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Abstract

By providing explicit definitions, we show that in both affine and projectieemetry of di-
mension> 3, considered as first-order theories axiomatized in terms of lines as theamly v
ables, and the binary line-intersection predicate as primitive notion, norséatén of two
lines can be positively defined in terms of line-intersection.
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M. Pieri [15] first noted that projective three-dimensiosphce can be axiomatized in terms of
lines and line-intersections. A simplified axiom system weesented in [7], and two new ones in
[17] and [10], by authors apparently unaware of [15] and Mjother axiom system was presented
in [16, Ch. 7], a book devoted to the subject of three-dimeraiprojective line geometry.

One of the consequences of [4] is that axiomatizability it of line-intersections holds not
only for n-dimension projective geometry with= 3, but for alln > 3. Two such axiomatizations
were carried out in [14]. It follows from [5] that there morethan just plain axiomatizability
in terms of line-intersections that can be said about ptivgeometry, and it is the purpose of
this note to explore the statements that can be made inséde tineories, or in other words to
find the definitional equivalent for the theorems of Braungy F2avlicek [5], and Havlicek [6],
which state thabijectivemappings between the line sets of projective or affine spaiche same
dimension> 3 which map intersecting lines into intersecting lines steont collineations, or, for
three-dimensional projective spaces, from correlati¢@se also [1, Ch. 5], [9], and [11]).
We shall also prove that, in the projective caseyfor 4, ‘bijective’ can be replaced by ‘surjective’
in the above theorem, and the same holds in the affine case*o3.
Let £ denote the one-sorted first-order language, with individaables to be interpreted hses
containing as only non-logical symbol the binary relatigmbol ~, with a ~ b to be interpreted
as ‘a intersectd’ (and thus ardlifferentlines).
Given Lyndon’s preservation theorem ([13], see also [8, C0:13.5, p. 500])—
Theorem. Let £ be a first order language containing a sign for an identicdyse formula,7
be a theory inl, and¢(X) be anL-formula in the free variableX = (X,...,X,). Then the
following assertions are equivalent:

*Corresponding author.




(i) there is a positiveC-formula(X) such thatZ = ¢(X) < ¥(X);

(i) for any 2,8 € Mod(7), and each epimorphisrfi : 2 — 9B, the following condition is
satisfied: ifc € A™ and®2 = ¢(c), thenB = ¢(f(c)).

—there must exist a positivé-definition for the non-intersection of two lines (note toat ‘sign
for an identically false formula’ is ~ a).

1 Projective Spaces

1.1 Dimension> 4

We start with projective geometry of dimensian> 4. We shall henceforth write ~ b for
a~bVa=>baswellagay,...,a, ~by,...,0b,) for /\lgzgp,lgija’z ~ b;.

We first define the ternary co-punctuality predicatewith S(abc) standing for &, b, ¢ are three
different lines passing through the same point’ by (addiiio the indices, whenever the stated

bound for the index variable is exceeded, is mod 3 througtin@upaper)

S(ajasas) = (Vg)(Fh)g~hA (/\(ai ~ i1, h)) (1)

=1

Itis easy to see that (1) holds when the limgare different and concurrent. Should the three lines
a; intersect pairwise in three different points, then they lddae coplanar and, by > 4, for a line

g which is skew to that plane, we could not find an appropriateAi Next we define the closely
related ternary predicatg, whereS(abc) stands for & passes through the intersection pointof
andb’ by

S(abc) & S(abe) V <a~b/\(c:a\/c:b)>, 2

and then the quaternary predicatewith ab # cd to be read as ‘the intersection pointwéndb is
different from that ofc andd’ by

by # ashy o (Vg)ﬂhlhgi\ a; ~ b;) ((/\Sa,bh)/\Shlhgg) (\2/ S(a; Zg)).(S)

In fact, suppose tha?, := a; Nb; andP, := a, N by are points and thatis a line. If P, or P; is on
g, then the existence @f, andh. is trivial. If P, and P, are not ory (figure 1), then forP, # P,
there exists a poinl € g which is not on(P;, P), i. e. the line joiningP, and P,; hence the lines
hi := (P;, H) (i = 1,2) have the required properties. On the other han#, i= P, ¢ g, then (3)
cannot be satisfied, sin€gh,, h,, g) would imply hy # hy, butS(a,, bs;, h;) would forceh, = hs.

