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Abstract

As a continuation of our previous work (J. Phys.A:Math.Theor. 40 (2007) F929 and/or
arXiv:0708.4333) an algebraic geometrical study of a single d-dimensional qudit is made,
with d being any positive integer. The study is based on an intricate relation between
the symplectic module of the generalized Pauli group of the qudit and the fine struc-
ture of the projective line over the (modular) ring Zd. Explicit formulae are given
for both the number of generalized Pauli operators commuting with a given one and
the number of points of the projective line containing the corresponding vector of Z2

d.
We find, remarkably, that a perp-set is not a set-theoretic union of the corresponding
points of the associated projective line unless d is a product of distinct primes. The
operators are also seen to be structured into disjoint ‘layers’ according to the degree of
their representing vectors.

PACS Numbers: 03.65.–a — 03.65.Fd — 02.10.Hh — 02.40.Dr
Keywords: General Single Qudit – Generalized Pauli Group – Projective Ring Line
– Commutation Algebra of Generalized Pauli Operators

1 Introduction

In our recent paper [1] we introduced a general algebraic geometrical framework underlying
the structure of the generalized Pauli group associated with a specific single d-dimensional
qudit. The backbone of this framework is the bijection between sets of operators/matrices
of the group and submodules of the modular ring Zd. This bijection enabled us, for d being
a product of distinct primes, to completely rephrase the group’s commutation algebra in
terms of the structure of and interplay between free cyclic submodules of Z2

d aka points of
the projective line defined over Zd. In this paper we shall tackle the general case (i. e., d
being any positive integer), making thus the treatment of a single qudit complete.
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2 Single d-qudit, its qeneralized Pauli group,

symplectic module and projective ring line

In this section we simply set up the notation and recollect some basic technical results from
our previous paper [1] to be needed in the sequel.

Let d > 1 be an integer and Zd := {0, 1, . . . , d − 1}. Addition and multiplication of
elements from Zd will always be understood modulo d. We consider the d-dimensional
complex Hilbert space Cd and denote by

{ |s〉 : s ∈ Zd}

a computational basis of Cd. Taking ω to be a fixed primitive d-th root of unity (e. g.,
ω = exp(2πi/d)), we define unitary X (“shift”) and Z (“clock”) operators on Cd via X|s〉 =
|s+1〉 and Z|s〉 = ωs|s〉 for all s ∈ Zd. With respect to our computational basis the matrices
of X and Z are















0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0















and















1 0 0 . . . 0
0 ω 0 . . . 0
0 0 ω2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ωd−1















,

respectively. The (generalized) Pauli group generated by X and Z will be denoted as G.
For all s ∈ Zd we have XZ|s〉 = ωs|s + 1〉 and ZX|s〉 = ωs+1|s + 1〉. This gives the basic
relation

ωXZ = ZX (1)

which implies that each element of G can be written in the unique normal form

ωaXbZc for some integers a, b, c ∈ Zd. (2)

From (1) it is readily seen that

(ωaXbZc)(ωa
′

Xb′Zc′) = ωb
′c+a+a′

Xb+b′Zc+c′ ,

which shows that G is a non-commutative group of order d3. Next, the commutator of two
operators W and W ′ is

[W,W ′] :=WW ′W−1W ′−1
(3)

which in our case acquires the form

[ωaXbZc, ωa
′

Xb′Zc′ ] = ωcb
′
−c′bI. (4)

Recall that two operators commute if, and only if, their commutator (taken in any order) is
equal to I.

