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1 - Introduction

If we are given a linear space with point set P, line set £ and an ortho-
gonality relation on its set of lines then call two lines related if they are
concurrent and orthogonal or if they are identical. A bijection of £ that
preserves this relation in both directions is called a Pliicker transformation.

Pliicker transformations of Euclidian spaces are under discussion in [1],
[2], [5]. Cf. also the survey in [14]. The crucial result, due to W.Benz and
E.M. Schréder, is that 3-dimensional spaces are very exceptional, since only
here Pliicker transformations are intimately connected with derivations of the
ground field. For higher dimensions all Pllicker transformations arise from
orthogonality-preserving collineations, whereas Plicker transformations of
Euclidian planes cannot deserve interest.

In this paper we discuss Pliicker transformations of generalized elliptic
spaces, i.e. (not necessarily finite dimensional) projective spaces with
orthogonality based upon an elliptic absolute quasipolarity. For dimensions
2, 4, 5, 6, ... there are no Pliicker transformations other than those arising
from orthogonality-preserving collineations. In every 3-dimensional genera-
lized elliptic space there exist Pliicker transformations that cannot be in-
duced by collineations or dualities; under certain restrictions (projective
absolute polarity, Fano’s postulate, existence of Clifford parallel lines) all
Plicker transformations will be described via the ambient space of the asso-

ciated Klein quadric.
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2 - Basic concepts and first results

Let (P,£) be a projective space 2 = dim(P,¥£) = ». Assume that m is an
elliptic quasipolarity [12], [13]. Thus w assigns to every point X of ? a
hyperplane X" such that X ¢ X". We define a mapping from the lattice of sub-
spaces of (P,%) into itself by setting

J = n(X’IIXe?) for all subspaces ¥ # @ and @ — P.

This mapping is again written as m and is also called a quasipolarity. Hence
(P,2,m) is a generalized elliptic space with absolute quasipolarity m [12],

[13]. Every subspace J of (P,#) is skew to J". If J is finite-dimensional then

gT[

is even a complement of and putting X = A™nJ for all subspaces X of T

T
yields an elliptic polarity of 7.

We are going to define three binary relations on £: Given a,b € £ then

put
alb = anb" = g (orthogonal lines),
arb = alb and anb # @ (orthogonally intersecting lines),
a~b < axbor a=b (related lines).

These three relations are symmetric. This follows from an axiomatic descrip-
tion of the relation = in [13,p.370ff]; cf. also [12,p.58ff].

Given lines a,b € £ then there is always a finite sequence
(1) a~ap~ ...~ ap~ b

This is trivial when a = b. If a and b meet at a unique point X, say, then
X"n(avb) =: a; is a line satisfying a ~ a; ~ b. If a and b are skew then there
exists a common transversal line of a and b, say ¢, whence repeating the pre-
vious construction for a,c and c,b gives the required sequence. Thus (£,~) is
a Pliicker space [1,p.199].

If p is a collineation of (P,#) commuting with m then u is preserving
orthogonality of lines in both directions. A Plicker transformation is a
bijective mapping ¢: ¥ -> £ preserving the relation ~ (or, equivalently, the

relation %) in both directions.

LEmma 1. Let u: P > P be a collineation such that a ~ b implies a¥ ~ b
for all a,b € . Then mu = umn, whence p yields a Pliicker transformation by its

action on the set £.

Proor. Choose any line a € £. A point X € P\a is in a" if, and only if,
there are two distinct lines through X that are related to a. Hence a™ < at"
for all lines a € £. But a™ as well as a"" is a co-line, so that actually

a™ = aM"" and therefore mu = um. Now the last assertion is obviously true. m
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If dim(?P,%2) = 3 then there are dualities that induce Pliicker transfor-
mations, e.g., the absolute polarity m. However, there are also Pliicker trans-
formations which are by no means induced by collineations or dualities: Let £4
be any subset of £ such that x € #; implies x™ € £;. Then define

x B x if x € $\¥,q,

(2) 8:$9$’{x9x”ifxe$1.

