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!
1 - Introduction

!
If we are given a linear space with point set P, line set L and an ortho-

gonality relation on its set of lines then call two lines related if they are

concurrent and orthogonal or if they are identical. A bijection of L that

preserves this relation in both directions is called a Plücker transformation.

Plücker transformations of Euclidian spaces are under discussion in [1],

[2], [5]. Cf. also the survey in [14]. The crucial result, due to W.!Benz and

E.M.!Schröder, is that 3-dimensional spaces are very exceptional, since only

here Plücker transformations are intimately connected with derivations of the

ground field. For higher dimensions all Plücker transformations arise from

orthogonality-preserving collineations, whereas Plücker transformations of

Euclidian planes cannot deserve interest.

In this paper we discuss Plücker transformations of generalized elliptic

spaces, i.e. (not necessarily finite dimensional) projective spaces with

orthogonality based upon an elliptic absolute quasipolarity. For dimensions

2,t4,t5,t6,t... there are no Plücker transformations other than those arising

from orthogonality-preserving collineations. In every 3-dimensional genera-

lized elliptic space there exist Plücker transformations that cannot be in-

duced by collineations or dualities; under certain restrictions (projective

absolute polarity, Fano’s postulate, existence of Clifford parallel lines) all

Plücker transformations will be described via the ambient space of the asso-

ciated Klein quadric.
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2 - Basic concepts and first results
!

Let (P,L) be a projective space 2t<tdim(P,L)t<t8. Assume that p is an

elliptic quasipolarity [12], [13]. Thus p assigns to every point X of P a
p phyperplane X such that XtmtX . We define a mapping from the lattice of sub-

spaces of (P,L) into itself by setting
!n pTt9Lto(X |X!e!T) for all subspaces Tt$to and ot9LtP.

!
This mapping is again written as p and is also called a quasipolarity. Hence

(P,L,p) is a generalized elliptic space with absolute quasipolarity p [12],
p[13]. Every subspace T of (P,L) is skew to T . If T is finite-dimensional then

p pT is even a complement of T and putting Xt9LtX nT for all subspaces X of T

yields an elliptic polarity of T.

We are going to define three binary relations on L: Given a,btetL then

put
! pa!1!b :46 a!n!b t$to (orthogonal lines),

a!~!b :46 a!1!b and anbt$to (orthogonally intersecting lines),

a!~!b :46 a!~!b or a!=!b (related lines).
!

These three relations are symmetric. This follows from an axiomatic descrip-

tion of the relation ~ in [13,p.370ff]; cf. also [12,p.58ff].

Given lines a,btetL then there is always a finite sequence
!

(1) at~ta1t~t...t~tant~tb:
!

This is trivial when at=tb. If a and b meet at a unique point X, say, then
pX n(avb)t=:ta1 is a line satisfying at~ta1t~tb. If a and b are skew then there

exists a common transversal line of a and b, say c, whence repeating the pre-

vious construction for a,c and c,b gives the required sequence. Thus (L,~) is

a Plücker space [1,p.199].

If m is a collineation of (P,L) commuting with p then m is preserving

orthogonality of lines in both directions. A Plücker transformation is a

bijective mapping v!:!LtLtL preserving the relation ~ (or, equivalently, the

relation ~) in both directions.
! m mLEMMA 1. Let m!:!PtLtP be a collineation such that at~tb implies a t~tb

for all a,btetL. Then pmt=tmp, whence m yields a Plücker transformation by its

action on the set L.
! pPROOF. Choose any line atetL. A point XtetP\a is in a if, and only if,

pm mpthere are two distinct lines through X that are related to a. Hence a tCta
pm mpfor all lines atetL. But a as well as a is a co-line, so that actually

pm mpa t=ta and therefore pmt=tmp. Now the last assertion is obviously true. P
!
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If dim(P,L)t=t3 then there are dualities that induce Plücker transfor-

mations, e.g., the absolute polarity p. However, there are also Plücker trans-

formations which are by no means induced by collineations or dualities: Let L1
pbe any subset of L such that xtetL1 implies x tetL1. Then define

! ( xt9Ltx if xtetL\L1,(2) d!:!LtLtL, { pxt9Ltx if xtetL1 .9!
Such a bijection d will be called partial p-transformation (with respect to

L1); it is a Plücker transformation of (L,~), since
!p p p pat~tb 46 at~tb 46 a t~tb 46 a t~tb for all a,btetL.