There are two important normal subgroups of G: its centre Z(G) and its commutator
subgroup G′, the two being identical

G′ = Z(G) = {ωaI : a ∈ Zd}. (5)

The bijective mappings
ψ : Zd → G′ : a 7→ ωaI,

ϕ : Z2
d → G/G′ : (b, c) 7→ G′XbZc.
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and their inverses yield a mapping1

[·, ·] : Z2
d → Zd :

(

(b, c), (b′, c′)
)

7→ cb′ − c′b (6)

which just describes the commutator of two elements of G (given in normal form) in terms
of our Zd-module. The mapping (6) can be rewritten in the following convenient form

[

(b, c), (b′, c′)
]

= (b, c)

(

0 −1
1 0

)(

b′

c′

)

= det

(

b′ c′

b c

)

(7)

which implies that [·, ·] is a bilinear alternating form on Z2
d. As usual, we write (b, c) ⊥ (b′, c′)

if
[

(b, c), (b′, c′)
]

= 0 and speak of orthogonal (or: perpendicular) vectors (with respect to
[·, ·]). As our alternating bilinear form is non-degenerate, we have indeed a symplectic module.
The set of operators in G which commute with a fixed operator ωaXbZc corresponds to the
perpendicular set (shortly the perp-set) of (b, c), viz.

(b, c)⊥ :=
{

(u, v) ∈ Z2
d : (b, c) ⊥ (u, v)

}

.

Being closed under addition and multiplication by ring elements and fullfilling the condition

Zd(b, c) ⊂ (b, c)⊥ (8)

(b, c)⊥ is a Zd-submodule of Z2
d.

A full algebraic geometrical meaning of perp-sets in Z2
d is revealed after introducing the

concept of the projective line over the ring Zd. We sketch here only some basic notions and
results, referring the interested reader to [2]–[6] for further details and proofs.

Let us consider any vector (b, c) ∈ Z2
d. It generates the cyclic submodule

Zd(b, c) = {(ub, uc) : u ∈ Zd}

Such a cyclic submodule is called free, if the mapping u 7→ (ub, uc) is injective. In this
case the vector (or: pair) (b, c) is called admissible. Any free cyclic submodule of Z2

d has
precisely d vectors, including the zero-vector. However, not all vectors 6= (0, 0) of a free cyclic
submodule need to be admissible. In a more geometric language, a free cyclic submodule of
Z2
d is called a point. The point set

P1(Zd) := {Zd(c, d) : (c, d) is admissible}

is the projective line over the ring Zd. According to this definition a point is a set of vectors.

3 A qudit for d a prime power

The case of d being a product of distinct primes was dealt with in [1] where the interested
reader can find all the details; following the strategy and employing the findings of this
paper, we are now in position to successfully tackle the most general case.

In this section, as a necessary intermediate step, we focus our attention to the case of a
single qudit for d = pε, where p is a prime and ε ≥ 1 an integer. Even though we aim at
using representatives from Zd rather than arbitrary integers, it will be very convenient to
represent 0 ∈ Zd also by d = pε /∈ Zd. We remind the reader that exponents in terms like pα

or pα+β are non-negative integers which must not be reduced modulo d. Of course, when
speaking about cardinalities of sets, also no reduction modulo d has to be applied.

Each of the sets
Zd = Zd · p

0 ⊃ Zd · p
1 ⊃ · · · ⊃ Zd · p

ε = {0} (9)

1Of course the symbol [·, ·] has two different meanings in (3) and (6).
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is an ideal of the ring (Zd,+, ·). We infer from

Zd · p
κ = {wpκ : w = 1, 2, . . . , pε−κ} (10)

that |Zd · p
κ| = pε−κ for any κ ∈ {0, 1, . . . , ε}.

An element of Zd has a multiplicative inverse if, and only if, it belongs to Zd \Zd · p. So
the elements of Zd without an inverse (i. e. the zero-divisors of Zd) are precisely the pε−1

elements of Zd · p. We note in passing that Zd · p is the only maximal ideal of the ring Zd.
So Zd is a local ring.

