0, then (12) holds trivially and

conditions (8) and (11) are equivalent. Now let bt$t0.

We infer from the first equation of (12) that a is an

inner automorphism. But this forces at=tid andK-1a btetZ(K) by (3). Finally a,tbtetZ(K) follows from

the second equation of (12). Conversely, (11) and (12)

are implied by (9). p
!

We remark that, by (10), D never is a proper alter-

native field. If D is a commutative division ring, then

K is commutative too, and at=tid by (7). Hence D is aK
commutative field. Conversely, commutativity of K and

at=tid make D being a commutative field. These remarksK
together with Theorem 4 give neccessary and sufficient

conditions for the translation plane T to be pappian or

desarguesian, respectively.
!

If K is finite, then (5) and (8) cannot be fulfilled

simultaniously. On the other hand, let Kt=tC be the

field of complex numbers, at=t-1, bt=t0 and a the

conjugation in C. Then (5) and (8) hold and D is the

skew field of real quaternions.
!
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Set St:=t(B nB ); given u ,u tetK then write0 1 0 1 !vS(u ,u )t:=tspan{u p +u p +p ,(u p +u p +p ) }.0 1 0 0 1 1 2 0 0 1 1 2 !
Now regard (4) as the matrix of a linear map

n(u ,u )t:tS(0,0)tLtS with respect to ordered bases0 1
(p ,p ) and (p ,p ). Thus2 3 0 1 !n(u0,u1)S(u ,u )t=t{sss |seS(0,0)}.0 1 !
Let D’ be a 2-dimensional left vector space over K with

basis elements 1 and d’; assign u p +u p , u p +u p to0 2 1 3 0 0 1 1
the element u +u d’tetD’. If we pick any vector0 1
m p +m p tetS, then n(m ,m ) takes p to this chosen0 0 1 1 0 1 0
vector. This permits to define a multiplication on D’

by the action of n(m ,m ) on x p +x p . One obtains0 1 0 2 1 3!
! (x +x d’)*(m +m d’)t:= !!!!!!!! !!!!!!!!0 1 0 1 (13)a a a! =tx m +x m a+(x m +x m +x m b)d’.0 0 1 1 0 1 1 0 1 1 !
Cf. formulae (1) in [13,390] (reverse multiplication),

(7.17,II) in [15,215], (17) in [8,241] and (3) in

[14,191] with K being finite or commutative,

respectively. It is easily seen that
!

{S(u ,u )|u ,u eK}u{S} (14)0 1 0 1!
is a spread of V if, and only if, (D’,+,*) is a right

quasifield; see Theorem 3, Theorem 9.7 in [14,191] for

sufficient conditions. An alternative proof of Theorem

3 is possible by virtue of that Theorem 9.7. Moreover,

if D is a field, then all matrices (4) form a subfield

F of the ring of 2*2 matrices over K, whence

Dt=tFt=tD’.
!

With (14) being a partition of V, we get a translation

plane T’ and a division ring D’ whose left and middle

nuclei contain {x+0d’|xeK}, a subfield of D’ isomorphic

to K. Generalizing the terminology in [15,205], T’ is

the transpose translation plane of T; cf. [4,531],

[18,366]. If we would have changed from the left vector

space V over K to the associated right vector space

over the opposite field of K, then transposition of the

matrices (4) would have become necessary.
!
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By combination of various results, we finally state
!

COROLLARY 2. Let s be a collineation of a projective

plane with underlying field K. Suppose that s has an

invariant line s. Then s has an invariant point if
2either s is a perspective collineation with axis s, or

2s|s is induced by jtetGL(2,K) with j t=taWid+bWj, where

a, btare non-zero elements in the centre of K.
!

Proof. Suppose that s has no invariant point on s and

regard s as a collineation of a plane within a

3-dimensional projective space P. According to the

construction in Theorem 2 we get a dual spread. Writing

down a vector space representation, as has been done at

the beginning of this section, yields that (8) or (9)

holds. Thus D and D’ are isomorphic fields which in

turn shows that (14) is a partition of V or, in other

words, s has an invariant point off s. p
!
!
!
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