Notice that we can now define positively the negation of ligeadity by

a#b & (Ig)ag#bg, (4)

which proves that a surjective map between the sets of lih®gogprojective spaces of dimension
n > 4, which maps intersecting lines into intersecting linesstie injective as well.



Figure 1. Figure 2.

We are now ready to define the non-intersection predigater n-dimensional projective spaces
with n > 4. Letm = [251]. Forn even we have

ai 76 b & (CLl = bl) V (El as. .. am)(Vg)(El by ... bm-l—l) (5)
m—+1
/\ bia;—1 # bibi_1 N g ~ bpy1,
i=2

and forn odd we have

ai ’/‘ b & (CLl = bl) V (3 as. .. am)(Vg)(EI by . .. bm+162 . Cm+1> (6)
m—+1
/\ (bia;—1 # bibi—1 A ciai—1 # cici1) A b1 g # s g-
i=2

These two definitions state thatgif does not interseét, and ifa; # b;, then the sefa,, b, } can
be extended to a linearly independentdet {1, a4, . ..a,} (note than ifn = 4, thenm = 1, so
there are na’s bound by the existential quantifier in (5) at all) spanrargybspacé of dimension
2m + 1, i. e. the whole projective spacerifis odd, or a hyperplane i is even (see [3, 11.5]). In
both cases, any ling can be reached from in the manner described in (5) and (6),dges in U
if n is odd, and thus has two different points common with it, 9dh@ds, and; intersectd’ in at
least one point if, is even, so (5) holds. See figure 2 for the case 6.

If a; intersectsi,, then the dimension of the subspd¢espanned by anyl containinga; anda,
will be, for n even, at most. — 2, so there are lineg which do not intersedt/, and thus cannot
be reached in the manner described in (5), andisf odd, the dimension df is at most» — 1, so
there are lineg which intersectd’/ in one point, so for those lines definition (6), which reqgsire
that the lineg intersectd’ in two different points, cannot hold.

Given (1), (2), (3), it is obvious that-dimensional projective geometry with > 3, can be
axiomatized insideZ, as one can rephrase the axiom system based on point lirdenug of
the Veblen-Young type (for example the one in Lenz [12, p.203+0 which lower- and upper-
dimension axioms have been added) in terms of line intamecbnly, by replacing each ‘point
P’ with two intersecting lineg; andp,, the equality of two points and @, which have been
replaced by(p;, p») and(qi, ¢2), by S(p1p2g1) A S(p1p2q2) and every occurrence of*is incident
with I’ by S(p1p»l). This has been carried out in [14].

Since in some models (e. g. over commutative fields) of tkiiseensional projective geometry
there are correlations cannot be definable in terms ef, so the approach used for dimensions
> 4 fails in this case. Howeve#{ is positively definable, with negated equality allowed,amts
of ~, and it is to this definition that we now turn our attention.



1.2 The three-dimensional case

In the three-dimensional case, we first define the ternaatiosl 7', with 7'(abc) holding if and
only if ‘either the three different lineg, b, c intersect pairwise in three different points (and then
we callabc atripod) or they are concurrent, but do not lie in the same plane (iichvbase we call
abc atrilateral)’, by

T(ajaza3) <= (Yg192)(Fx12273) (91, 92 ~ 1, T2, T3) (7)

A (/3\ ((JL’z ™~ a;, Qi) N a; ~ a,-+1>) A (\?)/x, =+ $i+1>-

=1

To see that the above definition holds whegnas is a trilateral, letd; be the point of intersection
of the linesa; anda; | fori = 1,2, 3 (figure 3). Through eachH; there is a liner; intersecting (and
different from) bothg; andg,. Thez; satisfy the conditions of (7) since they cannot all coincide
given that no single line can, by the definition of a trilategass throughd,, A,, A;. A dual
reasoning to that presented for the case in whighas is a trilateral shows that the definition (7)
holds for tripodsz; asas as well.

To see that the only other case that could occur, givendhat a; for all : # j, namely that in
which the three lines, as, az are lying in the same planeand have a poin® in common, does
not satisfy (7), we choosg, g such that they are skew, notin and intersect the line; in two
points that are different fron® (figure 4). The only line that meetg, g and two of the lines
ai, as, as is a itself.

[
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Figure 3. Figure 4.