!
The identity on L and the restriction of p to L are partial p-transformations,

as follows when setting L1t:=to and L1t:=tL, respectively. For every other
pchoice of L1 (e.g., L1t:=t{a,a }) it is easily seen that there exist two non-

d d porthogonal concurrent lines xtetL\L1, ytetL1. Then x t=tx and y t=ty are skew

lines, whence d cannot arise from a collineation or duality.

In contrast to these examples we establish
!

THEOREM 1. Let dim(P,L)t=t2 or 4t<tdim(P,L)t<t8. Then every bijection
v vv!:!LtLtL such that at~tb implies a t~tb for all a,btetL is induced by a

collineation m of (P,L) such that pmt=tmp. Hence v is already a Plücker trans-

formation.
!

PROOF. (a) Let dim(P,L)t=t2. Given a point X and a line a then Xteta is
pequivalent to X t~ta. Hence

pvpm!:!PtLtP, Xt9LtX .
!

is a collinearity preserving bijection and therefore a collineation. By con-
m vstruction a t=ta for all atetL and, by Lemma 1, pmt=tmp.

(b) Let dim(P,L)t>t4. We claim that v is mapping concurrent lines to

concurrent lines: Assume, to the contrary, that there exist two distinct con-
v vcurrent lines a,btetL such that a ,b are skew. By dim(P,L)t>t4 there exist

p p ptwo p-conjugate points C1,C2tet(avb) , i.e. C1tetC2 so that also C2tetC1 .

Let cjt:=tCjv(anb) (j!e!{1,2}). Therefore c1t~tc2 and at~tcjt~tb (j!e!{1,2}).
v v v v vSince a and b are skew, c1 and c2 are common transversal lines of a and

v v v v v v vb . But c1 t~tc2 , so that the point c1 nc2 is either on a or on b ; say
v v vc1 nc2 teta . There exists a line b1tCt(avb) such that b!1!b1 and bnb1t=tanb.

Therefore {b,b1,c1,c2} is a set of mutually related lines. However,
v v v{b ,c1 ,c2 } is already a maximal set of mutually related lines, since these

three lines are coplanar and not concurrent. Hence b1tet{b,c1,c2}, a contra-

diction.

By dim(P,L)t>t4 and [4,p.328-329], every bijection of L that takes inter-

secting lines to intersecting lines is induced by a mapping m!:!PtLtP as
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follows:
! m m(AvB)t9LtA vB for all A,BtetP, At$tB.

!
Moreover, this m is injective and is preserving collinearity and non-

collinearity of points. (In [4] it is stated that m is also surjective and

hence a collineation. There is, however, a gap in the proof of surjectivity.)

We are applying this result on the given bijection v in order to show

that v is mapping skew lines to skew lines: Assume, to the contrary, that
v vthere exist skew lines a,btetL with a vb t=:tE being a plane. Each point

Xtetavb is on some line x intersecting a and b at distinct points. Thus
m v v v vX tetx tCtE, since x is meeting a and b at distinct points, too. We read

moff from this that (avb) tCtE. By dim(P,L)t>t4, there exist four concurrent
v v vlines c1,...,c4 such that cit~tcj (it$tj) with c1,c2,c3tCtavb. But c1 ,c2 ,c3

are coplanar, mutually related and distinct, so that they form a trilateral.
v vThis contradicts the existence of c4 t~tci (it=t1,2,3).

Next we establish that m is surjective: Since v is surjective, for each
v vpoint Y of P there exist lines a,btetL such that Yt=ta nb . But then a and b

mare not skew, so that Yt=t(anb) . Thus m is a collineation. Finally, by Lemma

1, pmt=tmp. P
!

3 - Orthogonal transversal lines in elliptic 3-spaces
!

