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On the Geometry of Field Extensions

HANS HAVLICEK

Summary. We investigate the spread arising from a field extension and its
chains. The major tool in this paper is the concept of transversal lines of a
chain which is closely related with the Cartan-Brauer-Hua theorem. Provided
that one chain has a "sufficiently large" number of such lines, both this
chain as well as the given spread permit a simple geometric description by
means of collineations.

0. Every field extension L over K gives rise to a spread together with a

system of subsets called chains. Provided that K is in the centre of L these

spreads and chains were investigated thoroughly within the wider concept of

chain geometries: It is well known that through every point of a subspace

belonging to a chain there goes a transversal line of this chain. So every

chain is a Segre-manifold (regulus). See [5] for a survey of this topic.

In the present paper we investigate how things will alter when K is not

necessarily a part of the centre of L.

1. For any vector space V over a (not necessarily commutative) field K, denote

by PK(V) the projective space on V. The same notation will be used for any

subspace of V.

Let L be a field. The projective line over L is given by PL(LsL)t=:tPL.

If Kt$tL is a subfield of L, then the chains of PL (with respect to K) are the

images of the standard chain

{(k0,k1)L|(0,0)$(k0,k1)eK*K}

under the projective group PGL(PL). Cf. [1,320].

Regarding LsL as a right vector space over K yields the projective space

PK(LsL)t=:tPK. Every point (l0,l1)LtetPL gives rise to the subspace

PK((l0,l1)L) of PK. All such subspaces form a spread S of PK. We shall write

Ut:=tPK((1,0)L), Vt=tPK((1,1)L), Wt:=tPK((0,1)L). Every chain of PL gives rise

to a subset of S which will be called a chain likewise.

2. Every projectivity p of PL is induced by an L-linear f map of LsL. But f is

also K-linear, so that PGL(PL) corresponds to a group of automorphic
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projective collineations of S which operates 3-fold transitively on S and

hence transitively on the set C of all chains in S. Therefore it is sufficient

to discuss the geometrical properties of the standard chain c, say.

A line l of PK is called transversal line of a chain k, if Ytetkt9LtlnY

defines a bijection of k onto l.

THEOREM 1. There exists a transversal line of the standard chain c passing
-1through (a,0)KtetU if, and only if, a Kat=tK.

!
Proof. Let l be a line which intersects U, V and W. Then l contains

(a,0)KtetU, (a’,a’)KtetV, (0,a")KtetW,
*say, with a,a’,a"tetL t:=tL\{0}. By collinearity of these points at=ta’t=ta".

*Now take any element Yt=tPK((1,y)L)tetc with ytetK . We deduce that l has
*a point in common with Y if, and only if, there exist skalars x0,x1tetK ,

*btetL such that

bt=tax0, ybt=tax1.

As x0,x1 are right homogeneous coordinates, we may put x0t:=t1, whence at=tb
-1 -1and a yatetK. So l intersects all elements of c if, and only if, a KatCtK.

-1In the same manner as above KtCta Ka can be shown to be necessary and

sufficient that every point of l lies in at least one element of c.P

* -1Let atetL and a Kat=tK. The restriction of the inner automorphism
-1ja!:!LtLtL, xt9Lta xa

-1 -1to K induces an automorphism va of K. If va is inner, then a yat=tu yu for
* * *all ytetK and some utetK , whence atetZL(K) WK , where ZL(K) denotes the

* *centralizer of K in L. Conversely every atetZL(K) WK gives rise to an inner

automorphism of K.
* -1Let atetK and a KatCtK. Then ja restricted to K is an isomorphism va of

K onto a subfield of K. Clearly, va is linear when K is regarded as a right

vector space over fix(va)t:=t{yeK|va(y)=y}. Provided that the right degree of

K over fix(va) is finite, va turns out to be surjective or, in other words, an
*automorphism of K. Consequently such an atetK yields a transversal line of c.

One special case is worth noting: If the centre ZL(L)t=:tZ of L is a

subfield of K and [K:Z] is finite then, by a theorem of Skolem and Noether

(cf. e.g. [2,46]), every automorphism of K which fixes Z elementwise extends

to an inner automorphism of L and hence gives rise to a transversal line of c.