Such a bijection & will be called partial m-transformation (with respect to

#,); it is a Pliicker transformation of (£,~), since
a~rb & axb" < a"rb < a" = b" for all a,b € £L.

The identity on £ and the restriction of m to £ are partial m-transformations,
as follows when setting £; := @ and #; := ¥, respectively. For every other
choice of £; (e.g., #; := {a,a™) it is easily seen that there exist two non-
orthogonal concurrent lines x € £\%;, y € £;. Then x% = x and y® = y" are skew
lines, whence &8 cannot arise from a collineation or duality.

In contrast to these examples we establish

THeEOREM 1. Let dim(P,%) = 2 or 4 = dim(P,2) = w. Then every bijection
¢:¥% > ¥ such that a ~ b implies a¥ ~ b® for all a,b € £ is induced by a
collineation p of (P,%) such that my = un. Hence ¢ is already a Pliicker trans-

formation.

Proor. (a) Let dim(P,%) = 2. Given a point X and a line a then X € a is
equivalent to X" ~ a. Hence

H:P > P, X = XW8

is a collinearity preserving bijection and therefore a collineation. By con-
struction a* = a® for all a € £ and, by Lemma 1, mu = um.

(b) Let dim(P,#) =z 4. We claim that ¢ is mapping concurrent lines to
concurrent lines: Assume, to the contrary, that there exist two distinct con-
current lines a,b € £ such that a?b¥ are skew. By dim(P,£) = 4 there exist
two m-conjugate points C{,C, € (avb)", i.e. C; € C," so that also C, € C{".
Let c; := Cyvlanb) (je{l1,2}). Therefore c; » c; and a ~ c; # b (je{l,2}).
Since a¥ and bY are skew, ci¥ and c,¥ are common transversal lines of a? and
b?. But c1¥ = c¥, so that the point c;¥ncy? is either on a® or on b¥% say
c1%ncy? € a®. There exists a line b; < (avb) such that blb; and bnb; = anb.
Therefore {b,by,c1,c2t is a set of mutually related lines. However,
{b%,c1%,c,% is already a maximal set of mutually related lines, since these
three lines are coplanar and not concurrent. Hence b; € {b,cq,c2}, a contra-
diction.

By dim(?P,¥) =z 4 and [4,p.328-329], every bijection of ¥ that takes inter-

secting lines to intersecting lines is induced by a mapping p:P > P as
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follows:
(AVB) +— A"vB* for all A,B € P, A # B.

Moreover, this pu is injective and is preserving collinearity and non-
collinearity of points. (In [4] it is stated that u is also surjective and
hence a collineation. There is, however, a gap in the proof of surjectivity.)

We are applying this result on the given bijection ¢ in order to show
that ¢ is mapping skew lines to skew lines: Assume, to the contrary, that
there exist skew lines a,b € £ with a®b? =: € being a plane. Each point
X € avb is on some line Xx intersecting a and b at distinct points. Thus
Xt e x? ¢ &, since x¥ is meeting a® and b® at distinct points, too. We read
off from this that (avb)* ¢ &. By dim(P,%) = 4, there exist four concurrent
lines cy,...,c4 such that ¢ ~ c¢; (i # j) with cq,c2,c3 € avb. But c1%,c2%,c5%
are coplanar, mutually related and distinct, so that they form a trilateral.
This contradicts the existence of c4¥ ~ ¢ (i = 1,2,3).

