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Abstract

By providing explicit definitions, we show that in both affine and projectivegeometry of di-
mension≥ 3, considered as first-order theories axiomatized in terms of lines as the only vari-
ables, and the binary line-intersection predicate as primitive notion, non-intersection of two
lines can be positively defined in terms of line-intersection.
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M. Pieri [15] first noted that projective three-dimensionalspace can be axiomatized in terms of
lines and line-intersections. A simplified axiom system waspresented in [7], and two new ones in
[17] and [10], by authors apparently unaware of [15] and [7].Another axiom system was presented
in [16, Ch. 7], a book devoted to the subject of three-dimensional projective line geometry.

One of the consequences of [4] is that axiomatizability in terms of line-intersections holds not
only for n-dimension projective geometry withn = 3, but for alln ≥ 3. Two such axiomatizations
were carried out in [14]. It follows from [5] that there ismore than just plain axiomatizability
in terms of line-intersections that can be said about projective geometry, and it is the purpose of
this note to explore the statements that can be made inside these theories, or in other words to
find the definitional equivalent for the theorems of Brauner [2], Havlicek [5], and Havlicek [6],
which state thatbijectivemappings between the line sets of projective or affine spacesof the same
dimension≥ 3 which map intersecting lines into intersecting lines stem from collineations, or, for
three-dimensional projective spaces, from correlations.(See also [1, Ch. 5], [9], and [11]).

We shall also prove that, in the projective case, forn ≥ 4, ‘bijective’ can be replaced by ‘surjective’
in the above theorem, and the same holds in the affine case forn ≥ 3.

LetL denote the one-sorted first-order language, with individual variables to be interpreted aslines,
containing as only non-logical symbol the binary relation symbol∼, with a ∼ b to be interpreted
as ‘a intersectsb’ (and thus aredifferentlines).

Given Lyndon’s preservation theorem ([13], see also [8, Cor.10.3.5, p. 500])—

Theorem. Let L be a first order language containing a sign for an identicallyfalse formula,T
be a theory inL, andϕ(X) be anL-formula in the free variablesX = (X1, . . . , Xn). Then the
following assertions are equivalent:
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(i) there is a positiveL-formulaψ(X) such thatT ` ϕ(X) ↔ ψ(X);

(ii) for any A,B ∈ Mod(T ), and each epimorphismf : A → B, the following condition is
satisfied: ifc ∈ A

n andA |= ϕ(c), thenB |= ϕ(f(c)).

—there must exist a positiveL-definition for the non-intersection of two lines (note thatour ‘sign
for an identically false formula’ isa ∼ a).

1 Projective Spaces

1.1 Dimension≥ 4

We start with projective geometry of dimensionn ≥ 4. We shall henceforth writea ' b for
a ∼ b ∨ a = b, as well as(a1, . . . , ap ∼ b1, . . . , bq) for

∧

1≤i≤p,1≤j≤q ai ∼ bj.

We first define the ternary co-punctuality predicateS, with S(abc) standing for ‘a, b, c are three
different lines passing through the same point’ by (addition in the indices, whenever the stated
bound for the index variable is exceeded, is mod 3 throughoutthe paper)

S(a1a2a3) :⇔ (∀ g)(∃h) g ∼ h ∧
(

3
∧

i=1

(ai ∼ ai+1, h)
)

. (1)

It is easy to see that (1) holds when the linesai are different and concurrent. Should the three lines
ai intersect pairwise in three different points, then they would be coplanar and, byn ≥ 4, for a line
g which is skew to that plane, we could not find an appropriate lineh. Next we define the closely
related ternary predicateS, whereS(abc) stands for ‘c passes through the intersection point ofa
andb’ by

S(abc) :⇔ S(abc) ∨
(

a ∼ b ∧ (c = a ∨ c = b)
)

, (2)

and then the quaternary predicate#, with ab # cd to be read as ‘the intersection point ofa andb is
different from that ofc andd’ by

a1b1 # a2b2 :⇔ (∀ g)(∃h1h2)
2

∧

i=1

(ai ∼ bi)∧

(

(

2
∧

i=1

S(aibihi)∧S(h1h2g)
)