Next, we define a sexternary predicate, with abc =, o't/ to be read asabc andd't’'c’ are
either both trilaterals or both tripods’, by

abicy =4 agbycy & (Vg)(zlI11I21$12$22$13$23)

/\ <T(aibi0i) A (/3\(36” ~ a;, b, ¢, 9) N (x4 # xl-’jﬂ))) (8)

i=1 J=1

3
VAN (/\Ilj ~ l’gj).
j=1

Suppose that;b,c; andaybec, are trilaterals in planes, andm,, respectively. Then the lines;
can be chosen as follows: If (i), # m and if g is skew to the lines = 7; N w5, then we choose



three distinct points(;, X5, X5 ons, and we letr;; be the line joiningX; with g N ; (figure 5). If
(i) m # m and if g ands are not skew, then we choo&kto be a point lying on botl ands, and
we letz;; = x9; = s, and choose for;, andzx;3 any two distinct lines througti’ in the planer;,
which are different frons. If (ili) 7 = m = 7, then we letr;; = x91, T12 = x99, ANdx13 = x93
be any three distinct lines i through a point common t@ andg. In case bothu,b,¢; andasbyco
are tripods, the reasoning is, by dint of duality, similar.

Shoulda,b;c; be a trilateral in a plane, andasb,c; be a tripod with the vertex (point of concur-
rence)P, then we lety be a line which neither passes througtmor lies inx (figure 6). LetG be
the point of intersection of with =, and lety be the plane spanned lgyand P. If lines z;; were
to satisfy the conditions in the second line of (8), tlier =, C 7 andP € x5; C ~, and since at
least two of the lines;,;, sayz,; andxz;,, must be different fromr N v, the conditionse;; ~ 5,
andzq ~ x4 imply that bothzy; andz,; have to be the line joining® with G, so they cannot be
different, as required by the definiens in (8).

g/l g

Figure 5. Figure 6.

We now define the sexternary predicate, with abc =_ o'b'¢’ standing for abc anda’t’'c’ are (in
any order) a trilateral and a tripod’, by

2

a16101 =_ GQbQCQ <= (Vg)(EI ZEll’g) /\ ((Iz >~ a;, bi7 CZ‘> A T(alblcz)> (9)

=1

2
N (\/(g =x; V (libiCi =4 g.fll’g)).

=1

Supposer b, ¢, is a trilateral, lying in the plane, andasbsc, is a tripod, with vertexP. If g is a
line in 7w then we choose; = ¢ and asr, any line throughP. The case thaj passes througk
can be treated similarly. Hence we may restrict our attarttiche case in which neither lies in
7 nor passes through, and denote in this case laythe point of intersection of andx, and by~
the plane spanned by andg.

Then (i) if P ¢ 7, we letz, be the line joiningP andG, andx; be any line int passing through
G and different from the liner N~ (figure 7), and (ii) if P € =, then we letz, be the line joining
P with G, and we letr; be any line inr passing througld, but different fromz,, (figure 8).

Now if both a;b,c; andasbscs Were trilaterals lying in the same plane, then for any lineot
lying in that plane, we could not find, andz, with the desired properties, as the requirement
that /\le(:ci ~ a;,b;, ¢;) forces them to lie int, and so they can neither be equalgtoor form
a trilateral with it. If botha,b,¢; andasbyco Were trilaterals lying in different planes, and s,
whose line of intersection i5 then for any liney intersecting but lying neither inmy nor in m,,



we could not find the desired, andz,, as the conditiorj\le(xi ~ a;, b;, ¢;) forces them to lie in
w1 andmy, so they can neither be equalgpnor from a trilateral with it. A dual reasoning shows
that, if a;b1¢; andasbyc, were both tripods, (9) could not hold.

P g
xz
G
L1 ™
7 |
Figure 7. Figure 8.

The sexternary predicate,, with abc =4 a'b'¢’ standing for a4bc anda’t'c’ are both trilaterals
lying in differentplanes or both tripods wittlifferentvertices’, is defined by

a16101 =0 a2b202 = (El 1171.1323’}3) a1b101 =4 (lgbgCQ A ([E3 ~ dq, b17 C1, Q9, bg, Cg) (10)

2
N ClelCl =_ T1x2x3 N\ (/\(l’z ~ Q;, bl', Cz))

i=1

If a1b1c; andaybacy are both trilaterals (the tripod case is treated duallyipgyn different planes
m andm, intersecting ing, then we choose a poitit on g as the vertex of a tripod; z,x3, where
x3 = ¢, 1 liesinmy, andzs lies inms. If a1bc; andasboco Were both trilaterals lying in the same
planer, then anyz,, x4, x3 satisfying the intersection conditions of (10) would havdé&long to
7, and thus could not form a tripod.

