On the Geometry of Field Extensions

HANS HAVLICEK

Summary. We investigate the spread arising from a field extension and its chains. The major tool in this paper is the concept of transversal lines of a chain which is closely related with the Cartan-Brauer-Hua theorem. Provided that one chain has a "sufficiently large" number of such lines, both this chain as well as the given spread permit a simple geometric description by means of collineations.

0. Every field extension L over K gives rise to a spread together with a system of subsets called chains. Provided that K is in the centre of L these spreads and chains were investigated thoroughly within the wider concept of chain geometries: It is well known that through every point of a subspace belonging to a chain there goes a transversal line of this chain. So every chain is a Segre-manifold (regulus). See [5] for a survey of this topic.

In the present paper we investigate how things will alter when K is not necessarily a part of the centre of L.

1. For any vector space V over a (not necessarily commutative) field K, denote by $\mathcal{P}_K(V)$ the projective space on V. The same notation will be used for any subspace of V.

Let L be a field. The projective line over L is given by $\mathcal{P}_L(L \oplus L) =: \mathcal{P}_L$. If $K \neq L$ is a subfield of L, then the chains of \mathcal{P}_L (with respect to K) are the images of the standard chain

 $\{(k_0, k_1)L \mid (0, 0) \neq (k_0, k_1) \in K \times K\}$

under the projective group PGL(\mathcal{P}_L). Cf. [1,320].

Regarding $L \oplus L$ as a right vector space over K yields the projective space $\mathcal{P}_K(L \oplus L) =: \mathcal{P}_K$. Every point $(l_0, l_1)L \in \mathcal{P}_L$ gives rise to the subspace $\mathcal{P}_K((l_0, l_1)L)$ of \mathcal{P}_K . All such subspaces form a spread **S** of \mathcal{P}_K . We shall write $\mathcal{U} := \mathcal{P}_K((1, 0)L), \ \mathcal{V} = \mathcal{P}_K((1, 1)L), \ \mathcal{W} := \mathcal{P}_K((0, 1)L)$. Every chain of \mathcal{P}_L gives rise to a subset of **S** which will be called a chain likewise.

2. Every projectivity π of \mathcal{P}_L is induced by an *L*-linear *f* map of $L \oplus L$. But *f* is also *K*-linear, so that $PGL(\mathcal{P}_L)$ corresponds to a group of automorphic

projective collineations of S which operates 3-fold transitively on S and hence transitively on the set C of all chains in S. Therefore it is sufficient to discuss the geometrical properties of the standard chain c, say.

A line ℓ of \mathcal{P}_K is called **transversal line** of a chain \mathbf{k} , if $\mathcal{Y} \in \mathbf{k} \mapsto \ell \cap \mathcal{Y}$ defines a bijection of \mathbf{k} onto ℓ .

THEOREM 1. There exists a transversal line of the standard chain c passing through $(a,0)K \in U$ if, and only if, $a^{-1}Ka = K$.

Proof. Let ℓ be a line which intersects $\mathcal{U},\ \mathcal{V}$ and $\mathcal{W}.$ Then ℓ contains

 $(a,0)K \in \mathcal{U}, (a',a')K \in \mathcal{V}, (0,a'')K \in \mathcal{W},$

say, with $a, a', a'' \in L^{\times} := L \setminus \{0\}$. By collinearity of these points a = a' = a''.

Now take any element $\mathcal{Y} = \mathcal{P}_{K}((1,y)L) \in \mathbf{c}$ with $y \in K^{\times}$. We deduce that ℓ has a point in common with \mathcal{Y} if, and only if, there exist skalars $x_{0}, x_{1} \in K^{\times}$, $b \in L^{\times}$ such that

 $b = ax_0$, $yb = ax_1$.

As x_0, x_1 are right homogeneous coordinates, we may put $x_0 := 1$, whence a = band $a^{-1}ya \in K$. So ℓ intersects all elements of **c** if, and only if, $a^{-1}Ka \subset K$.

In the same manner as above $K \subset a^{-1}Ka$ can be shown to be necessary and sufficient that every point of ℓ lies in at least one element of $\mathbf{c}.\blacksquare$

Let $a \in L^{\times}$ and $a^{-1}Ka = K$. The restriction of the inner automorphism $\psi_a: L \to L, x \mapsto a^{-1}xa$

to K induces an automorphism φ_a of K. If φ_a is inner, then $a^{-1}ya = u^{-1}yu$ for all $y \in K$ and some $u \in K^{\times}$, whence $a \in Z_L(K)^{\times} \cdot K^{\times}$, where $Z_L(K)$ denotes the centralizer of K in L. Conversely every $a \in Z_L(K)^{\times} \cdot K^{\times}$ gives rise to an inner automorphism of K.