In discussing 3-dimensional spaces we shall assume that (P,L) is a

Pappian projective space satisfying Fano’s postulate and that its absolute
(1)polarity p is projective . It will be convenient to let (P,L) be a projec-

tive space on a 4-dimensional vector space V over a commutative field F. We

shall emphasize this by writing P(V) and L(V) rather than P and L, respec-

tively. The absolute polarity p is induced by a non-degenerate symmetric bi-
blinear form b!:!V*VtLtF satisfying (a,a) t$t0 for all atetV\{o}. But b is

determined by p only up to a non-zero factor in F, so we may assume that
b(b0,b0) t=t1 for some b0tetV. There exists an ordered basis (b0,b1,b2,b3) of V

such that
! ( b) ( )(3) (bi,bj) t=tdiag 1,e1,e2,e3 tetGL(4,F).9 0 9 0!

We observe that (P(V),L(V),p) fits into the concept of an elliptic space as
(2)defined in [17] via a metric vector space . The group of all collineations

of (P,L) commuting with p will be written as PGO(P,p).

----------------------------------------------------------------------------------------------------
(1)Cf., however, Remark 3 at the end of this section.
(2)Elliptic spaces on metric vector spaces over fields of characteristic 2 are
not within our discussion, since their orthogonality is symplectic (possibly
even degenerate).
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Denote by V^V the 2-fold wedge product of V with itself and write P(V^V)

for the (5-dimensional) projective space on V^V. The well known Klein mapping
!

g!:!L(V)tLtP(V^V), FavFbt9LtF(a^b)
!gis injective and L(V) t=:tG is the Klein quadric. The quadratic form

!
q!:!V^VtLtF, S xij!bi^bjt9Ltx01x23-x02x13+x03x12 (xijtetF)

i < j !!(3)determines the Klein quadric . The polarity associated to the Klein quadric

will be denoted by k. The absolute polarity p of (P,L) yields a projective
ga pgcollineation a of P(V^V) characterized by a t=ta for all atetL(V). We shall

(4)refer to a as the antipodal collineation . No point of G is a-invariant and

a is an involution.

Given lines a,btetL(V) then define
!

O(a,b)t:=t{x!e!L|a!~!x and b!~!x}.
! p pThe set O(a,b) is formed by all common transversal lines of a,b,a ,b so that

pO(a,b)t=tO(b,a)t=tO(a,b ). It is easily seen that #O(a,b)t>t3 holds if, and
p p ponly if, either a,a ,b,b are four distinct lines of a regulus or btet{a,a }.

!pLEMMA 2. Given two lines atetL(V) and btetL(V)\{a,a } then #O(a,b)t>t3
g gholds if, and only if, a vb carries an a-invariant point.

!p pPROOF. (a) Suppose that #O(a,b)t>t3. As a,a ,b,b are four distinct lines
g pg g pgof a regulus, {a ,a ,b ,b } is plane quadrangle and

!g g pg pgIt:=t(a vb )n(a vb )
!

turns out to be an a-invariant point.
g g g g g g(b) Let Iteta vb be an a-invariant point. We deduce (a vb )nGt=t{a ,b }

p g gfrom ItmtG. Thus, by btmt{a,a }, the line a vb cannot be a-invariant. Hence
g ga g ga{a ,a ,b ,b } is a plane quadrangle with I being one of its diagonal points.

g ga gThe intersection of the Klein quadric G with the plane a va vb cannot be a
g ga g gacross of lines, since no point of G is fixed under a; thus {a ,a ,b ,b } is

part of a regular conic on the Klein quadric. This in turn shows that
p pa,a ,b,b are in one regulus, whence #O(a,b)t>t3, as required. P

!
The antipodal collineation a is induced by an ftetGL(V^V) such that

!
b0^b1t9Ltte1!b2^b3, b2^b3t9Ltte2e3!b0^b1,t t
b0^b2t9Lt-e2!b1^b3, b1^b3t9Lt-e1e3!b0^b2,t t t t
b0^b3t9Ltte3!b1^b2, b1^b2t9Ltte1e2!b0^b3.t t!

----------------------------------------------------------------------------------------------------
(3)See, e.g., [1], [7], [8] or [16] for results on the Klein quadric that will
be used without further references.
(4)See footnote 6 for a motivation of this name.
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2 3The characteristic polynomial of f is (X -e1e2e3) tetF[X]. Hence a has an
(2)invariant point if, and only if, e1e2e3tetF , i.e. the set of squares in F.

