On the Geometry of Field Extensions

HANS HAVLICEK

Summary. We investigate the spread arising from a field extension and its
chains. The major tool in this paper is the concept of transversal lines of a
chain which is closely related with the Cartan-Brauer-Hua theorem. Provided
that one chain has a "sufficiently large" number of such lines, both this
chain as well as the given spread permit a simple geometric description by
means of collineations.

0. Every field extension L over K gives rise to a spread together with a
system of subsets called chains. Provided that K is in the centre of L these
spreads and chains were investigated thoroughly within the wider concept of
chain geometries: It is well known that through every point of a subspace
belonging to a chain there goes a transversal line of this chain. So every
chain is a Segre-manifold (regulus). See [5] for a survey of this topic.

In the present paper we investigate how things will alter when K is not

necessarily a part of the centre of L.

1. For any vector space V over a (not necessarily commutative) field K, denote
by Pk(V) the projective space on V. The same notation will be used for any
subspace of V.

Let L be a field. The projective line over L is given by P;(LelL) =: P,.
If K # L is a subfield of L, then the chains of P; (with respect to K) are the
images of the standard chain

{(kg,k1)L|(0,0)#(kg,k1)€KxK}
under the projective group PGL(P;). Cf. [1,320].

Regarding LeL as a right vector space over K yields the projective space
Px(Lel) =: Px. Every point (lg,l1)L € P, gives rise to the subspace
Px(lg,l1)L) of Pg. All such subspaces form a spread S of Pg. We shall write
U := Px((1,0)L), V = Pg((1,1)L), W := Pg((0,1)L). Every chain of P; gives rise

to a subset of S which will be called a chain likewise.

2. Every projectivity m of #; is induced by an L-linear f map of LeL. But f is

also K-linear, so that PGL(?;) corresponds to a group of automorphic
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projective collineations of S which operates 3-fold transitively on S and
hence transitively on the set C of all chains in S. Therefore it is sufficient
to discuss the geometrical properties of the standard chain c, say.

A line ¢ of Pk is called transversal line of a chain k, if ¥ € k — nY

defines a bijection of k onto 2.

THEOREM 1. There exists a transversal line of the standard chain c¢ passing

through (a,0)K € U if, and only if, a 'Ka = K.

Proof. Let £ be a line which intersects U, ¥V and W. Then £ contains

(a,0)K € U, (a’,a’)K € V, (0,a”")K € W,
say, with a,a’,a” € L := I\{0}. By collinearity of these points a = a’ = a”.

Now take any element ¥ = Pg((1,y)L) € ¢ with y € K*. We deduce that { has
a point in common with ¥ if, and only if, there exist skalars xg,x; € KX,
b e L™ such that

b = axg, yb = ax;.
As xg,x1 are right homogeneous coordinates, we may put xg := 1, whence a = b
and a_lya € K. So ¢ intersects all elements of c¢ if, and only if, alKa ¢ K.

In the same manner as above K ¢ a 'Ka can be shown to be necessary and

sufficient that every point of £ lies in at least one element of c.m

Let a € L* and a'Ka = K. The restriction of the inner automorphism

Ya:L > L, x > alxa
to K induces an automorphism ¢, of K. If ¢, is inner, then a_lya = u_lyu for
all y € K and some u € K*, whence a e ZL(K)X-KX, where Z;(K) denotes the
centralizer of K in L. Conversely every a € ZL(K)X-K>< gives rise to an inner
automorphism of K.

Let a € K* and a'Ka c K. Then Y, restricted to K is an isomorphism ¢, of
K onto a subfield of K. Clearly, ¢, is linear when K is regarded as a right
vector space over fix(g,) := {yeK|g,(y)=y}. Provided that the right degree of
K over fix(gp,) is finite, ¢, turns out to be surjective or, in other words, an
automorphism of K. Consequently such an a € K" yields a transversal line of c.

One special case is worth noting: If the centre Z;(L) =: Z of L is a
subfield of K and [K:Z] is finite then, by a theorem of Skolem and Noether

(cf. e.g. [2,46]), every automorphism of K which fixes Z elementwise extends

to an inner automorphism of L and hence gives rise to a transversal line of c.