Next we establish that p is surjective: Since ¢ is surjective, for each
point Y of P there exist lines a,b € £ such that Y = a®nb®. But then a and b
are not skew, so that Y = (anb)®. Thus p is a collineation. Finally, by Lemma

1, mp = um. [

3 - Orthogonal transversal lines in elliptic 3-spaces

In discussing 3-dimensional spaces we shall assume that (P,£) is a
Pappian projective space satisfying Fano’s postulate and that its absolute
polarity m is projectivem. It will be convenient to let (P,£) be a projec-
tive space on a 4-dimensional vector space V over a commutative field F. We
shall emphasize this by writing P(V) and £(V) rather than ? and £, respec-
tively. The absolute polarity m is induced by a non-degenerate symmetric bi-
linear form B:VxV > F satisfying (a,a)f # 0 for all a € V\{o}. But B is
determined by m only up to a non-zero factor in F, so we may assume that
(bo,bo)? = 1 for some bg € V. There exists an ordered basis (bg,by,bs,bz) of V

such that
(3) ((bi,bj)B) = diag(l,el,ez,eg) € GL(4,F).

We observe that (P(V),£(V),n) fits into the concept of an elliptic space as
defined in [17] via a metric vector space(Z). The group of all collineations

of (P,#) commuting with m will be written as PI'O(P,n).

(I)Cf., however, Remark 3 at the end of this section.

2 s . . s
()Elhptlc spaces on metric vector spaces over fields of characteristic 2 are
not within our discussion, since their orthogonality is symplectic (possibly
even degenerate).
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Denote by VAV the 2-fold wedge product of V with itself and write P(VAV)

for the (5-dimensional) projective space on VAV. The well known Klein mapping
y: 2(V) > P(VAV), FavFb > F(aAb)
is injective and £(V)¥ =: T is the Klein quadric. The quadratic form
q: VAV > F, ) xi;biAb; > X01X23-X02X13+X03X12  (Xij € F)
i<j
determines the Klein quadric(3). The polarity associated to the Klein quadric
will be denoted by k. The absolute polarity m of (P,¥) yields a projective
collineation « of P(VAV) characterized by a? = a™ for all a € £(V). We shall
refer to « as the antipodal collineation(4). No point of T is «a-invariant and

o is an involution.

Given lines a,b € £(V) then define
Ola,b) := {xe¥fla~x and b= x}.

The set O(a,b) is formed by all common transversal lines of a,b,a™,b"™ so that
O(a,b) = O(b,a) = 0(a,b™). It is easily seen that #0O(a,b) = 3 holds if, and

only if, either a,a",b,b™ are four distinct lines of a regulus or b € {a,a™.

LEMMAa 2. Given two lines a € (V) and b € #2(V)\{a,a"} then #0O(a,b) = 3

holds if, and only if, a®vb? carries an o-invariant point.

Proor. (a) Suppose that #0O(a,b) = 3. As a,a",b,b" are four distinct lines

of a regulus, {a%,a™,b¥,b™} is plane quadrangle and
I := (a'vb¥)n(a™vb™)

turns out to be an «-invariant point.

(b) Let I € a%vb?¥ be an «-invariant point. We deduce (a?vb?)nI' = {a?,b"}
from I ¢ I'. Thus, by b ¢ {a,a™, the line a’vb? cannot be «-invariant. Hence
{a¥,a7%,b¥,b"} is a plane quadrangle with I being one of its diagonal points.
The intersection of the Klein quadric ' with the plane a¥va?vb? cannot be a
cross of lines, since no point of T is fixed under «; thus {a?,a”*,b?,b¥} is
part of a regular conic on the Klein quadric. This in turn shows that

a,a",b,b" are in one regulus, whence #0(a,b) = 3, as required. [

The antipodal collineation « is induced by an f € GL(VAV) such that

boAby — e byAbg, boAbz =  ezez boAby,
boAbz +— -e; biAbg, biAbz +— -eie3z bpAb,,
boAbz — ezbjiAby, biAby; = ejez boAbg.

(3)See, e.g., [11, [7], [8] or [16] for results on the Klein quadric that will

be used without further references.