∨
(

2
∨

i=1

S(aibig)
)

)

. (3)

In fact, suppose thatP1 := a1∩ b1 andP2 := a2∩ b2 are points and thatg is a line. IfP1 or P2 is on
g, then the existence ofh1 andh2 is trivial. If P1 andP2 are not ong (figure 1), then forP1 6= P2

there exists a pointH ∈ g which is not on〈P1, P2〉, i. e. the line joiningP1 andP2; hence the lines
hi := 〈Pi, H〉 (i = 1, 2) have the required properties. On the other hand, ifP1 = P2 /∈ g, then (3)
cannot be satisfied, sinceS(h1, h2, g) would implyh1 6= h2, butS(ai, bi, hi) would forceh1 = h2.

Notice that we can now define positively the negation of line equality by

a 6= b :⇔ (∃ g) ag # bg, (4)

which proves that a surjective map between the sets of lines of two projective spaces of dimension
n ≥ 4, which maps intersecting lines into intersecting lines, must be injective as well.
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We are now ready to define the non-intersection predicate6∼ for n-dimensional projective spaces
with n ≥ 4. Let m =

[

n−1
2

]

. Forn even we have

a1 6∼ b1 :⇔ (a1 = b1) ∨ (∃ a2 . . . am)(∀ g)(∃ b2 . . . bm+1) (5)
m+1
∧

i=2

biai−1 # bibi−1 ∧ g ∼ bm+1,

and forn odd we have

a1 6∼ b1 :⇔ (a1 = b1) ∨ (∃ a2 . . . am)(∀ g)(∃ b2 . . . bm+1c2 . . . cm+1) (6)
m+1
∧

i=2

(biai−1 # bibi−1 ∧ ciai−1 # cici−1) ∧ bm+1g # cm+1g.

These two definitions state that, ifa1 does not intersectb1, and ifa1 6= b1, then the set{a1, b1} can
be extended to a linearly independent setA := {b1, a1, . . . am} (note than ifn = 4, thenm = 1, so
there are noa’s bound by the existential quantifier in (5) at all) spanninga subspaceU of dimension
2m + 1, i. e. the whole projective space ifn is odd, or a hyperplane ifn is even (see [3, II.5]). In
both cases, any lineg can be reached fromA in the manner described in (5) and (6), asg lies inU
if n is odd, and thus has two different points common with it, so (6) holds, andg intersectsU in at
least one point ifn is even, so (5) holds. See figure 2 for the casen = 6.

If a1 intersectsa2, then the dimension of the subspaceU spanned by anyA containinga1 anda2

will be, for n even, at mostn − 2, so there are linesg which do not intersectU , and thus cannot
be reached in the manner described in (5), and ifn is odd, the dimension ofU is at mostn − 1, so
there are linesg which intersectsU in one point, so for those lines definition (6), which requires
that the lineg intersectsU in two different points, cannot hold.

Given (1), (2), (3), it is obvious thatn-dimensional projective geometry withn ≥ 3, can be
axiomatized insideL, as one can rephrase the axiom system based on point line incidence of
the Veblen-Young type (for example the one in Lenz [12, p. 19–20] to which lower- and upper-
dimension axioms have been added) in terms of line intersections only, by replacing each ‘point
P ’ with two intersecting linesp1 andp2, the equality of two pointsP andQ, which have been
replaced by(p1, p2) and(q1, q2), by S(p1p2q1) ∧ S(p1p2q2) and every occurrence of ‘P is incident
with l’ by S(p1p2l). This has been carried out in [14].

Since in some models (e. g. over commutative fields) of three-dimensional projective geometry
there are correlations,S cannot be definable in terms of∼, so the approach used for dimensions
≥ 4 fails in this case. However,6∼ is positively definable, with negated equality allowed, in terms
of ∼, and it is to this definition that we now turn our attention.