Up to Remark 2 at the end of this section it is assumed that there exists
-----------------------6a square root re1e2e3tetF of e1e2e3. Then

!-----------------------6 -----------------------6c0t:=tte2e3!b0^b1!+!re1e2e3!b2^b3, c3t:=tte2e3!b0^b1!-!re1e2e3!b2^b3,
-----------------------6 -----------------------6(4) c1t:=t-e1e3!b0^b2!+!re1e2e3!b1^b3, c4t:=t-e1e3!b0^b2!-!re1e2e3!b1^b3,t t-----------------------6 -----------------------6c2t:=tte1e2!b0^b3!+!re1e2e3!b1^b2, c5t:=tte1e2!b0^b3!-!re1e2e3!b1^b2,

! (5)is an eigenbasis of V^V with respect to f and the distinct planes
!

ELt:=tFc0vFc1vFc2, ERt:=tFc3vFc4vFc5
!

are fixed pointwise under a. There are no a-invariant points other than those

in EL or ER. We shall frequently use the projections
!

(5) l!:!P(V^V)\ELtLtER, Xt9Lt(XvEL)nER, r!:!P(V^V)\ERtLtEL, Xt9Lt(XvER)nEL.
! -----------------------6 -----------------------6 aThey are induced by f-re1e2e3!id and f+re1e2e3!id, respectively. If X,X are

a l rdistinct antipodal points in P(V^V) then XvX t=tX vX . By (5) and Lemma 2,
!( ) gl gl gr gr#O(a,b)t>t3 46 (a t=tb or a t=tb ) for all a,btetL(V).9 0!

Lines a,btetL(V) will be called Clifford parallel (a!N!b) if O(a,b)t>t3, left
gl gl gr grparallel (NL) if a t=tb and right parallel (NR) if a t=tb . Left (right)

parallelism is an equivalence relation on L(V). We adopt the notations
!

SL(a)t:=t{x!e!L(V)|x!NL!a}, SR(a)t:=t{x!e!L(V)|x!NR!a}.
!

In subsequent results the terms ’left’ and ’right’ may be interchanged

without further notice. We start with an almost trivial
!

LEMMA 3. Let atetL(V). Then SL(a) is an elliptic linear congruence of

lines (regular spread). !!!!!!!! !!!!!!!! ! !!!!!! !!!!!!
! g gPROOF. The subspace a vELtCtP(V^V) is 3-dimensional and SL(a) t=

g(a vEL)nG is a quadric that cannot contain a line, since distinct left paral-
g g (6)lel lines are skew. The point a tetSL(a) is regular , because of

g pg g(a va )nELtmtG. Hence the quadric SL(a) is elliptic so that SL(a) is an

elliptic linear congruence. P
!kWe infer from EL t=tER and ELnGt=to that k induces an elliptic projec-

ktive polarity kL in EL by setting Xt9LtX nEL for all subspaces XtCtEL. Hence

----------------------------------------------------------------------------------------------------
(5)The indices L and R stand for ’left’ and ’right’, respectively, and are
arbitrarily assigned to these two planes.
(6)A point X of a quadric is regular if the tangent space at this point is a
hyperplane. This will be true if at least one line through X meets the quadric
in exactly two points.
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(7)EL becomes an elliptic plane . Two points of EL are kL-conjugate if, and

only if, they are k-conjugate.
! glLEMMA 4. Given lines a,btetL(V) then at~tb holds if, and only if, a ,

gl gr grb are kR-conjugate and a , b are kL-conjugate.
!

PROOF. In P(V^V) we shall consider the lines
!gl gr g pg gl gr g pgmat:=ta va t=ta va , mbt:=tb vb t=tb vb .

!p pIf at~tb then each of a,a is a common transversal line of b and b .
g pg g pgHence each of a , a is k-conjugate to b and b which in turn implies that

k gl glk gr grkmatCtmb so that a tetb and a tetb , as required.

Since each point of EL is k-conjugate to all points of ER, the first part

of the proof is easily reversed. P
!

LEMMA 5. Suppose that at~tb holds for two lines.

(I) If xtetSL(a) and ytetSL(b) are concurrent then xt~ty.

(II) Define
!

RLt:=t{x!e!SL(a)|x!~!y’ for some y’!e!SR(b)},

RRt:=t{y!e!SR(b)|y!~!x’ for some x’!e!SL(a)}.
!

Then RL and RR are mutually opposite reguli. Therefore xtetRL and ytetRR

imply that xt~ty.
!