Let $a \in K^{\times}$ and $a^{-1}Ka \subset K$. Then ψ_a restricted to K is an isomorphism φ_a of K onto a subfield of K. Clearly, φ_a is linear when K is regarded as a right vector space over $\operatorname{fix}(\varphi_a) := \{y \in K | \varphi_a(y) = y\}$. Provided that the right degree of K over $\operatorname{fix}(\varphi_a)$ is finite, φ_a turns out to be surjective or, in other words, an automorphism of K. Consequently such an $a \in K^{\times}$ yields a transversal line of c.

One special case is worth noting: If the centre $Z_L(L) =: Z$ of L is a subfield of K and [K:Z] is finite then, by a theorem of Skolem and Noether (cf. e.g. [2,46]), every automorphism of K which fixes Z elementwise extends to an inner automorphism of L and hence gives rise to a transversal line of c.

3. We investigate the set of all transversal lines of the standard chain c. Obviously $k := (1,0)K \lor (0,1)K$ is a transversal line of c. It will be called the standard transversal line of c. If ℓ is any transversal line of c then $\alpha: k \to \ell, \ k \cap \mathcal{Y} \mapsto \ell \cap \mathcal{Y} \text{ (with } \mathcal{Y} \in \mathbf{c})$

is a well defined bijection of k onto ℓ . Suppose that ℓ carries the point (a,0)K. Then this α is given explicitly by

 $(1,y)K \mapsto (a,ya)K = (a,a(a^{-1}ya))K$, whence $a \in Z_L(K)^{\times} \cdot K^{\times}$ characterizes α as being a projectivity. If α is a projectivity, then we shall say that k and ℓ are **projectively linked** transversal lines. This is an equivalence relation on the set of transversal lines of **c**.

THEOREM 2. Suppose that l_i ($i \in I$) are transversal lines of the standard chain **c** and write $A_i := l_i \cap U$.

- (a) If $\{A_i | i \in I\}$ is an r-frame, then all ℓ_i 's are projectively linked.
- (b) If l_j and l_k are not projectively linked whenever $j,k \in I$ are different, then $\{A_i | i \in I\}$ is an independent set of points and no other transversal line of **c** is incident with a point of span $\{A_i | i \in I\}$.

Proof. (a) Let $\{A_i | i \in I\}$ be an *r*-frame with $I = \{0, ..., r+1\}$, say. Hence for all $\mathcal{Y} \in \mathbf{c}$ the points of intersection $\ell_0 \cap \mathcal{Y}, ..., \ell_{r+1} \cap \mathcal{Y}$ form a frame of an *n*-dimensional subspace of \mathcal{Y} . Thus the projection onto the line ℓ_1 with centre $\ell_2 \vee ... \vee \ell_{r+1}$ takes $\ell_0 \cap \mathcal{Y}$ to $\ell_1 \cap \mathcal{Y}$. The same argument holds for any two different lines ℓ_i and ℓ_j .

(b) Suppose that $\{A_i | i \in I\}$ is dependent. Then $\{A_i | i \in I'\}$ for some finite subset $I' \subset I$ is a frame of an *r*-dimensional subspace of \mathcal{U} with $r \geq 1$. Thus two different transversal lines are projectively linked by (a), an absurdity.

THEOREM 3. Denote by \mathcal{T} the set of all points of \mathcal{U} which are incident with a transversal line of \mathbf{c} which is projectively linked with the standard transversal line k. With \mathcal{T} being regarded as a trace space of \mathcal{U} , the projective space on the right vector space $Z_L(K)$ over the centre of K is isomorphic to \mathcal{T} . Moreover independence of points with respect to the trace space \mathcal{T} is equivalent to independence with respect to \mathcal{U} .

Proof. A bijection ι of the projective space on $Z_L(K)$ over $Z_K(K)$ onto $\mathcal T$ is given by

 $aZ_K(K) \mapsto (a,0)K \quad (a \neq 0).$

Assume that for $a \in Z_L(K)$ there exist different elements $a_1, \ldots, a_n \in Z_L(K)$ which are linearly independent over K such that

 $a = a_1 x_1 + \ldots + a_n x_n$ with $x_i \in K^{\times}$.

We read off from

 $ay = \sum_{i} a_i(x_iy) = ya = \sum_{i} ya_ix_i = \sum_{i} a_i(yx_i)$ for all $y \in K$,

that all x_i 's are in the centre of K. On the other hand any linear combination

 $\sum a_i x_i$ with $a_i \in Z_L(K)^{\times}$, $x_i \in Z_K(K)$

belongs to the centralizer of K in L.

Thus ι is collineation of the projective space on $Z_L(K)$ onto the trace space \mathcal{T} and independence with respect to \mathcal{T} and \mathcal{U} is equivalent.