Each element a ∈ Zd admits a factorisation of the form

a = upα with u ∈ Zd \ Zd · p and α ∈ {1, 2, . . . , ε}. (11)

Indeed, a = 0 can be written as a = 1pε, for a = 1 holds a = 1p0, and for any other element
of Zd the usual decomposition of a into a product of primes, which uses the arithmetics
over Z, gives also a solution in Zd. The integer α is determined uniquely: It is the smallest
element κ ∈ {0, 1, . . . , ε} such that a ∈ Zd · p

κ. This uniqueness need not hold for u. In the
case a = 0 the element u may be any invertible element of Zd. For any a 6= 0 the element u
is given up to an additive constant belonging to

Zd · p
ε−α = {wpε−α : w = 1, 2, . . . , pα}. (12)

This set is the annihilator of pα, i. e. the set of all x ∈ Zd with the property pαx = 0.
Let (b, c) be a vector of the Zd-module Z2

d, where b = vpβ and c = wpγ are factorisations
as in (11). Then min{β, γ} will be called the degree of (b, c). So this degree equals the
smallest index κ ∈ {0, 1, . . . , ε} such that b, c ∈ Zd · p

κ. It is an easy exercise to show that
(b, c) has degree κ if, and only if, the ideal of Zd generated by {b, c} equals Zd · p

κ.

Lemma 1. Let (b, c) be a vector of Z2
d with degree δ. Then the following assertions hold:

(a) If A is an invertible 2× 2 matrix over Zd or, in symbols A ∈ GL2(Zd), then (b, c)A is

also a vector of degree δ.

(b) There exists a matrix M ∈ GL2(Zd) such that (b, c)M = (pδ, 0).

Proof. Suppose that b = vpβ and c = wpγ are factorised according to (11). Given a matrix
A = (ajk) ∈ GL2(Zd) we obtain from

(b, c)A = pδ(va11p
β−δ + wa21p

γ−δ, va12p
β−δ + wa22p

γ−δ).

that the degree of (b, c)A is ≥ δ. Similarly,
(

(b, c)A
)

A−1 = (b, c) implies that the degree of
(b, c)A is ≤ δ. This completes the proof of (a).

In order to establish (b) we distinguish two cases: If δ = β ≤ γ then we put

M :=

(

v−1 −wpγ−β

0 v

)

, (13)

whereas for δ = γ ≤ β we put

M :=

(

0 −w
w−1 vpβ−γ

)

. (14)

In either case we have detM = 1 and (b, c)M = (pδ, 0), as required.
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We add for the sake of completeness that M−1 equals
(

v wpγ−β

0 v−1

)

and

(

vpβ−γ w
−w−1 0

)

, (15)

respectively. Also, we emphasise the particular case of a vector (b, c) with degree 0 or, said
differently, of an admissible vector. Such a vector can be moved to (1, 0) by an appropriate
invertible matrix. This reflects the well known fact that all points of the projective line
P1(Zd) form an orbit under the action of the group GL2(Zd).

Lemma 2. The symplectic form [·, ·] remains invariant, to within invertible elements of Zd,

under the natural action of the general linear group GL2(Zd) on Z2
d .

Proof. From (7) follows for all A ∈ GL2(Zd) and all (b, c), (b′, c′) ∈ Z2
d that

[(b, c)A, (b′, c′)A] = detA[(b, c), (b′, c′)]. (16)

This implies, in particular, that our (symplectic) orthogonality of vectors is preserved
under the natural action of GL2(Zd). We shall use Lemmas 1 and 2 in the subsequent proofs
in order to simplify some (otherwise lengthy) calculations.

Theorem 1. Let the integer d = pε > 1 be a power of a prime p. Also, let (b, c) be a vector

of Z2
d with degree δ. Then the number of points of the projective line P1(Zd) which contain

the vector (b, c) equals

pε + pε−1 if δ = ε, (17)

pδ if δ < ε. (18)

Proof. Due to Lemmas 1 and 2, we may confine ourselves to the case (b, c) = (pδ, 0). Each
point of P1(Zd) can be written in a unique way either as Zd(1, y), where y ∈ Zd is arbitrary,
or as Zd(x, 1), with x ∈ Zd · p. We distinguish two cases:

Case 1: We have (pδ, 0) ∈ Zd(1, y) if, and only if, pδy = 0, which in turn is equivalent to
saying that y ∈ Zd is in the annihilator of pδ, viz. y is one of the elements

tpε−δ ∈ Zd with t ∈ {1, 2, . . . , pδ}. (19)

These elements give rise to pδ mutually distinct points containing the vector (pδ, 0).
Case 2: A point of the form Zd(x, 1) contains the vector (pδ, 0) precisely when (pδ, 0) =

0(x, 1) = (0, 0). Hence for δ < ε no such points exists, whereas for δ = ε there are pε−1

points of this kind.