1.2 The three-dimensional case

In the three-dimensional case, we first define the ternary relation T , with T (abc) holding if and
only if ‘either the three different linesa, b, c intersect pairwise in three different points (and then
we callabc a tripod) or they are concurrent, but do not lie in the same plane (in which case we call
abc a trilateral)’, by

T (a1a2a3) :⇔ (∀ g1g2)(∃x1x2x3) (g1, g2 ∼ x1, x2, x3) (7)

∧

( 3
∧

i=1

(

(xi ' ai, ai+1) ∧ ai ∼ ai+1

)

)

∧
(

3
∨

i=1

xi 6= xi+1

)

.

To see that the above definition holds whena1a2a3 is a trilateral, letAi be the point of intersection
of the linesai andai+1 for i = 1, 2, 3 (figure 3). Through eachAi there is a linexi intersecting (and
different from) bothg1 andg2. Thexi satisfy the conditions of (7) since they cannot all coincide,
given that no single line can, by the definition of a trilateral, pass throughA1, A2, A3. A dual
reasoning to that presented for the case in whicha1a2a3 is a trilateral shows that the definition (7)
holds for tripodsa1a2a3 as well.

To see that the only other case that could occur, given thatai ∼ aj for all i 6= j, namely that in
which the three linesa1, a2, a3 are lying in the same planeπ and have a pointO in common, does
not satisfy (7), we chooseg1, g2 such that they are skew, not inπ, and intersect the linea1 in two
points that are different fromO (figure 4). The only line that meetsg1, g2 and two of the lines
a1, a2, a3 is a1 itself.
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Next, we define a sexternary predicate≡+, with abc ≡+ a′b′c′ to be read as ‘abc anda′b′c′ are
either both trilaterals or both tripods’, by

a1b1c1 ≡+ a2b2c2 :⇔ (∀ g)(∃x11x21x12x22x13x23)
2

∧

i=1

(

T (aibici) ∧
(

3
∧

j=1

(xij ' ai, bi, ci, g) ∧ (xij 6= xi,j+1)
)

)

(8)

∧
(

3
∧

j=1

x1j ' x2j

)

.

Suppose thata1b1c1 anda2b2c2 are trilaterals in planesπ1 andπ2, respectively. Then the linesxij

can be chosen as follows: If (i)π1 6= π2 and if g is skew to the lines = π1 ∩ π2, then we choose



three distinct pointsX1, X2, X3 ons, and we letxij be the line joiningXj with g ∩πi (figure 5). If
(ii) π1 6= π2 and ifg ands are not skew, then we chooseG to be a point lying on bothg ands, and
we letx11 = x21 = s, and choose forxi2 andxi3 any two distinct lines throughG in the planeπi,
which are different froms. If (iii) π1 = π2 = π, then we letx11 = x21, x12 = x22, andx13 = x23

be any three distinct lines inπ through a point common toπ andg. In case botha1b1c1 anda2b2c2

are tripods, the reasoning is, by dint of duality, similar.

Shoulda1b1c1 be a trilateral in a planeπ, anda2b2c2 be a tripod with the vertex (point of concur-
rence)P , then we letg be a line which neither passes throughP nor lies inπ (figure 6). LetG be
the point of intersection ofg with π, and letγ be the plane spanned byg andP . If lines xij were
to satisfy the conditions in the second line of (8), thenG ∈ x1j ⊂ π andP ∈ x2j ⊂ γ, and since at
least two of the linesx1j, sayx11 andx12, must be different fromπ ∩ γ, the conditionsx11 ' x21

andx12 ' x22 imply that bothx21 andx22 have to be the line joiningP with G, so they cannot be
different, as required by the definiens in (8).
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We now define the sexternary predicate≡−, with abc ≡− a′b′c′ standing for ‘abc anda′b′c′ are (in
any order) a trilateral and a tripod’, by

a1b1c1 ≡− a2b2c2 :⇔ (∀ g)(∃x1x2)
2

∧

i=1

(

(xi ' ai, bi, ci) ∧ T (aibici)
)

(9)

∧
(

2
∨

i=1

(g = xi ∨ aibici ≡+ gx1x2)
)

.