(4)See footnote 6 for a motivation of this name.
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The characteristic polynomial of f is (X%-ejezes)® € FIX]. Hence o has an
invariant point if, and only if, ejezesz € F(Z), i.e. the set of squares in F.
Up to Remark 2 at the end of this section it is assumed that there exists

a square root veiezez € F of eiezez. Then

Co := ezezbgAby +Vejezesz baAbg, c3 := ezezbgAby -Vejezesz baAbg,
(4) cy1 := -ei1ezbpAby +Vejezesz biAbg, cg := —e1ezbpgAby -Vejezez biAbg,
cy = ej1ez bgAbz+Vejezez biAb,, cg := ej1ez bgAbz-Vejezez biAb,,

is an eigenbasis of VAV with respect to f and the distinct planes(S)

8L := FcgvFciVvEcy, 81.2 := FcgvFcyvEcg

are fixed pointwise under «. There are no o-invariant points other than those

in &, or &r. We shall frequently use the projections
(5) A:P(VAVN\EL > ER, X > (XVELINER, p:PVAVI\ER > &, X = (XVERINE].

They are induced by f-Veiepzesid and f+Veiezesid, respectively. If X,X* are
distinct antipodal points in P(VAV) then XvX* = X*vXP. By (5) and Lemma 2,

(#O(a,b) z 3) e (2" = b™ or a® = b*) for all a,b € L(V).

Lines a,b € £(V) will be called Clifford parallel (allb) if O(a,b) = 3, left
parallel (ll;) if a® = b®™ and right parallel (llg) if a® = b®. Left (right)

parallelism is an equivalence relation on £(V). We adopt the notations
fila) = {xefV)|xlpa}, ¥rla) = {xel(V)|xlga}.

In subsequent results the terms ’left’ and ’right’ may be interchanged

without further notice. We start with an almost trivial

LEMMA 3. Let a € £(V). Then ¥.(a) is an elliptic linear congruence of

lines (regular spread).

Proor. The subspace a®v&; ¢ P(VAV) is 3-dimensional and ¥;(a)? =
(a?v&)nI' is a quadric that cannot contain a line, since distinct left paral-
lel lines are skew. The point a¥% e $.(a)? is regular(b), because of
(a?va™)n&; ¢ T. Hence the quadric ¥;(a)? is elliptic so that ¥;(a) is an

elliptic linear congruence. ]

We infer from &; = & and &;n = @ that k induces an elliptic projec-

tive polarity k; in &; by setting ¥ > X*n&; for all subspaces X < &;. Hence

(S)The indices L and R stand for ’left’ and ’right’, respectively, and are
arbitrarily assigned to these two planes.

(6)A point X of a quadric is regular if the tangent space at this point is a
hyperplane. This will be true if at least one line through X meets the quadric
in exactly two points.
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&; becomes an elliptic planem. Two points of &; are kp-conjugate if, and

only if, they are k-conjugate.

LEMMA 4. Given lines a,b € £(V) then a =~ b holds if, and only if, a™,

" are kg-conjugate and a*?, b¥" are k;-conjugate.
Proor. In P(VAV) we shall consider the lines
m, := a®™va = a¥'va™, mp = bYNBYP = pYvp™,

If a ~ b then each of a,a™ is a common transversal line of b and b™
Hence each of a¥, a"" is k-conjugate to b¥ and ™ which in turn implies that
m, ¢ mp* so that a’ e b and a’ e b, as required.

Since each point of &, is k-conjugate to all points of &g, the first part

of the proof is easily reversed. ]

LEMMA 5. Suppose that a ~ b holds for two lines.
(I) If x e ¥1(a) and y € ¥1(b) are concurrent then x % y.

(II) Define

Ry = {xe¥(a)lx~y’ for some y’ € ¥r(b)},

Rr = {ye¥Prb)|y~x’ for some x’' €¥(a)}.

Then R; and Rp are mutually opposite reguli. Therefore x € R and y € Ry

imply that x = y.