PROOF. (I) We infer xt$ty from at$tb. Write FtCtL(V) for the only ruled

plane (or, dually, the only star of lines) containing x and y. This F may be

regarded as a projective plane with ’point set’ F and the pencils in F being

the ’lines’. From this point of view gl|F!:!FtLtER is a collineation. By Lemma

4 and by slight modification of Lemma 1, we obtain that x’t~ty’ is equivalent
gl gl gl gl gl glto x’ , y’ being k-conjugate for all x’,y’tetF. But x t=ta and y t=tb

are k-conjugate by Lemma 4, whence xt~ty.

(II) We ask for all pairs (x,y)tetSL(a)*SR(b) satisfying xt~ty. By Lemma

4 this is equivalent to
! gr grk grk gl glk glkx tety t=tb and y tetx t=ta .

!
This in turn may be written as

!g g grk g g g glk gx tetSL(a) nb t=tRL and y tetSR(b) na t=tRR ,
!

where RLtCtSL(a) and RRtCtSR(b) are reguli, since their g-images are regular

----------------------------------------------------------------------------------------------------
(7) gThe elliptic quadric SL(a) discussed in the proof of Lemma 3 may be seengas a sphere in the Euclidian 3-space that arises from a vEL by regarding EL asgits plane at infinity and kL as its absolute polarity. The midpoint of SL(a)g gis (a vEL)nER, whence antipodal points on SL(a) (with respect to a) are anti-
podal points in the usual sense.
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g pg g pgconics containing {a ,a } and {b ,b }, respectively. In order to establish

that RL and RR are mutually opposite, it is sufficient to show that the planes
g gspanned by RL and RR are polar with respect to k. Using the law of modula-

rity in the lattice of subspaces of P(V^V) yields
!g k ( gl grk)k glk gr gspan(RL ) t=t (a vEL)nb t=ta n(ERvb )t=tspan(RR ). P9 0 ! !

REMARK 1. Instead of the mapping gl!:!L(V)tLtER one could also assign to

every line atetL(V) its only left parallel line through some fixed point of

P(V) or, dually, in a fixed plane of P(V). This gives a non-injective idem-

potent mapping L(V)tLtL(V) that is preserving the relation ~. Cf. [20], where

this is discussed for real elliptic 3-spaces.
!

REMARK 2. Recall the settings at the beginning of section 3. The dis-

criminant of the form b (with respect to any basis) is a square if, and only
(2) (2)if, e1e2e3tetF . If e1e2e3tetF then we shall speak of a 3-dimensional

classical elliptic space. One may easily show that (P(V),L(V),NL,NR) is a

projective double space, whence it can be described in terms of a quaternion

skew field with centre F; cf. [9,p.75].
!

REMARK 3. We discuss some modifications of the settings stated at the

beginning of section 3 when (P(V),L(V)) is a 3-dimensional Pappian projective

space over F.

If p is a non-projective elliptic polarity or if F is a field with cha-

racteristic 2, then a (possibly non-projective) antipodal collineation a may

be defined in an analogous way and Lemma 2 remains true.

If p is projective and charFt=t2 then all results on p, b, a and f up to

formula (4) remain true. However, (4) is no longer a basis of V^V. If a has an

invariant point then all a-invariant points form a plane E, say. The linear

mapping
! ay!:!P(V^V)\EtLtE, Xt9Lt(XvX )nE,

!-----------------------6induced by f+re1e2e3!id, is replacing the projections (5). Defining Clifford
gy gyparallel lines as before yields that a!N!b is equivalent to a t=tb , whence

N is an equivalence relation. We mention without proof that (P(V),L(V),N) is a

projective parallelogram space so that it permits an algebraic description in

terms of a pure separable extension field of F [9,p.75].

!
4 - Plücker transformations of classical elliptic 3-spaces

!
At first we are going to discuss the invariance of left and right paral-

lelism under Plücker transformations:
!

THEOREM 2. Let (P(V),L(V),p) be a 3-dimensional classical elliptic space.
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Every Plücker transformation v!:!L(V)tLtL(V) has the following properties:

(I) Clifford parallelism of lines is preserved.
pv vp(II) a t=ta for all atetL(V).

p(III) If two left parallel lines atetL(V), b!e!L(V)\{a,a } go over to left

parallel lines, then left and right parallelism of lines is invariant;

otherwise left and right parallelism is interchanged.
!