Supposea1b1c1 is a trilateral, lying in the planeπ, anda2b2c2 is a tripod, with vertexP . If g is a
line in π then we choosex1 = g and asx2 any line throughP . The case thatg passes throughP
can be treated similarly. Hence we may restrict our attention to the case in whichg neither lies in
π nor passes throughP , and denote in this case byG the point of intersection ofg andπ, and byγ
the plane spanned byP andg.

Then (i) if P 6∈ π, we letx2 be the line joiningP andG, andx1 be any line inπ passing through
G and different from the lineπ ∩ γ (figure 7), and (ii) ifP ∈ π, then we letx2 be the line joining
P with G, and we letx1 be any line inπ passing throughG, but different fromx2 (figure 8).

Now if both a1b1c1 anda2b2c2 were trilaterals lying in the same plane, then for any lineg not
lying in that plane, we could not findx1 andx2 with the desired properties, as the requirement
that

∧2
i=1(xi ' ai, bi, ci) forces them to lie inπ, and so they can neither be equal tog nor form

a trilateral with it. If botha1b1c1 anda2b2c2 were trilaterals lying in different planesπ1 andπ2,
whose line of intersection isl, then for any lineg intersectingl but lying neither inπ1 nor in π2,



we could not find the desiredx1 andx2, as the condition
∧2

i=1(xi ' ai, bi, ci) forces them to lie in
π1 andπ2, so they can neither be equal tog, nor from a trilateral with it. A dual reasoning shows
that, if a1b1c1 anda2b2c2 were both tripods, (9) could not hold.
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The sexternary predicate≡⊕, with abc ≡⊕ a′b′c′ standing for ‘abc anda′b′c′ are both trilaterals
lying in differentplanes or both tripods withdifferentvertices’, is defined by

a1b1c1 ≡⊕ a2b2c2 :⇔ (∃x1x2x3) a1b1c1 ≡+ a2b2c2 ∧ (x3 ∼ a1, b1, c1, a2, b2, c2) (10)

∧ a1b1c1 ≡− x1x2x3 ∧
(

2
∧

i=1

(xi ∼ ai, bi, ci)
)

.

If a1b1c1 anda2b2c2 are both trilaterals (the tripod case is treated dually), lying in different planes
π1 andπ2 intersecting ing, then we choose a pointP on g as the vertex of a tripodx1x2x3, where
x3 = g, x1 lies inπ1, andx2 lies inπ2. If a1b1c1 anda2b2c2 were both trilaterals lying in the same
planeπ, then anyx1, x2, x3 satisfying the intersection conditions of (10) would have to belong to
π, and thus could not form a tripod.

We are finally ready to define positively, with6= allowed, the skewness predicateσ, with σ(ab) to
be read ‘the linesa andb are skew’, by

σ(ab) :⇔ (∀ g)(∃xa1a2b1b2) (x ∼ a, b) ∧ (x ' g) (11)
2

∧

i=1

(aaix ≡+ bbix ∧ aaix ≡⊕ bbix) ∧ aa1x ≡− aa2x.

Supposea andb are skew, and letP be a point ona (figure 9). The lineg must have a pointR in
common with the plane determined byP andb. Let x be a line containingP , R and intersectingb
in a pointQ. Let a1 be any line throughP that does not lie in plane determined bya andx, a2 be
any line intersecting bothx anda in points different fromP , b1 a line throughQ not in the plane
determined byb andx, andb2 a line intersectingb andx in points different fromQ. With these
choices the definiens in (11) is satisfied.

Shoulda intersectb, and shouldg be chosen such thatabg forms a tripod with vertexP , then, given
that (x ∼ a, b) ∧ (x ' g), thex required to exist by (11) would have to pass throughP . Since
aa1x ≡− aa2x, one ofaa1x or aa2x must be a tripod. W. l. o. g. we may supposeaa1x is a tripod.
By aa1x ≡+ bb1x, bb1x must be a tripod as well, and byaa1x ≡⊕ bb1x the two tripods must have
different vertices, which is impossible, for, regardless of the choice ofa1 andb1, the vertex of both
tripods isP .
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The positive definition (in terms of∼ with 6= allowed) of the non-intersection predicate we were
looking for in the three-dimensional case is

a 6∼ b :⇔ a = b ∨ σ(ab). (12)

However, we do not know whether6=, the negated line equality, is positively definable in termsof
∼, and thus whether it is possible to have a thoroughly positive definiens in (12).