We are finally ready to define positively, with allowed, the skewness predicatewith o(ab) to
be read ‘the lineg andb are skew’, by

o(ab) = (Yg)(3zajaghibs) (x ~ a,b) A (x ~ g) (11)
2
/\(aaix =, bbix A aa;x =g bbix) A\ aaix =_ aasx.

=1

Suppose: andb are skew, and leP be a point oru (figure 9). The linegg must have a poink in
common with the plane determined Byandb. Letx be a line containing’, R and intersecting
in a point@. Leta; be any line throughP that does not lie in plane determined dbwndzx, a, be
any line intersecting both anda in points different fromP, b, a line through?) not in the plane
determined by andx, andb, a line intersecting andzx in points different from@. With these
choices the definiens in (11) is satisfied.

Shoulda intersect, and shouldy be chosen such thabg forms a tripod with vertexP, then, given
that(x ~ a,b) A (z ~ g), thex required to exist by (11) would have to pass throughSince
aa1x =_ aasx, One ofaayx Or aasx must be a tripod. W. I. 0. g. we may suppaegegx is a tripod.
By aaix =, bbix, bbyx must be a tripod as well, and layi, x =4 bb,x the two tripods must have
different vertices, which is impossible, for, regardlesthe choice ofz; andb,, the vertex of both
tripods isP.
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Figure 9.

The positive definition (in terms of with # allowed) of the non-intersection predicate we were
looking for in the three-dimensional case is

atb & a=bVo(ab). (12)

However, we do not know whethe4, the negated line equality, is positively definable in teohs
~, and thus whether it is possible to have a thoroughly p@sdefiniens in (12).

2 Affine spaces

Notice that (1)—(4) are valid in-dimensional affine geometry with > 3 as well, since for any
plane there is a disjoint parallel line.

Since (4) holds, any surjective map between the sets of bhéso affine spaces of dimension
n > 3, which maps intersecting lines into intersecting lines ningsinjective as well.

In affine geometry, we distinguish two cases: (A) the one inctvlevery line is incident with
exactly two points (and then the space can be coordinatigéstj2)), and (B) the one in which
every line is incident with at least three points. The nunddel lines isk := 2"~1(2" —1) in case
(A), whereas in case (B) this number is strictly greater thatdence we can characterize cases
(A) and (B) by

a = Vryp..ozpe) ( \/ T; = Tj) (13)

1<i<j<k+1

and— «, respectively. It is worth noticing that the negated edigaliin —a can be avoided alto-
gether, without using (4), and that the number of variablesa can be greatly reduced, by taking
into account that in case (A) there are no more tlian- 1 pairwise intersecting lines, namely all
the lines through a fixed point, whereas in case (B) this nunslexceeded. Therefore

B e (Fayp...zm)( \/ T ~ ) (24)
1<i<j<2n
positively characterizes case (B).

Affine geometry can be axiomatized in terms of points andsliveith point-line incidence and
line-parallelism as primitive notions, and the first sucioeatization was presented in [182].



Affine geometry of a fixed dimensiain > 3, in which (A) holds, cannot be axiomatized inside
as itis not possible to define the line-parallelism predigan terms of line-intersection, given that
there are maps that preserve betland-¢, but which do not presenjg but it can be axiomatized
in terms of lines,~, and||. Affine geometry of a fixed dimensian > 3, in which (B) holds, can
be axiomatized insid€, by rephrasing the axiom system in [£2] in terms of lines and- (this is
possible in this case as|| b can be replaced by(ab) A a ¢ b, wherer is the coplanarity predicate
defined below in (16)), and by adding suitable dimensionmasioHowever, regardless of whether
(A) or its negation has been added to the axiom system-difnensional affine geometry with
n > 3, itis true thatyt can be defined positively in terms of, given that#, which occurs in (15),
can be defined positively by means of (4).