3. We investigate the set of all transversal lines of the standard chain c.

Obviously kt:=t(1,0)Kv(0,1)K is a transversal line of c. It will be called the

standard transversal line of c. If l is any transversal line of c then
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a!:!ktLtl, knYt9LtlnY (with Ytetc)

is a well defined bijection of k onto l. Suppose that l carries the point

(a,0)K. Then this a is given explicitly by
( -1 )(1,y)Kt9Lt(a,ya)Kt=t a,a(a ya) K,9 0* *whence atetZL(K) WK characterizes a as being a projectivity. If a is a

projectivity, then we shall say that k and l are projectively linked trans-

versal lines. This is an equivalence relation on the set of transversal lines

of c.

THEOREM 2. Suppose that li (itetI) are transversal lines of the standard chain

c and write Ai!:=!linU.

(a) If {Ai|ieI} is an r-frame, then all li’s are projectively linked.

(b) If lj and lk are not projectively linked whenever j,ktetI are different,

then {Ai|ieI} is an independent set of points and no other transversal

line of c is incident with a point of span{Ai|ieI}.
!

Proof. (a) Let {Ai|ieI} be an r-frame with It=t{0,...,r+1}, say. Hence

for all Ytetc the points of intersection l0nY,...,lr+1nY form a frame of an

n-dimensional subspace of Y. Thus the projection onto the line l1 with centre

l2v...vlr+1 takes l0nY to l1nY. The same argument holds for any two different

lines li and lj.

(b) Suppose that {Ai|ieI} is dependent. Then {Ai|ieI’} for some finite

subset I’tCtI is a frame of an r-dimensional subspace of U with rt>t1. Thus

two different transversal lines are projectively linked by (a), an absurdity.P

THEOREM 3. Denote by T the set of all points of U which are incident with a

transversal line of c which is projectively linked with the standard

transversal line k. With T being regarded as a trace space of U, the

projective space on the right vector space ZL(K) over the centre of K is

isomorphic to T. Moreover independence of points with respect to the trace

space T is equivalent to independence with respect to U.
!

Proof. A bijection i of the projective space on ZL(K) over ZK(K) onto T

is given by

aZK(K)t9Lt(a,0)K (at$t0).

Assume that for atetZL(K) there exist different elements a1,...,antetZL(K)

which are linearly independent over K such that
*at=ta1x1+...+anxn with xitetK .

We read off from

ayt=tS!ai(xiy)t=tyat=tS!yaixit=tS!ai(yxi) for all ytetK,
i i i

that all xi’s are in the centre of K. On the other hand any linear combination
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*S!aixi with aitetZL(K) , xitetZK(K)
i

belongs to the centralizer of K in L.

Thus i is collineation of the projective space on ZL(K) onto the trace

space T and independence with respect to T and U is equivalent.P

Now suppose that transversal lines k and l are not projectively linked.

By theorem 2 the pedal point (b,0)K of l in U does not belong to spanTtCtU.

The standard chain c is elementwise invariant under the collineation

mb!:!PKtLtPK, (l0,l1)Kt9Lt(l0b,l1b)K

and the transversal lines of c are permuted bijectively. The relation
-1"projectively linked" is being preserved under mb as well as mb . Since

mb(k)t=tl, all results established for k carry over to l. As an immediate

consequence of theorems 2 and 3 we state:

THEOREM 4. Let li (itetI) be a family of transversal lines of the standard

chain c. Suppose that lj and lk are not projectively linked whenever j,ktetI

are different. Denote by TitCtU the set of all points which are incident with

a transversal line of c that is projectively linked with li. Then {spanTi|ieI}

is an independent set of isomorphic subspaces of U.

4. As an application of the previous results here is a simple geometric proof

of the Cartan-Brauer-Hua theorem (cf. e.g. [1,323]):
-1 *Suppose that Kt$tL and a Kat=tK for all atetL . Then every point of U is

on a transversal line of c. By theorem 2 all transversal lines of c are
-1projectively linked with k, whence vatetAut(K), yt9Lta ya is inner. We deduce

from theorem 3 and Tt=tU that K is isomorphic to ZK(K). Therefore K is

commutative and vat=tidK. Thus K lies in the centre of L, as required.