PROOF. (I) This is trivial by definition.
p(II) Note that a can be characterized as the only line ytetL(V)\{a} such

that xt~ta is equivalent to xt~ty for all xtetL(V).
v v(III) We shall confine our attention to a !NL!b . Choose any line

vxtetSL(a)t=tSL(b). Hence x is parallel to a and b. There are two possibili-
v v v v v vties: If x !NL!a or x !NL!b then x tetSL(a ), as required. Otherwise

v v v v v v pv vx !NR!a and x !NR!b , whence a !NR!b , so that a t=tb , an absurdity. Re-
-1 v vpeating these arguments for v establishes that SL(a )t=tSL(a) is a left

parallel class.
vNext suppose ct~ta. The arguments from above show that SL(c) is either a

left or a right parallel class. For every line xtetSL(a) there exists a con-

current line ytetSL(c) by Lemma 3, whence xt~ty follows from Lemma 4. But this
v v vproperty carries over to SL(a) and SL(c) . Thus, by Lemma 4, SL(c) is a left

parallel class. Finally, by virtue of (1), we may drop the assertion ct~ta,
vwhence SL(c) is a left parallel class for all ctetL(V). P

!
By Theorem 2 (III), a Plücker transformation v!:!L(V)tLtL(V) is either

direct or opposite, i.e. preserving or interchanging left and right paralle-

lism, respectively. All partial p-transformations are direct. The product of

an elliptic reflection (a harmonic homology with centre CtetP(V), say, and
paxis C ) with an opposite Plücker transformation yields a direct Plücker

transformation. Thus we may restrict our attention to direct transformations.

We introduce a definition: Two collineations z!:!ELtLtEL and h!:!ERtLtER

are called admissible if they satisfy the following conditions:
!

(Ad1) z and h are commuting with kL and kR, respectively.

(Ad2) Whenever a line XvY (XtetEL, YtetER) has non-empty intersection with
z hthe Klein quadric G then (X vY )nG is non-empty too.

!
THEOREM 3. Let (P(V),L(V),p) be a 3-dimensional classical elliptic space.

(I) If v!:!L(V)tLtL(V) is a direct Plücker transformation then
!gr vgr gl vglvL!:!ELtLtEL, a t9Lta and vR!:!ERtLtER, a t9Lta (atetL(V))

! ! !
are admissible collineations.

(II) A homomorphism from the group of direct Plücker transformations of

(L(V),~) into PGL(EL)*PGL(ER) is given by vt9Lt(vL,vR). The kernel of
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this homomorphism is formed by all partial p-transformations.

(III) Let z!:!ELtLtEL and h!:!ERtLtER be two admissible collineations. Then

there exists a direct Plücker transformation v!:!L(V)tLtL(V) such that

vLt=tz, vRt=th.
!

PROOF. (I) The g-image of a ruled plane is a plane on the Klein quadric.
rThus G t=tEL. The fibres of r|G are exactly the Klein images of the equiva-

lence classes with respect to right parallelism so that vL is a well-defined

bijection by Theorem 2 (III). Applying Lemma 4 yields that vL takes

kL-conjugate points to kL-conjugate points. Finally, by the dual of Theorem 1,

vL is a collineation commuting with kL. These results carry over to vR.

If we are given points XtetEL, YtetER such that (XvY)nGt$to then
!gr pgr gl pglXt=ta t=ta , Yt=ta t=ta

!
for some line atetL(V), say. Joining the vL-image of X and the vR-image of Y

vg pvgyields a line carrying the points a ,a of G.

(II) This is obviously true.
------(III) By the axiom of choice there exists a subset LtCtL(V) such that

!------ ------p ------ ------pLuL t=tL(V), LnL t=to.
!

We define a mapping v!:!L(V)tLtL(V) as follows:
------ ------. If atetL then there exists a unique line in L, say b, such that

!grz glh g pg(a va )nGt=t{b ,b }.
vLet a t:=tb.

------ p ------ v pvp. If atetL(V)\L then a tetL and we set a t:=ta .

This mapping v has the required properties by Lemma 4. P
!