3. We investigate the set of all transversal lines of the standard chain c.
Obviously & := (1,0)Kv(0,1)K is a transversal line of c¢. It will be called the

standard transversal line of c. If £ is any transversal line of c then
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a:k > L knY — InY (with Y € ¢)
is a well defined bijection of k& onto £. Suppose that ¢ carries the point
(a,0)K. Then this « is given explicitly by

(1,y)JK +— (a,ya)K = (a,a(a"lya))K,
whence a € ZL(K)X-K>< characterizes « as being a projectivity. If o« is a
projectivity, then we shall say that & and ¢ are projectively linked trans-
versal lines. This is an equivalence relation on the set of transversal lines

of c.

THEOREM 2. Suppose that {; (i € I) are transversal lines of the standard chain

c and write A;:=4LnU.

(a) If {4;liel} is an r-frame, then all {’s are projectively linked.

(b) If {; and lx are not projectively linked whenever j,k € I are different,
then {4;liel} is an independent set of points and no other transversal

line of ¢ is incident with a point of span{4;|iel}.

Proof. (a) Let {4;|lieI} be an r-frame with I = {0,...,r+1}, say. Hence
for all Y € ¢ the points of intersection £9nY,...,¢;,1nY form a frame of an
n-dimensional subspace of Y. Thus the projection onto the line ¢; with centre
bv... vl takes LonY to £inY. The same argument holds for any two different
lines ¢; and ¢;.

(b) Suppose that {4;|lieI} is dependent. Then {4;lieI’} for some finite
subset I’ < I is a frame of an r-dimensional subspace of U with r = 1. Thus

two different transversal lines are projectively linked by (a), an absurdity.m

THEOREM 3. Denote by J the set of all points of U which are incident with a
transversal line of ¢ which 1is projectively linked with the standard
transversal line k. With J being regarded as a trace space of U, the
projective space on the right vector space Z;(K) over the centre of K is
isomorphic to J. Moreover independence of points with respect to the trace

o

space J is equivalent to independence with respect to U.

Proof. A bijection ¢ of the projective space on Z;(K) over Zg(K) onto J
is given by

aZxg(K) — (a,0)K (a = 0).
Assume that for a € Z;(K) there exist different elements aji,...,an € Zi(K)
which are linearly independent over K such that

a = aixi+...+tapx, with x; € K",
We read off from

ay = Yailxy) = ya = Yyapx; = ) aillyx;) for all y € K,
i i i
that all x;’s are in the centre of K. On the other hand any linear combination
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Yap; with a; € Zi(K)", x; € Zg(K)

i
belongs to the centralizer of K in L.
Thus ¢ is collineation of the projective space on Z;(K) onto the trace

space J and independence with respect to J and U is equivalent.m

Now suppose that transversal lines & and ¢ are not projectively linked.
By theorem 2 the pedal point (b,0)K of £ in U does not belong to spany < U.
The standard chain c¢ is elementwise invariant under the collineation

My : Px > Pk, (lg,l1)K — (lgb,l1b)K
and the transversal lines of ¢ are permuted bijectively. The relation
"projectively linked" is being preserved under u, as well as ! Since
Mp(k) = ¢, all results established for & carry over to £ As an immediate

consequence of theorems 2 and 3 we state:

THEOREM 4. Let ¢ (i € I) be a family of transversal lines of the standard
chain c. Suppose that {; and {; are not projectively linked whenever j,k € I
are different. Denote by J; ¢ U the set of all points which are incident with
a transversal line of c that is projectively linked with ¢. Then {spanJ;|iel}

is an independent set of isomorphic subspaces of U.

4. As an application of the previous results here is a simple geometric proof
of the Cartan-Brauer-Hua theorem (cf. e.g. [1,323]):

Suppose that K # L and alKa = K for all a € L. Then every point of U is
on a transversal line of c¢. By theorem 2 all transversal lines of c¢ are
projectively linked with k, whence ¢, € Aut(K), y +— a lya is inner. We deduce
from theorem 3 and J = U that K is isomorphic to Zg(K). Therefore K is

commutative and ¢, = idg. Thus K lies in the centre of L, as required.