Proor. (I) We infer x # y from a # b. Write ¥ < £(V) for the only ruled
plane (or, dually, the only star of lines) containing x and y. This ¥ may be
regarded as a projective plane with ’point set’ ¥ and the pencils in ¥ being
the ’lines’. From this point of view yA|¥F:F - &g is a collineation. By Lemma

7

4 and by slight modification of Lemma 1, we obtain that x’ = y

A A
to x' ¥, y’?

is equivalent
being k-conjugate for all x’,y’ € %. But x? = a" and y" = p?
are k-conjugate by Lemma 4, whence x ~ y.

(II) We ask for all pairs (x,y) € #.(a)x¥gr(b) satisfying x =~ y. By Lemma

4 this is equivalent to
X7P e y¥P* = p¥PK gnd y? e x¥ = g«
This in turn may be written as
x? € $.(a)nb?* = R and y¥ € Pr(b)na?™ = Rg?,

where R; < ¥;(a) and Rp < ¥r(b) are reguli, since their y-images are regular

mThe elliptic quadric ¥;(a)¥ discussed in the proof of Lemma 3 may be seen
as a sphere in the Euclidian 3-space that arises from a?v€; by regarding &; as
its plane at infinity and k; as its absolute polarity. The midpoint of $;(a)?
is (a¥v&)nER, whence antipodal points on ¥;(a)? (with respect to «) are anti-
podal points in the usual sense.
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conics containing {a¥,a™} and {b¥,b™}, respectively. In order to establish
that R; and Rr are mutually opposite, it is sufficient to show that the planes
spanned by R;¥ and Rp¥ are polar with respect to k. Using the law of modula-

rity in the lattice of subspaces of P(VAV) yields
span(R; 7)< = ((azﬂvé’L)nlf”m)K = a"*n(ExvD?P) = span(RgY). n

ReEMARk 1. Instead of the mapping yA: £(V) > &g one could also assign to
every line a € £(V) its only left parallel line through some fixed point of
P(V) or, dually, in a fixed plane of P(V). This gives a non-injective idem-
potent mapping £(V) > £(V) that is preserving the relation ~. Cf. [20], where

this is discussed for real elliptic 3-spaces.

REMARK 2. Recall the settings at the beginning of section 3. The dis-
criminant of the form B (with respect to any basis) is a square if, and only
if, ejeqez € F?  1r eiere3 € F? then we shall speak of a 3-dimensional
classical elliptic space. One may easily show that (P(V),2(V),l.lg) is a
projective double space, whence it can be described in terms of a quaternion

skew field with centre F; cf. [9,p.75].

REMARk 3. We discuss some modifications of the settings stated at the
beginning of section 3 when (P(V),2(V)) is a 3-dimensional Pappian projective
space over F.

If m is a non-projective elliptic polarity or if F is a field with cha-
racteristic 2, then a (possibly non-projective) antipodal collineation « may
be defined in an analogous way and Lemma 2 remains true.

If m is projective and charF = 2 then all results on n, 3, « and f up to
formula (4) remain true. However, (4) is no longer a basis of VAV. If « has an
invariant point then all o«-invariant points form a plane &, say. The linear
mapping

9 : PIVAVINE > &, X B (XvX*)nE,

induced by f+Vejezesid, is replacing the projections (5). Defining Clifford
parallel lines as before yields that allb is equivalent to a’ = b?, whence
I is an equivalence relation. We mention without proof that (P(V),2(V),I) is a
projective parallelogram space so that it permits an algebraic description in

terms of a pure separable extension field of F [9,p.75].

4 - Pliicker transformations of classical elliptic 3-spaces

At first we are going to discuss the invariance of left and right paral-

lelism under Pliicker transformations:

THEOREM 2. Let (P(V),%(V),m) be a 3-dimensional classical elliptic space.
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Every Plicker transformation ¢: £(V) > £(V) has the following properties:

(1) Clifford parallelism of lines is preserved.

(IT) a™ = a®" for all a € 2(V).

(ITII) If two left parallel lines a € £(V), be#(V)\{a,a"} go over to left
parallel lines, then left and right parallelism of lines is invariant;

otherwise left and right parallelism is interchanged.