Theorem 3 is a generalization of a result from the kinematics of real
(8)elliptic 3-spaces or, in algebraic terms, a result on an isomorphism of

classical groups; cf., e.g., [3,p.6ff], [6,p.107ff], [7,p.252], [11,p.323],

[19,p.18ff] for details and further references.

To sum up, we have shown that for a 3-dimensional classical elliptic

space all Plücker transformations of (L(V),~) can be obtained according to the

proof of Theorem 3, possibly followed by an elliptic reflection.

Now we are going to express the previous results in algebraic terms.

Recall the eigenbasis (4) of the linear mapping f inducing the antipodal col-

lineation a. Write
!

----------------------------------------------------------------------------------------------------
(8)In that context instead of two elliptic planes two Euclidian spheres are
used and the lines of L(V) are subject to orientation. Dropping orientation of
lines forces to identify antipodal points on those spheres and yields two
elliptic planes.
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ELt:=tspan{c0,c1,c2}, ERt:=tspan{c3,c4,c5}.
!

In the sequel we shall represent the Klein quadric by the quadratic form
!-----------------------6 -1Qt:=te1(re1e2e3) !q

!
and we shall change to the new basis

!-----------------------6 -1 -----------------------6 -1d0t:=t(re1e2e3) !c0, d3t:=t(re1e2e3) !c3,
-1 -1d1t:=te1 !c1, d4t:=te1 !c4,
-1 -1d2t:=te1 !c2, d5t:=te1 !c5

!
of P(V^V). Then

!5( )Q 2 2 2 2 2 2S xjdj t=tx0 +e3x1 +e2x2 -x3 -e3x4 -e2x5 (xjtetF).9 0j=0 !!
LEMMA 6. Two collineations z!:!ELtLtEL and h!:!ERtLtER are admissible if,

and only if, they can be induced by mappings gtetGL(EL) and htetGL(ER),

respectively, such that the following conditions hold true for some constant

ktetF\{0}:
gQ QG(I) x t=tk(x ) for all xtetEL.
hQ QH(II) x t=tk(x ) for all xtetER.

Q -1 Q (2) QH -1 QG (2)(III) If FatetEL, FbtetER and -(b ) a tetF then -(b ) a tetF .

Here G,HtetAut(F) denote the companion automorphisms of g,h, respectively.
!

PROOF. (a) Let z and h be admissible. Choose any semilinear mapping g

inducing z and assume that g belongs to GtetAut(F). Since z is commuting with

kL, there exists a constant ktetF\{0} such that (I) holds true. Similarly h

can be induced by a mapping h’tetGL(ER) with companion automorphism HtetAut(F)

satisfying
! h’Q QHx t=tl(x ) for all xtetER

!
and some constant element ltetF\{0}.

Given points FatetEL and FbtetER then (FavFb)nGt$to holds if, and only
Q Q 2if, the equation a +b x t=t0 has a solution in F, which in turn is equivalent

to
! Q -1 Q (2)(6) -(b ) a tetF .

! Q -1 QApplying this condition to Fd0 and Fd3 yields -(d3 ) d0 t=t-(-1)W1t=t1. Since
z hz and h are admissible, (Fd0) v(Fd3) too has common points with G or, equi-

valently,
! h’Q -1 gQ -1 (2)-(d3 ) d0 t=tl ktetF .

!
But this allows to replace h’ by the semilinear mapping

!
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5------------------6-1ht:=tr l k !h’
! ( z h )so that (II) is fulfilled. Finally, (6) implies (Fa) v(Fb ) nGt$to, whence9 0 !hQ -1 gQ -1 QH -1 QG (2)-(b ) a t=t-k (b ) ka tetF .

!
(b) If g and h are given subject to (I), (II), (III), then the induced

collineations are easily seen to be admissible. P
!

THEOREM 4. Let (P(V),L(V),p) be a 3-dimensional classical elliptic space

and let v!:!L(V)tLtL(V) be a direct Plücker transformation. There exists a

partial p-transformation d!:!L(V)tLtL(V) such that vd is induced by a

collineation mtetPGO(P(V),p) if, and only if, the collineations vL!:!ELtLtEL

and vR!:!ERtLtER (described in Theorem 3) belong to the same automorphism of
(9)the ground field . ! !!!!!! !!!!!