Our next aim is to count the number of vectors in the perp-set of a vector (b, c).

Theorem 2. Let the integer d = pε > 1 be a power of a prime p. Also, let (b, c) be a vector

of Z2
d with degree δ. Then

|(b, c)⊥| = pε+δ. (20)

Proof. Again, we may assume without loss of generality that (b, c) = (pδ, 0). An unknown
vector (x, y) ∈ Z2

d belongs to (pδ, 0)⊥ if, and only if,

det

(

pδ 0
x y

)

= pδ det

(

1 0
x y

)

= 0.

By expanding this determinant, we deduce the equivalent condition

y ∈ {tpε−δ : t = 1, 2, . . . , pδ} (21)

in which the unknown x does not appear. So there are precisely pε solutions for x and
precisely pδ solutions for y.
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Let us compare the results from Theorems 1 and 2. For the sake of completeness, the
following result includes some previous findings:

Theorem 3. Let the integer d = pε > 1 be a power of a prime p. Also, let (b, c) be a vector

of Z2
d with degree δ. We denote by U(b, c) ⊂ Z2

d the set-theoretic union of all points of the

projective line P1(Zd) containing the vector (b, c). Then U(b, c) is a generating set for the

submodule (b, c)⊥ ⊂ Z2
d. Furthermore, the equality

U(b, c) = (b, c)⊥ (22)

holds if, and only if, one of the following conditions is satisfied:

(a) (b, c) = (0, 0).

(b) (b, c) is an admissible pair.

Proof. The assertions holds trivially for (b, c) = (0, 0), and we rule out this case for the rest
of the proof. As before, it will be assumed that (b, c) = (pδ, 0) is satisfied. We infer from
(21) that (pδ, 0)⊥ equals the set of vectors of the form

(s, tpε−δ) with s ∈ Zd and t ∈ {1, 2, . . . , pδ}. (23)

By (19), a vector is in U(pδ, 0) if, and only if, it can be written as

(s̃, s̃t̃pε−δ) with s̃ ∈ Zd and t̃ ∈ {1, 2, . . . , pδ}. (24)

We have U(pδ, 0) ⊂ (pδ, 0)⊥, since any vector from (24) appears also in (23) for s := s̃ and
the unique element t ∈ {1, 2, . . . , pδ} which satisfies t ≡ s̃t̃ mod pδ. Conversely, each vector
of (pδ, 0)⊥ is a linear combination of vectors of U(pδ, 0), because

(s, tpε−δ) = (s− t)(1, 0) + t(1, pε−δ),

where we use on the right hand side those vectors which arise in (24) for (s̃, t̃) := (1, pδ) and
(s̃, t̃) := (1, 1). Thus U(pδ, 0) generates (pδ, 0)⊥.

We infer from Theorem 2 that equation (22) is satisfied precisely when |U(pδ, 0)| = pε+δ.
This in turn is true if, and only if, distinct pairs (s̃, t̃) determine distinct vectors in (24).
Clearly, distinct values for s̃ yield distinct vectors, but for a fixed s̃ and a variable t̃ this
need no longer be true. Indeed, let us fix some s̃ ∈ Zd. Furthermore, we assume that

s̃ = upσ (25)

is a factorisation of s̃ as in (11), so that u is an invertible element. For this particular value
of s̃ the second coordinate of the vector given in (24) equals

t̃upε−δ+σ. (26)

There are two cases as t̃ varies in {1, 2, . . . , pδ}:
σ ≤ δ: Here (26) assumes the mutually distinct values

upε−δ+σ, 2upε−δ+σ, . . . , (pδ−σ − 1)upε−δ+σ, pδ−σupε−δ+σ = 0 (27)

for t̃ = 1, 2, . . . , pδ−σ, and remains 0 for all t̃ > pδ−σ.
σ > δ: The second summand is zero for all t̃.
We now assume that condition (b) from the Theorem is satisfied. So the element pδ is

invertible. This means δ = 0. Consequently, pε−δ = pε = 0. Hence (23) and (24) yield the
same set of pε vectors.