Now suppose that transversal lines k and ℓ are not projectively linked. By theorem 2 the pedal point (b,0)K of ℓ in \mathcal{U} does not belong to span $\mathcal{T} \subset \mathcal{U}$. The standard chain \mathbf{c} is elementwise invariant under the collineation

 $\mu_b: \mathcal{P}_K \to \mathcal{P}_K, \ (l_0, l_1)K \mapsto (l_0b, l_1b)K$ and the transversal lines of **c** are permuted bijectively. The relation "projectively linked" is being preserved under μ_b as well as μ_b^{-1} . Since $\mu_b(k) = \ell$, all results established for k carry over to ℓ . As an immediate consequence of theorems 2 and 3 we state:

THEOREM 4. Let l_i ($i \in I$) be a family of transversal lines of the standard chain **c**. Suppose that l_j and l_k are not projectively linked whenever $j,k \in I$ are different. Denote by $\mathcal{T}_i \subset \mathcal{U}$ the set of all points which are incident with a transversal line of **c** that is projectively linked with l_i . Then $\{\operatorname{span}\mathcal{T}_i | i \in I\}$ is an independent set of isomorphic subspaces of \mathcal{U} .

4. As an application of the previous results here is a simple geometric proof of the Cartan-Brauer-Hua theorem (cf. e.g. [1,323]):

Suppose that $K \neq L$ and $a^{-1}Ka = K$ for all $a \in L^{\times}$. Then every point of \mathcal{U} is on a transversal line of **c**. By theorem 2 all transversal lines of **c** are projectively linked with k, whence $\varphi_a \in \operatorname{Aut}(K)$, $y \mapsto a^{-1}ya$ is inner. We deduce from theorem 3 and $\mathcal{T} = \mathcal{U}$ that K is isomorphic to $Z_K(K)$. Therefore K is commutative and $\varphi_a = \operatorname{id}_K$. Thus K lies in the centre of L, as required.

5. Denote by $\widetilde{\mathcal{A}}$ the join of \mathcal{W} with any point $(a,0)K \in \mathcal{U}$ and put $\mathcal{A} := \widetilde{\mathcal{A}} \setminus \mathcal{W}$. We define a map

 $\rho: \mathbf{S} \setminus \{ \mathcal{W} \} \to \mathcal{A}, \ \mathcal{X} \mapsto \mathcal{A} \cap \mathcal{X}.$

In algebraic terms we have $\mathcal{P}_K((l_0, l_1)L) \mapsto (a, l_1 l_0^{-1}a)K$, whence ρ is a bijection. Note that \mathcal{A} is an affine space whose parallelism is given by \mathcal{W} as hyperplane at infinity. Obviously \mathcal{A} is isomorphic to the affine space on the vector space L over K. Those chains through \mathcal{W} which have a transversal line in $\tilde{\mathcal{A}}$ are in one-one correspondence with the lines of \mathcal{A} .

THEOREM 5. Let $a_0 = 1$, $a_1 \in L^{\times}$ and write $\mathcal{A}_0, \mathcal{A}_1$ for the affine spaces given by $(\mathcal{W} \lor (0, a_0) K) \lor \mathcal{W}$, $(\mathcal{W} \lor (0, a_1) K) \lor \mathcal{W}$, respectively. The bijection

 $\beta_{01}: \mathcal{A}_0 \to \mathcal{A}_1, \ \mathfrak{X} \cap \mathcal{A}_0 \ \mapsto \ \mathfrak{X} \cap \mathcal{A}_1 \quad (\mathfrak{X} \in \mathbf{S} \setminus \{W\})$ is an affinity if, and only if, $a_1^{-1}Ka_1 = K$.

Proof. (a) If β_{01} is an affinity, then β_{01} extends to a collineation $\kappa_{01}: \widetilde{\mathcal{A}}_0 \to \widetilde{\mathcal{A}}_1$, say, which takes the standard transversal line k of \mathbf{c} to a transversal line of \mathbf{c} passing through $(a_1, 0)K$. We obtain $a_1^{-1}Ka_1 = K$ by theorem 1.

(b) Suppose that $a_1^{-1}Ka_1 = K$. The bijection β_{01} maps $(1,l)K \in \mathcal{A}_0$ to (a,la)K. But $l \ (\in L) \mapsto la_1 \ (\in L)$ is K-semilinear, so β_{01} is affine.

Clearly the affine structure of \mathscr{A} can be re-transferred to $S \setminus \{\mathscr{W}\}$. This gives a **residual affine space** of (S,C). We read off from theorem 5 that this affine structure on $S \setminus \{\mathscr{W}\}$ is uniquely determined by \mathscr{W} together with one chain k through \mathscr{W} such that $k \setminus \{\mathscr{W}\}$ is an affine line.