If every line contains exactly two points, i. e. in case (&g it is quite easy to define positively
the non-intersection predicate by observing that, if twitedent lines do not intersect, then there
is more than one line that intersects the two lines in difiepoints, but if they do intersect there
are only one such line. Therefore the definition in this case i

aq 7(4 ay &= a; = asg V (Oé A (El blbg) b1 7& b2 A (/\ albi #a2b1>> . (15)

=1

We denote the definiens of this definitionyThe conjuncty in (15) is not needed if we regard it
plainly as a definition of non-intersection inside theheory ofn-dimensional affine spaces over
GF(2), but we shall use in the general case, where we have no information regardegumber
of points incident with a line, below, and there we do need ¢bajunct as well.

From now on, we assume that lines are incident with more thvanpbints. For all dimensions
n > 3 we can define the coplanarityof two lines (which are allowed to coincide) by

m(ab) = (Jede)S(acd) N S(bce) Nd ~bAd~eNer~ a. (16)

See figure 10.

Figure 10. Figure 11.
To define non-intersection im-dimensional affine space with> 3, we need the following

Lemma. Letn > 3, m = [®], letay,...,a, bem independent lines in-dimensional affine
space, leUU = (a4, ..., a,) be the subspace spanned by these lines, and tet(a;, ..., a,_1).
Then for any point? € U there are (not necessarily distinct) linésandb,, such that, joins a
point in V" with a point ona,,, b, joins a point inV" or in a,, with a different point orb;, and P
lies onbs,.



Proof. If Pisona,, (orif P € V), then choosé; = b, to be a line joiningP with a point inV/
(orina,,). If Pis neither oru,, norinV/, then the subspacé®, a,,,) and(P, V') intersect in a line
x. If x intersects both,, andV in a point, then we leb; = b, = z. Sincex cannot be parallel
to bothx andV/, if it doesn't intersect both, it may be parallel to only orfaleem, i. e. either (i)
x || Vor (i) z || an. Let X be the point of intersection af with (i) a,, or (i) V. LetY be a point
in (i) V or (ii) a.,, letZ be the parallel through’ to x, andb; := (X, Y’). (Figure 11 depicts case
(i) for m = 2, so thatV’ = a; and= = a,.) Let Z be a third point orb; and letb, := (P, Z). The
line b, is not parallel tar and thus intersects (Iy or (ii) a,, in a point which is different fron¥.

O

We now define some auxiliary predicates. Méta; ... a,,z) stand for r is one of the lines; or
it intersects two of these lines in different points’, i. e.

m

M(ay...anx) & (\/$:a,~>\/( \/ aix#ajx) a7

i=1 1<i<j<m

Closely related tal/, we introduce
q
My(ay ... apx) = (Fby...b) N\ M(ar...amby...b) AM(ay.. ambi...ba).  (18)
=1

If (18) holds then the line: belongs to the affine subspace spannedy.., a,,, since it can be
‘reached’ with the help of the auxiliary linés, . . ., b,.

With m standing for[”T“], whenever; £ ay, we can find liness, . . ., a,, such thatu, ..., a,,
are independent. Léf be the subspace spanned by them. We infer from the above lethata
each lineh in U satisfiesM,.(a; . .. a,h) for r = 21 — 4. Recall that3 ensures that we are in
case (B). So we can now state the definition of non-intersectienn is even (in this cas¥# is

a hyperplane, so that to any ligghere exists a liné in U coplanar withg) as

a; A as:e a;p =azV (ﬁ A(Fas...an)Yg)(3h)m(gh) A M. (ay.. .amh)>. (19)
If nis odd,U is the whole affine space, so any lipdies inU, and thus

ay A as S ay =as V (ﬁ/\ (Faz...a,)(Vg) Mr(al...amg)) (20)

The definiens of the definitions in (19) and (20) are denoted, landé,, respectively.

Finally, we return to the general caserstliimensional affine geometry. By (15), (19), and (20) the
definition of non-intersection is

ay ay & gV 52(%7[%” (21)

3 Higher-dimensional subspaces

Given [4], n-dimensional projective geometry can also be axiomatizeld idimensional sub-
spaces (for all < k£ < n — 1 with 2k + 1 # n) as individual variables and a binary intersection
predicate~, with a ~ b to be interpreted as ‘the subspaaemdb intersect in & — 1-dimensional
subspace’. From the results in [9] it follows that the notefgection predicate is also positively de-
finable in terms of the intersection predicate (negatedlaggumallowed), but the actual definition
will very likely be prohibitively intricate.
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