Proor. (I) This is trivial by definition.

(II) Note that a"™ can be characterized as the only line y € £(V)\{a} such
that x =~ a is equivalent to x = y for all x € £(V).

(II1) We shall confine our attention to a®ll.b®. Choose any line
x € ¥(a) = ¥.(b). Hence x¥ is parallel to a and b. There are two possibili-
ties: If x®lpa® or xPU.b®? then x¥ e ¥.(a¥), as required. Otherwise
x?llga® and x¥lgb¥, whence a®llgb¥, so that a"™ = b®, an absurdity. Re-
peating these arguments for ¢ ! establishes that ¥.(a®) = ¥.(a)® is a left
parallel class.

Next suppose ¢ = a. The arguments from above show that ¥;(c)? is either a
left or a right parallel class. For every line x € ¥;(a) there exists a con-
current line y € #;(c) by Lemma 3, whence x ~ y follows from Lemma 4. But this
property carries over to ¥;(a)® and ¥.(c)?. Thus, by Lemma 4, $;(c)? is a left
parallel class. Finally, by virtue of (1), we may drop the assertion ¢ ~ a,

whence ¥#;(c)? is a left parallel class for all ¢ € £(V). m

By Theorem 2 (III), a Pliicker transformation ¢:£(V) > £(V) is either
direct or opposite, i.e. preserving or interchanging left and right paralle-
lism, respectively. All partial mn-transformations are direct. The product of
an elliptic reflection (a harmonic homology with centre € € P(V), say, and
axis C") with an opposite Pliicker transformation yields a direct Pliicker
transformation. Thus we may restrict our attention to direct transformations.

We introduce a definition: Two collineations :&; > &, and 7n:8&r > &g

are called admissible if they satisfy the following conditions:

(Adl) < and m are commuting with k; and kg, respectively.
(Ad2) Whenever a line XvY (X € &;, Y € &g) has non-empty intersection with
the Klein quadric T' then (X®vY™AI is non-empty too.

THEOREM 3. Let (P(V),£(V),n) be a 3-dimensional classical elliptic space.

(1) If ¢:%(V) > £(V) is a direct Pliicker transformation then
oL 8L > &, a% > a®P and ¢r:Er > &g, a7 > a® (a € £(V))

are admissible collineations.
(II) A homomorphism from the group of direct Pliicker transformations of

(£(V),~) into PIL(&.)xPTL(ER) is given by ¢ +> (pr,or). The kernel of
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this homomorphism is formed by all partial m-transformations.
(III) Let C:6; > & and m:Ep > Ep be two admissible collineations. Then

there exists a direct Pliicker transformation ¢: 2(V) > £(V) such that
oL = G, ¢r = M.

Proor. (I) The y-image of a ruled plane is a plane on the Klein quadric.
Thus TP = &;. The fibres of p|I are exactly the Klein images of the equiva-
lence classes with respect to right parallelism so that ¢; is a well-defined
bijection by Theorem 2 (III). Applying Lemma 4 yields that ¢; takes
Ky-conjugate points to ky-conjugate points. Finally, by the dual of Theorem 1,
¢;. is a collineation commuting with k;. These results carry over to ¢@g.

If we are given points X € &;, Y € &g such that (XvY)n[l # @ then
X = a' = gWP ¥ = a™ = g™
for some line a € £(V), say. Joining the ¢;-image of X and the ¢r-image of Y
yields a line carrying the points a¥?,a™? of T.

(II) This is obviously true.

(III) By the axiom of choice there exists a subset £ < £(V) such that
PUPT = 2(V), 2n¥" = a.

We define a mapping ¢: £(V) > £(V) as follows:

e If a € £ then there exists a unique line in £, say b, such that

(@?PSva®™MAr = {b?,b™)}.