When K is commutative and the right degree of L over K is finite, say r+1, then a point model of (\mathbf{S}, \mathbf{C}) may be found on a Grassmannian manifold. The map ρ can be extended to all r-dimensional subspaces of \mathcal{P}_K whose intersection with $\tilde{\mathcal{A}}$ is precisely one point. Up to a projective collineation this extension of ρ equals the product of the Grassmann map γ with a suitable projection of the Grassmannian. The restriction of this projection to $\gamma(\mathbf{S})$ is "stereographic", since $\gamma(\mathcal{W})$ is the only point of $\gamma(\mathbf{S})$ without image. So the situation is similar to ordinary chain geometry; cf. [5,chapter 18.6.4].

THEOREM 6. Suppose that there exists a basis $\{(a_i, 0)K | i \in I\}$ of \mathcal{U} with transversal lines ℓ_i of the standard chain **c** passing through these points, respectively. Let $0 \in I$, $a_0 = 1$ and write $\widetilde{\mathcal{A}}_i := \mathcal{W} \lor (a_i, 0)K$. Then there exist collineations $\kappa_{0i} : \widetilde{\mathcal{A}}_0 \to \widetilde{\mathcal{A}}_i$ such that

 $\mathcal{X} = \operatorname{span}\{\kappa_{0i}(\mathcal{X} \cap \mathcal{A}_0) \mid i \in I\} \text{ for all } \mathcal{X} \in \mathbf{c}.$

Proof. Define κ_{0i} as the extension of the affinity β_{0i} according to the proof of theorem 5. Then $\mathcal{X} = \operatorname{span}\{\kappa_{0i}(\mathcal{X} \cap \mathcal{A}_0) \mid i \in I\}$, since **S** is a spread.

Generalizing a terminology introduced in [4] we may say that the spread S is generated by the family κ_{0i} of collineations. (Cf. [6,pp.299] for a similar, but nevertheless different result on pappian spreads.) If we restrict the collineations κ_{0i} to the standard transversal line k, then we obtain a geometric description of the standard chain c. By transformation under automorphic collineations of S this description carries over to any chain of the spread S. Provided that K is in the centre of L, the conditions of theorem 6 are automatic and we have re-established the result that chains are Segremanifolds. It is easy to give examples of fields K,L such that the conditions of theorem 6 are met. Assume that L is a field of quaternions over a commutative field P with $\{1,i,j,k\}$ denoting the usual basis of L over P.

- 1. Let $P = \mathbb{R}$ and $K = \mathbb{R}(i)$ a subfield of complex numbers. Putting $a_0 = 1$, $a_1 = j$ shows that **S** is a spread generated by a non-projective collineation. Cf. [4].
- 2. Let $P = \mathbb{Q}(\sqrt{2})$ and $K = \mathbb{Q}(i)$. Put $a_0 := 1$, $a_1 := \sqrt{2}$, $a_2 := j$, $a_3 := j\sqrt{2}$. Here κ_{01} is projective while κ_{02} and κ_{03} are non-projective collineations.
- 3. Let $P = \mathbb{Q}(\sqrt{2})$ and $K = \mathbb{Q}(i, j, k)$, viz. the quaternions over \mathbb{Q} . Put $a_0 := 1$, $a_1 := \sqrt{2}$. Thus κ_{01} is a projective collineation, every chain is a regulus in the sense of B. Segre [7,319] and S is an elliptic linear congruence of lines according to a definition given in [3].

In this last example we are already "very close" to the description of the spread S and its chains when K is a subfield of the centre of L.

REFERENCES

- BENZ, W., Vorlesungen über Geometrie der Algebren, Grundlehren Bd. 197, Berlin Heidelberg New York, Springer, 1973.
- [2] COHN, P.M., Skew Field Constructions, Cambridge University Press, Cambridge, 1977.
- [3] HAVLICEK, H., On Sets of Lines Corresponding to Affine Spaces, in, Proceedings of "Combinatorics '88" (Ravello, Italy), to appear.
- [4] HAVLICEK, H., Dual spreads generated by collineations, Simon Stevin 64 (1990), 339-349.
- [5] HERZER, A., Chain Geometries, in: BUEKENHOUT, F. (ed.), Handbook of Incidence Geometry, Dordrecht Boston, D. Reidel, to appear.
- [6] LUNARDON, G., Fibrazioni planari e sottovarietà algrebraiche della varietà di Grassmann, Geom. Dedicata 16 (1984), 291-313.
- [7] SEGRE, B., Lectures on Modern Geometry, Roma, Ed. Cremonese, 1961.

Institut für Geometrie Technische Universität Wiedner Hauptstrasse 8–10 A–1040 Wien Austria