Finally, assume that (b) is not satisfied. (We did already rule out (a) at the beginning
of the proof.) Thus pδ is not invertible. This implies 1 ≤ δ. We even have 1 ≤ δ < ε, since
δ = ε would give the contradiction (pδ, 0) = (0, 0). By (23), the set (pδ, 0)⊥ has pδ vectors
of the form (p, ∗), whereas (27) shows that set U(pδ, 0) contains only pδ−1 such vectors.
Therefore U(pδ, 0) cannot be equal to (pδ, 0)⊥.
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As an appendix to the previous proof we give an explicit example of a vector (b, c) with
the property U(b, c) 6= (b, c)⊥. Let d := 4, i. e. p = 2 and ε = 2. We exhibit the vector
(2, 0) ∈ Z2

4. In terms of the notation used in Theorem 1 we have δ = 1 ∈ Z. There are just
two points containing (2, 0): These are Z4(1, 0) and Z4(1, 2). On the other hand, the vector
(2, 2) belongs to the perp-set of (2, 0), but it is neither a multiple of (1, 0) nor of (1, 2).

Theorem 4. Under the assumptions of Theorem 3 let (b, c) be a non-zero vector. Then the

number of vectors of the set U(b, c) equals

(

δ−1
∑

σ=0

(pε−σ − pε−σ−1)pδ−σ
)

+ pε−δ. (28)

Proof. We simplify matters as before by assuming that (b, c) = (pδ, 0), where δ < ε. Choose
an integer σ ∈ {0, 1, . . . , ε}. We determine the number of all s̃ = upσ ∈ Zd, where u is
any invertible element of Zd. Observe that in contrast to (25) now only σ is fixed, but s̃ is
variable. For σ ≤ ε− 1 holds

s̃ ∈ Zd · p
σ \ Zd · p

σ+1.

So s̃ can be chosen in pε−σ − pε−σ−1 different ways. For σ = ε there is a unique choice for
s̃, namely s̃ = 0.

Now we select one such s̃. We count how many distinct vectors arise from (24), as t̃
varies from 1 to pδ. By (27) and the subsequent remark on the case σ > δ, this number of
vectors equals

pδ−σ if 0 ≤ σ ≤ δ − 1,

1 if δ ≤ σ ≤ ε.

Note that result depends only on σ, but not on s̃.
Finally, we regard σ, s̃, t̃ to be variable and count the maximal number of pairs (s̃, t̃)

which give rise to distinct vectors in (24). As σ ranges from 0 to δ− 1, the maximal number
of such pairs is given by the sum on the left hand side of (28). For δ < σ ≤ ε we obtain

ε−1
∑

σ=δ

(pε−σ − pε−σ−1) + 1 = pε−δ (29)

such vectors. This completes the proof.

Note that (28) remains meaningful for (b, c) = (0, 0), but it does not provide the correct
number of vectors for (0, 0)⊥ = Z2

d. This is due to the fact that in (24) we disregard those
points which appear (for (b, c) = (0, 0) only) in the proof of Theorem 1, Case 2.

4 The case of an arbitrary qudit

Throughout this section we adopt the assumption that

d = pε11 p
ε2
2 · · · p

εr
r , (30)

where p1, p2, . . . , pr are r ≥ 1 distinct prime numbers, and the exponents ε1, ε2, . . . , εr are
non-negative integers ≥ 1. Furthermore, we let

dk := pεk

k for all k ∈ {1, 2, . . . , r}. (31)

It is well known that the ring (Zd,+, ·) is isomorphic to the outer direct product

Zd1
× Zd2

× · · · × Zdr
. (32)
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An isomorphism is given by assigning to each x ∈ Zd the r-tuple

(x(1), x(2), . . . , x(r)) ∈ Zd1
× Zd2

× · · · × Zdr
, (33)

where x(k) ≡ x (mod dk) for all k ∈ {1, 2, . . . , r}. We use this isomorphism to identify Zd

with the outer direct product given in (32), i. e., we do not distinguish between x ∈ Zd and
the r-tuple of its components x(k). Addition and multiplication of these r-tuples is carried
out componentwise, and calculations in the kth component are understood modulo dk. Note
that we used a representation of Zd as the inner direct product of r ideals in [1]. In the
present paper we shall not follow that approach.