2 Affine spaces

Notice that (1)–(4) are valid inn-dimensional affine geometry withn ≥ 3 as well, since for any
plane there is a disjoint parallel line.

Since (4) holds, any surjective map between the sets of linesof two affine spaces of dimension
n ≥ 3, which maps intersecting lines into intersecting lines must be injective as well.

In affine geometry, we distinguish two cases: (A) the one in which every line is incident with
exactly two points (and then the space can be coordinatized by GF(2)), and (B) the one in which
every line is incident with at least three points. The numberof all lines isk := 2n−1(2n−1) in case
(A), whereas in case (B) this number is strictly greater thank. Hence we can characterize cases
(A) and (B) by

α :⇔ (∀x1 . . . xk+1) (
∨

1≤i<j≤k+1

xi = xj) (13)

and¬α, respectively. It is worth noticing that the negated equalities in¬α can be avoided alto-
gether, without using (4), and that the number of variables in¬α can be greatly reduced, by taking
into account that in case (A) there are no more than2n − 1 pairwise intersecting lines, namely all
the lines through a fixed point, whereas in case (B) this numberis exceeded. Therefore

β :⇔ (∃x1 . . . x2n) (
∨

1≤i<j≤2n

xi ∼ xj) (14)

positively characterizes case (B).

Affine geometry can be axiomatized in terms of points and lines, with point-line incidence and
line-parallelism as primitive notions, and the first such axiomatization was presented in [12,§2].



Affine geometry of a fixed dimensionn ≥ 3, in which (A) holds, cannot be axiomatized insideL,
as it is not possible to define the line-parallelism predicate‖ in terms of line-intersection, given that
there are maps that preserve both∼ and 6∼, but which do not preserve‖, but it can be axiomatized
in terms of lines,∼, and‖. Affine geometry of a fixed dimensionn ≥ 3, in which (B) holds, can
be axiomatized insideL, by rephrasing the axiom system in [12,§2] in terms of lines and∼ (this is
possible in this case asa ‖ b can be replaced byπ(ab)∧a 6∼ b, whereπ is the coplanarity predicate
defined below in (16)), and by adding suitable dimension axioms. However, regardless of whether
(A) or its negation has been added to the axiom system ofn-dimensional affine geometry with
n ≥ 3, it is true that6∼ can be defined positively in terms of∼, given that6=, which occurs in (15),
can be defined positively by means of (4).

If every line contains exactly two points, i. e. in case (A), then it is quite easy to define positively
the non-intersection predicate by observing that, if two different lines do not intersect, then there
is more than one line that intersects the two lines in different points, but if they do intersect there
are only one such line. Therefore the definition in this case is

a1 6∼ a2 :⇔ a1 = a2 ∨

(

α ∧ (∃ b1b2) b1 6= b2 ∧
(

p
∧

i=1

a1bi # a2bi

)

)

. (15)

We denote the definiens of this definition byγ. The conjunctα in (15) is not needed if we regard it
plainly as a definition of non-intersection inside theL-theory ofn-dimensional affine spaces over
GF(2), but we shall useγ in the general case, where we have no information regarding the number
of points incident with a line, below, and there we do need that conjunct as well.

From now on, we assume that lines are incident with more than two points. For all dimensions
n ≥ 3 we can define the coplanarityπ of two lines (which are allowed to coincide) by

π(ab) :⇔ (∃ cde)S(acd) ∧ S(bce) ∧ d ∼ b ∧ d ∼ e ∧ e ∼ a. (16)

See figure 10.
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To define non-intersection inn-dimensional affine space withn ≥ 3, we need the following

Lemma. Let n ≥ 3, m = [n+1
2

], let a1, . . . , am bem independent lines inn-dimensional affine
space, letU = 〈a1, . . . , am〉 be the subspace spanned by these lines, and letV = 〈a1, . . . , am−1〉.
Then for any pointP ∈ U there are (not necessarily distinct) linesb1 andb2, such thatb1 joins a
point in V with a point onam, b2 joins a point inV or in am with a different point onb1, andP
lies onb2.