~ ~5. Denote by A the join of W with any point (a,0)KtetU and put At:=tA\W. We

define a map

r!:!S\{W}tLtA, Xt9LtAnX.
( ) -1In algebraic terms we have PK (l0,l1)L t9Lt(a,l1l0 a)K, whence r is a9 0

bijection. Note that A is an affine space whose parallelism is given by W as

hyperplane at infinity. Obviously A is isomorphic to the affine space on the

vector space L over K. Those chains through W which have a transversal line in
~A are in one-one correspondence with the lines of A.

*THEOREM 5. Let a0t=t1, a1tetL and write A0,A1 for the affine spaces given by
( ) ( )Wv(0,a0)K \W, Wv(0,a1)K \W, respectively. The bijection9 0 9 0
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b01!:!A0tLtA1, XnA0t9LtXnA1 (XtetS\{W})
-1is an affinity if, and only if, a1 Ka1t=tK.

!
Proof. (a) If b01 is an affinity, then b01 extends to a collineation
~ ~k01!:!A0tLtA1, say, which takes the standard transversal line k of c to a

-1transversal line of c passing through (a1,0)K. We obtain a1 Ka1t=tK by

theorem 1.
-1(b) Suppose that a1 Ka1t=tK. The bijection b01 maps (1,l)KtetA0 to

(a,la)K. But lt(!e!L)t9Ltla1t(!e!L) is K-semilinear, so b01 is affine.P

Clearly the affine structure of A can be re-transferred to S\{W}. This gives a

residual affine space of (S,C). We read off from theorem 5 that this affine

structure on S\{W} is uniquely determined by W together with one chain k

through W such that k\{W} is an affine line.

When K is commutative and the right degree of L over K is finite, say

r+1, then a point model of (S,C) may be found on a Grassmannian manifold. The

map r can be extended to all r-dimensional subspaces of PK whose intersection
~with A is precisely one point. Up to a projective collineation this extension

of r equals the product of the Grassmann map g with a suitable projection of

the Grassmannian. The restriction of this projection to g(S) is "stereo-

graphic", since g(W) is the only point of g(S) without image. So the situation

is similar to ordinary chain geometry; cf. [5,chapter 18.6.4].

THEOREM 6. Suppose that there exists a basis {(ai,0)K|ieI} of U with

transversal lines li of the standard chain c passing through these points,
~respectively. Let 0tetI, a0t=t1 and write Ait:=tWv(ai,0)K. Then there exist

~ ~collineations k0i!:!A0tLtAi such that

Xt=tspan{k0i(XnA0)|ieI} for all Xtetc.
!

Proof. Define k0i as the extension of the affinity b0i according to the

proof of theorem 5. Then Xt=tspan{k0i(XnA0)|ieI}, since S is a spread.P

Generalizing a terminology introduced in [4] we may say that the spread S is

generated by the family k0i of collineations. (Cf. [6,pp.299] for a similar,

but nevertheless different result on pappian spreads.) If we restrict the

collineations k0i to the standard transversal line k, then we obtain a

geometric description of the standard chain c. By transformation under

automorphic collineations of S this description carries over to any chain of

the spread S. Provided that K is in the centre of L, the conditions of theorem

6 are automatic and we have re-established the result that chains are Segre-

manifolds.
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It is easy to give examples of fields K,L such that the conditions of

theorem 6 are met. Assume that L is a field of quaternions over a commutative

field P with {1,i,j,k} denoting the usual basis of L over P.

1. Let Pt=tR and Kt=tR(i) a subfield of complex numbers. Putting a0t=t1,

a1t=tj shows that S is a spread generated by a non-projective collineation.

Cf. [4].
-----6 -----6 -----62. Let Pt=tQ(r2 ) and Kt=tQ(i). Put a0t:=t1, a1t:=tr2 , a2t:=tj, a3t:=tjr2 .

Here k01 is projective while k02 and k03 are non-projective collineations.
-----63. Let Pt=tQ(r2 ) and Kt=tQ(i,j,k), viz. the quaternions over Q. Put a0t:=t1,

-----6a1t:=tr2 . Thus k01 is a projective collineation, every chain is a regulus

in the sense of B.!Segre [7,319] and S is an elliptic linear congruence of

lines according to a definition given in [3].

In this last example we are already "very close" to the description of the

spread S and its chains when K is a subfield of the centre of L.
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