5. Denote by A the join of W with any point (2,0)K € U and put 4 := A\W. We
define a map

p:S\IW} > 4, X — 4AnX.
In algebraic terms we have ?K((lo,ll)L) — (a,l1lo'a)K, whence p is a
bijection. Note that « is an affine space whose parallelism is given by W as
hyperplane at infinity. Obviously « is isomorphic to the affine space on the
vector space L over K. Those chains through W which have a transversal line in

~

4 are in one-one correspondence with the lines of «.

THEOREM 5. Let ag = 1, a1 € L and write do,4d1 for the affine spaces given by

(WV(O,ao)K) \W, (WV(O,al)K) \W, respectively. The bijection
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Bo1: 540 - 541, fxmsdo = xﬂsdl (X € S\{W})
is an affinity if, and only if, aflKal = K.

Proof. (a) If Bg; is an affinity, then Bg; extends to a collineation
K01:leo > Ql, say, which takes the standard transversal line & of ¢ to a
transversal line of ¢ passing through (a;,0)K. We obtain a; 'Ka; = K by
theorem 1.

(b) Suppose that a; 'Ka; = K. The bijection Bo; maps (1,1)K € dy to

(a,la)K. But I (eL) ~ la; (€L) is K-semilinear, so Bg; is affine.m

Clearly the affine structure of # can be re-transferred to S\{W}. This gives a
residual affine space of (S,C). We read off from theorem 5 that this affine
structure on S\{W} is uniquely determined by W together with one chain k
through W such that k\{¥W} is an affine line.

When K is commutative and the right degree of L over K is finite, say
r+1, then a point model of (S,C) may be found on a Grassmannian manifold. The
map p can be extended to all r-dimensional subspaces of Px whose intersection
with « is precisely one point. Up to a projective collineation this extension
of p equals the product of the Grassmann map ¥ with a suitable projection of
the Grassmannian. The restriction of this projection to ¥(S) is "stereo-
graphic", since y(W) is the only point of ¥(S) without image. So the situation

is similar to ordinary chain geometry; cf. [5,chapter 18.6.4].

THEOREM 6. Suppose that there exists a basis {(a;,0)K|iel} of U with
transversal lines ¢ of the standard chain c¢ passing through these points,
respectively. Let 0 € I, apg = 1 and write lei := Wv(a;,0)K. Then there exist
collineations KOi:leo > lei such that

X = spanikoi(Xndp) liel} for all X € c.

Proof. Define kg; as the extension of the affinity Bg; according to the

proof of theorem 5. Then X = span{ko;(Xndp)|icl}, since S is a spread.m

Generalizing a terminology introduced in [4] we may say that the spread S is
generated by the family kg; of collineations. (Cf. [6,pp.299] for a similar,
but nevertheless different result on pappian spreads.) If we restrict the
collineations kg; to the standard transversal line k, then we obtain a
geometric description of the standard chain c¢. By transformation under
automorphic collineations of S this description carries over to any chain of
the spread S. Provided that K is in the centre of L, the conditions of theorem
6 are automatic and we have re-established the result that chains are Segre-

manifolds.
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It is easy to give examples of fields K,L such that the conditions of
theorem 6 are met. Assume that L is a field of quaternions over a commutative
field P with {1,i,j,k} denoting the usual basis of L over P.

1. Let P =R and K = R(i) a subfield of complex numbers. Putting ag = 1,
aip = j shows that S is a spread generated by a non-projective collineation.
Cf. [4].

2. Let P =QKW2") and K = Q(i). Put ag := 1, a; := v2, ap := j, ag := jv2 .
Here kg1 is projective while kg2 and kg3 are non-projective collineations.

3. Let P = QW2 ) and K = Q(i,j,k), viz. the quaternions over @. Put ag := 1,
a; := V2. Thus kg; is a projective collineation, every chain is a regulus
in the sense of B.Segre [7,319] and S is an elliptic linear congruence of
lines according to a definition given in [3].

In this last example we are already "very close" to the description of the

spread S and its chains when K is a subfield of the centre of L.
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