Proof. If P is onam (or if P ∈ V ), then chooseb1 = b2 to be a line joiningP with a point inV
(or in am). If P is neither onam nor inV , then the subspaces〈P, am〉 and〈P, V 〉 intersect in a line
x. If x intersects botham andV in a point, then we letb1 = b2 = x. Sincex cannot be parallel
to bothx andV , if it doesn’t intersect both, it may be parallel to only one of them, i. e. either (i)
x ‖ V or (ii) x ‖ am. Let X be the point of intersection ofx with (i) am or (ii) V . Let Y be a point
in (i) V or (ii) am, let x be the parallel throughY to x, andb1 := 〈X,Y 〉. (Figure 11 depicts case
(ii) for m = 2, so thatV = a1 andx = a2.) Let Z be a third point onb1 and letb2 := 〈P,Z〉. The
line b2 is not parallel tox and thus intersects (i)V or (ii) am in a point which is different fromZ.
¤

We now define some auxiliary predicates. LetM(a1 . . . amx) stand for ‘x is one of the linesai or
it intersects two of these lines in different points’, i. e.

M(a1 . . . amx) :⇔
(

m
∨

i=1

x = ai

)

∨
(

∨

1≤i<j≤m

aix # ajx
)

. (17)

Closely related toM , we introduce

Mq(a1 . . . amx) :⇔ (∃ b1 . . . bq)

q
∧

i=1

M(a1 . . . amb1 . . . bi) ∧ M(a1 . . . amb1 . . . bqx). (18)

If (18) holds then the linex belongs to the affine subspace spanned bya1, ..., am, since it can be
‘reached’ with the help of the auxiliary linesb1, . . . , bq.

With m standing for[n+1
2

], whenevera1 6∼ a2, we can find linesa3, . . . , am such thata1, . . . , am

are independent. LetU be the subspace spanned by them. We infer from the above lemma, that
each lineh in U satisfiesMr(a1 . . . amh) for r = 2m+1 − 4. Recall thatβ ensures that we are in
case (B). So we can now state the definition of non-intersection, whenn is even (in this caseU is
a hyperplane, so that to any lineg there exists a lineh in U coplanar withg) as

a1 6∼ a2 : ⇔ a1 = a2 ∨
(

β ∧ (∃ a3 . . . am)(∀ g)(∃h) π(gh) ∧ Mr(a1 . . . amh)
)

. (19)

If n is odd,U is the whole affine space, so any lineg lies inU , and thus

a1 6∼ a2 : ⇔ a1 = a2 ∨
(

β ∧ (∃ a3 . . . am)(∀ g) Mr(a1 . . . amg)
)

. (20)

The definiens of the definitions in (19) and (20) are denoted byδ0 andδ1, respectively.

Finally, we return to the general case ofn-dimensional affine geometry. By (15), (19), and (20) the
definition of non-intersection is

a1 6∼ a2 :⇔ γ ∨ δ2(n

2
−[n

2
]). (21)

3 Higher-dimensional subspaces

Given [4], n-dimensional projective geometry can also be axiomatized with k-dimensional sub-
spaces (for all1 ≤ k ≤ n − 1 with 2k + 1 6= n) as individual variables and a binary intersection
predicate∼, with a ∼ b to be interpreted as ‘the subspacesa andb intersect in ak−1-dimensional
subspace’. From the results in [9] it follows that the non-intersection predicate is also positively de-
finable in terms of the intersection predicate (negated equality is allowed), but the actual definition
will very likely be prohibitively intricate.
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[2] H. Brauner, Über die von Kollineationen projektiver Räume induzierten Geradenabbildungen,
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