This representation of Zd as a direct product has several straightforward consequences for
the Zd-module Z2

d: Given a vector (b, c) ∈ Z2
d we define its component vectors as (b

(k), c(k)) ∈
Z2
dk

for all k ∈ {1, 2, . . . , r}. The degree of (b, c) ∈ Z2
d is that r-tuple

δ := (δ1, δ2, . . . , δr) (34)

which is formed by the degrees of its component vectors (in natural order). Thus, for
example, the zero-vector of Zd is the only vector with degree (ε1, ε2, . . . , εr). A vector
(b, c) ∈ Zd is admissible if, and only if, there exist elements u, v ∈ Zd with

u(k)b(k) + v(k)c(k) = 1 for all k ∈ {1, 2, . . . , r}. (35)

This is equivalent to saying that all component vectors of (b, c) are admissible which in turn
means that the degree of (b, c) equals (0, 0, . . . , 0).

Likewise, each submodule of Z2
d can be split into its components. The following important

observation is immediate from the above: A submodule of Z2
d is free and cyclic (i. e. a point)

if, and only if, all its components are free and cyclic. Thus the projective line over Zd can
be viewed as the Cartesian product

P1(Zd1
)× P1(Zd2

)× · · · × P1(Zdr
). (36)

This allows to carry over the results from Section 3 to our more general setting.
Of course, also each matrix A ∈ GL2(Zd) can be split into its component matrices

A(k) ∈ GL2(Zdk
). Lemma 1 implies that the degree of vectors of Z2

d is a GL2(Zd)-invariant
notion. Furthermore, each vector with degree δ can be mapped to a vector (q, 0) ∈ Z2

d with

q(k) = pδk

k for all k ∈ {1, 2, . . . , r}. Likewise, Lemma 2 holds, mutatis mutandis, for an
arbitrary d.

We are now in a position to extend our Theorems 1 and 2.

Theorem 5. Let the integer d be given as in (30). Also, let (b, c) be a vector of Z2
d with

degree δ = (δ1, δ2, . . . , δr). We denote by K the set of those indices k ∈ {1, 2, . . . , r} such

that (b(k), c(k)) = (0, 0). Then the following assertions hold:2

(a) The number of points of the projective line P1(Zd) which contain the vector (b, c) equals

∏

j /∈K

p
δj

j ·
∏

k∈K

(pεk

k + pεk−1
k ). (37)

(b) The perp-set (b, c)⊥ has cardinality

|(b, c)⊥| =

r
∏

k=1

pεk+δk = d ·

r
∏

k=1

pδk . (38)

2Below we use the shorthand j /∈ K for j ∈ {1, 2, . . . , r} \K.
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Proof. It suffices to apply Theorem 1 and Theorem 2 to the component vectors of (b, c) and
to multiply the cardinalities which can be read off from there.

Since each pair (b, c) corresponds to all operators of the form ωaXbZc, and there are d such
operators, as an important corollary we have

Corollary 1. The number of operators in the generalized Pauli group G which commute

with the operator ωaXbZc ∈ G is equal to

d · |(b, c)⊥| = d2 ·

r
∏

k=1

pδk . (39)

We may define U(b, c) just in the same way as in Section 3 as the set-theoretic union of
all points of the projective line P1(Zd) which contain the vector (b, c). By our identification
of P1(Zd) with the Cartesian product (36), it is immediately clear that Theorem 3 holds,
mutatis mutandis, also for our arbitrary d.