Let a% := b.
e If a € £(V\Z then a" € £ and we set a? := a™".
This mapping ¢ has the required properties by Lemma 4. ]

Theorem 3 is a generalization of a result from the kinematics of real
elliptic 3—spaces(8) or, in algebraic terms, a result on an isomorphism of
classical groups; cf., e.g., I[3,p.6ff], [6,p.107ff], [7,p.252], [11,p.323],
[19,p.18ff] for details and further references.

To sum up, we have shown that for a 3-dimensional classical elliptic
space all Pliicker transformations of (£(V),~) can be obtained according to the
proof of Theorem 3, possibly followed by an elliptic reflection.

Now we are going to express the previous results in algebraic terms.
Recall the eigenbasis (4) of the linear mapping f inducing the antipodal col-

lineation «. Write

(S)In that context instead of two elliptic planes two Euclidian spheres are
used and the lines of £(V) are subject to orientation. Dropping orientation of
lines forces to identify antipodal points on those spheres and yields two
elliptic planes.
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E; := span{cg,ci,c2}, Ep := span{cz,cy,cs}.
In the sequel we shall represent the Klein quadric by the quadratic form
Q := e;(Verezes)t g

and we shall change to the new basis

v -1 Vv -1
do := ( 818283) Co, ds := ( 818283) C3z,
= -1 .= -1
d1 = e Cy, d4 = €1 " Cag,
= -1 .= -1
dz = eq1 " Cp, d5 = €1 " Cg

of P(VAV). Then

(

dej)o = X02+83X12+€2X22—X32—€3X42—€2X52 (Xj e F).

5
=0

J

LEMMA 6. Two collineations £:&p > & and n:8&r > &r are admissible if,
and only if, they can be induced by mappings g € TL(E;) and h € TL(Eg),
respectively, such that the following conditions hold true for some constant
k € F\{0}:

(I)  x%Y = k(x%) for all x € E;.
(I1) x" = k(x") for all x € Epg.
(III) If Fa € &, Fb € &g and -(b9)1a? € F? then -(b%¥)1a% ¢ F?,

Here G,H € Aut(F) denote the companion automorphisms of g,h, respectively.

Proor. (a) Let ¢ and 7m be admissible. Choose any semilinear mapping g
inducing ¢ and assume that g belongs to G € Aut(F). Since { is commuting with
Ky, there exists a constant k € F\{O} such that (I) holds true. Similarly 7
can be induced by a mapping h’ € TI'L(Eg) with companion automorphism H € Aut(F)

satisfying
x"? = 1(x%Y) for all x € Ex

and some constant element I € F\{O}.

Given points Fa € &; and Fb € &g then (FavFb)nI' # @ holds if, and only
if, the equation aY%4b%? = 0 has a solution in F, which in turn is equivalent
to

(6) -(b9)1a? e F@.

Applying this condition to Fdg and Fdg yields -(d3z9)"'dg? = -(-1)-1 = 1. Since
¢ and n are admissible, (Fdg)Sv(Fd3)" too has common points with ' or, equi-

valently,
—(d3" 9 1det? = 17k e F@.

But this allows to replace h’ by the semilinear mapping
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h:i=vV "'k h’

so that (II) is fulfilled. Finally, (6) implies ((Fa)CV(FbT')) N # @, whence

-(0")1ag? = -k (b9 ka? e F@.

(b) If g and h are given subject to (I), (II), (III), then the induced

collineations are easily seen to be admissible. ]

THEOREM 4. Let (P(V),%(V),m) be a 3-dimensional classical elliptic space
and let ¢:%(V) > £(V) be a direct Pliicker transformation. There exists a
partial m-transformation &:2(V) > £(V) such that ¢8 is induced by a
collineation u € PrO(P(V),n) if, and only if, the collineations ¢ :8&; > &
and ¢r: Egp > Eg (described in Theorem 3) belong to the same automorphism of

the ground field'”.