!
PROOF. (a) If d and m are existing then, by Lemma 1, mtetPGO((P(V),p).

There is a unique automorphic collineation s of the Klein quadric such that
mg gsa t=ta for all atetL(V). Moreover, s and the antipodal collineation a are

s scommuting. We infer EL t=tEL and ER t=tER from vd being direct. Hence
!

vLt=t(vd)Lt=ts|EL and vRt=t(vd)Rt=ts|ER
!

so that vL and vR belong to the same automorphism of the ground field.

(b) Assume that vL and vR belong to the same automorphism of the ground

field. Thus, according to Lemma 6, we may choose semilinear mappings

gtetGL(EL) and htetGL(ER) with the same companion automorphism Gt=tH. There

exists a unique semilinear mapping stetGL(V^V) extending both g and h. Since

V^Vt=tELsER is an orthogonal direct sum (with respect to the bilinear form

associated to Q), we obtain
! sQ QGx t=tk(x ) for all xtetV^V.

!
Therefore the mapping s gives rise to an automorphic collineation s, say, of

the Klein quadric. We observe that s and a are commuting. Hence there exists

either a collineation or a duality, say w, of (P(V),L(V)) commuting with the
wg gsabsolute polarity p such that a t=ta for all atetL(V). If w is a collinea-

tion then set mt:=tw, else put mt:=tpw. So under all circumstances we obtain a

collineation mtetPGO(P(V),p) such that
!m pm v pv{a ,a }t=t{a ,a } for all atetL(V).

!
Thus there exists a partial p-transformation d with required properties. P

!
Since every opposite Plücker transformation equals the product of an

----------------------------------------------------------------------------------------------------
(9)An example of two admissible collineations with different companion auto-
morphisms is given at the end of the paper.
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elliptic reflection and a direct Plücker transformation, Theorem 4 immediately

implies
!
THEOREM 5. Let (P(V),L(V),p) be a 3-dimensional classical elliptic space

such that every automorphism of the ground field F is trivial. Then for every

Plücker transformation v!:!L(V)tLtL(V) there exists a partial p-transformation

d!:!L(V)tLtL(V) such that vd is induced by a (necessarily projective) col-

lineation mtetPGO((P(V),p).
!

Theorem 5 describes, e.g., the Plücker group of the real elliptic 3-

space.
!
REMARK 4. Let F be a commutative Pythagorean field. Then every sum of

non-zero squares in F is again a non-zero square in F. Following [1,p.73ff] we
4discuss the elliptic space on Vt=tF with an absolute polarity p induced by

the standard bilinear form. Thus (b0,b1,b2,b3) can be chosen as the standard

basis, so that e1t=te2t=te3t=t1. Hence
!5( )Q 2 2 2 2 2 2S xjdj t=tx0 +x1 +x2 -x3 -x4 -x5 (xjtetF),9 0j=0 !Q (2) Q (2)x tetF for all xtetEL, -y tetF for all ytetER.

!
Now, by Lemma 6, condition (Ad2) in the definition of admissible collineations

is automatic.

We note the following consequence: Write Lp(V) for the set of unordered
ppairs {a,a } where atetL(V). Then

! p gr gli!:!Lp(V)tLtEL*ER, {a,a }t9Lt(a ,a )
!

is a bijection. EL*ER may be regarded as the Corrado Segre product space of
-1the projective planes EL and ER (cf. [18,p.211], [15]) and, by virtue of i ,

we obtain an isomorphic partial line space with ’point set’ Lp(V). Two
p p’points’ {a,a },{b,b }tetLp(V) are ’collinear’ if, and only if, the lines

a,btetL(V) are Clifford parallel. It is immediate that all Plücker transfor-

mations of (L(V),~) induce automorphisms of this partial line space by their

action on Lp(V).
!

REMARK 5. The field R((T)) of formal Laurent series with real coeffi-

cients is Pythagorean (cf., e.g., [10,p.204]) and admits a non-trivial auto-

morphism G taking T to T+1. Defining
!2 2 G ( )g!:!ELtLtEL, S xjdjt9Lt S xj dj xjtetR((T))9 0j=0 j=0!

and letting h be the identity on ER, yields a direct Plücker transformation

that does not permit a factorization into an orthogonality-preserving col-

lineation and a partial p-transformation.
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