Our last result in this section is the following straightforward generalisation of Theorem
4:

Theorem 6. Under the assumptions of Theorem 5 let (b, c) be a non-zero vector. Then the

number of vectors of the set U(b, c) equals

∏

j /∈K





(

δj−1
∑

σj=0

(p
εj−σj

j − p
εj−σj−1
j )p

δj−σj

j

)

+ p
εj−δj

j



 ·
∏

k∈K

d2
k. (40)

Proof. For all j /∈ K we can apply Theorem 5 in order to obtain the number of vectors in
the jth component of U(b, c). For the remaining indices k ∈ K the kth component of U(b, c)
coincides with Z2

dk
, and this is a set with cardinality d2

k. The proof is now accomplished by
multiplying these numbers.

5 Discussion and conclusion

A detailed study of a single qudit living in the Hilbert space of an arbitrary finite dimension d
has been performed in terms of the commutation algebra of the elements of the corresponding
generalized Pauli group G. The principal outcome of this analysis is the universal formula
for the number of operators commuting with a given one (eq. (39)) and its interpretation in
terms of the fine structure of the projective line defined of the modular ring Zd. As each
operator of the group G/G′ has the unique counterpart in a vector of Z2

d, it belongs to a
certain ‘layer’ characterized by the degree δ of the corresponding vector (see eq. (34)). In
light of eq. (2), the whole set of the generalized Pauli operators is thus naturally structured
into disjoint layers. The uppermost layer, δ = (0, 0, . . . , 0), comprises all those operators
which correspond to admissible vectors, while all the remaining layers feature operators
represented by non-admissible vectors; the lowermost layer, δ = (ε1, ε2, . . . , εr), consisting
of d operators of Z(G) (eq. (5)).3 Given the fact that the value of δ is intimately connected
with the number of free cyclic submodules of P1(Zd) shared by a given vector, this layered
structure of the operators’ set can be given a nice geometrical representation, as illustrated
in Fig. 1 for d = 12 (i. e., for p1 = 3, p2 = 2, ε1 = 1 and ε2 = 2).

As a concluding remark, we would like to stress that it is this particularly layered struc-
ture of generalized Pauli operators which, in our opinion, distinguishes a single d-qudit

3Roughly speaking, the greater the value of ∆ ≡ δ1 + δ2 + · · ·+ δr , the ‘lower’ the layer; this and some
other novel, and rather unexpected, properties of the structure of finite projective ring lines deserve a careful
treatment of their own and will, therefore, be the subject of a separate paper.
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Figure 1: A schematic illustration of the layered structure of the set of the generalized Pauli
operators of a 12-dimensional single qudit. Each circle represents d operators ωaXbzc with
b and c fixed, that is, one vector of Z2

12, and its size increases with the increasing number of
free cyclic submodules ‘passing’ through it. The circles are arranged into twelve horizontal
rows; the four rows at the top characterize admissible vectors, the one at the very bottom
accommodating all the operators of Z(G). Each free cyclic submodule consists of twelve
circles, one from each row, joined by line segments in an obvious way; a couple of them are
boldfaced so that one can readily recognize a generic shape. A layer is created by the circles
of the same size. It can easily be discerned that this particular qudit features six layers
characterized (top to bottom) by the following values of δ: (0,0), (0,1), (1,0), (0, 2), (1,1)
and (1,2) and having the following cardinalities: 96, 24, 12, 8, 3 and 1, respectively. (Three
different kinds of shading of line segments are used only to make the case more illustrative.)
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from a ‘tensorial’ multi-qudit of the same dimension. Here, the d = 4 case can serve as
an elementary illustration of this fact; while our single 4-qudit is characterized by two non-
trivial layers (disregarding the trivial Z(G)-layer) which are embodied in the structure of
the projective line over Z4, a two-qubit features just a single layer since the geometry behind
the corresponding tensor products of the classical Pauli matrices is that of the generalized
quadrangle of order two [7]–[9]. Similar comparisons can also be made for several other
low-dimensional quantum systems [10]–[12]. These should prove helpful when extending
this group-geometrical approach to the most general case of multiple qudits.
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