Proor. (a) If 8 and p are existing then, by Lemma 1, p € PTO(P(V),m).
There is a unique automorphic collineation ¢ of the Klein quadric such that
a*? = g% for all a € £(V). Moreover, o and the antipodal collineation « are

commuting. We infer &;° = &; and €g° = Er from ¢8 being direct. Hence
oL = (p8)L = ¢|&L and ¢r = (p8)gr = ¢ |ER

so that ¢; and ¢r belong to the same automorphism of the ground field.

(b) Assume that ¢; and ¢r belong to the same automorphism of the ground
field. Thus, according to Lemma 6, we may choose semilinear mappings
g € TL(E;) and h € TL(Er) with the same companion automorphism G = H. There
exists a unique semilinear mapping s € T'L(VAV) extending both g and h. Since
VAV = E;®Er is an orthogonal direct sum (with respect to the bilinear form

associated to Q), we obtain
x5¢ = k(x9) for all x € VAV.

Therefore the mapping s gives rise to an automorphic collineation ¢, say, of
the Klein quadric. We observe that ¢ and o« are commuting. Hence there exists
either a collineation or a duality, say w, of (P(V),£(V)) commuting with the
absolute polarity m such that a“f = a% for all a € (V). If w is a collinea-
tion then set p := w, else put p := mw. So under all circumstances we obtain a

collineation p € PTO(P(V),n) such that
{a*,a™} = {a%,a™} for all a € £(V).
Thus there exists a partial m-transformation & with required properties. ]

Since every opposite Pllicker transformation equals the product of an

(g)An example of two admissible collineations with different companion auto-
morphisms is given at the end of the paper.
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elliptic reflection and a direct Pllicker transformation, Theorem 4 immediately

implies

THEOREM 5. Let (P(V),%(V),n) be a 3-dimensional classical elliptic space
such that every automorphism of the ground field F is trivial. Then for every
Pliicker transformation ¢:%(V) > £(V) there exists a partial m-transformation
8:2(V) > £(V) such that ¢8 is induced by a (necessarily projective) col-
lineation u € PTO((P(V),n).

Theorem 5 describes, e.g., the Plicker group of the real elliptic 3-

space.

REMARK 4. Let F be a commutative Pythagorean field. Then every sum of
non-zero squares in F is again a non-zero square in F. Following [1,p.73ff] we
discuss the elliptic space on V = F* with an absolute polarity m induced by
the standard bilinear form. Thus (bg,bq,bz,b3) can be chosen as the standard

basis, so that e; = e; = ez = 1. Hence

(;:xjdj)o = Xo2+x 124322~ x3%-x4%-x5* (x; € F),
j=0
x? € FP for all x e E;, —yO e F? for all y € Eg.
Now, by Lemma 6, condition (Ad2) in the definition of admissible collineations
is automatic.
We note the following consequence: Write £,(V) for the set of unordered

pairs {a,a"™ where a € £(V). Then
L: 2a(V) > E1xER, {a,a™ — (a¥,a"™)

is a bijection. & xEr may be regarded as the Corrado Segre product space of
the projective planes &, and &g (cf. [18,p.211], [15]) and, by virtue of (77,
we obtain an isomorphic partial line space with ’point set’ £,(V). Two
’points”  {a,a™},{b,b"} € £,(V) are ’collinear’ if, and only if, the lines
a,b € £(V) are Clifford parallel. It is immediate that all Pliicker transfor-

mations of (£(V),~) induce automorphisms of this partial line space by their

action on £,(V).

ReMARK 5. The field R((T)) of formal Laurent series with real coeffi-
cients is Pythagorean (cf., e.g., [10,p.204]) and admits a non-trivial auto-
morphism G taking T to T+1. Defining

2 2
g:E; > E;, Z dej = Z Xdej (Xj € [R((T)))
Jj=0 Jj=0
and letting h be the identity on Epg, yields a direct Pliicker transformation

that does not permit a factorization into an orthogonality-preserving col-

lineation and a partial m-transformation.
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