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INVARIANT POINTS OF CIRCULAR TRANSFORMATIONS

Hans Havlicek

Abstract. A geometric construction is given for the invariant points of
opposite circular transformations of a real Möbius, Minkowski or Laguerre
plane.

1. Introduction
!

There are three classical circle planes, viz. the real planes of Möbius,

Minkowski and Laguerre. We consider them as the conformal closures of a

euclidean, pseudo-euclidean or isotropic (galileian) plane, respectively. Cf.

e.g. [1,§1,§2,§4]. For further literature on these circle planes and their

generalizations we refer to [1], [4], [8], [12], [13]. A bijection of a circle

plane which is circle preserving in both directions will be called a circular

transformation [1,97]; see [1,§6] for major results on these transformations.
!

The problem of finding geometric constructions for the invariant points

of circular transformations has a long history. It has been dealt with by many

authors, but usually attention is paid exclusively to projectivities or, in

other words, those transformations which preserve cross ratios. Moreover many

authors restrict themselves to involutions. Cf. [3,324], [5], [6], [7],

[11,75-77], [14], [15], [16], [19,213], [20].
!

Only recently Hermann Schaal [9] made a contribution to this subject by

establishing a construction for the invariant points of Möbius transformations

which are not preserving cross ratios (antiprojectivities). It is based upon

the decomposition of such a transformation into a product of inversions.
!

However the ideas used in [9] cannot be transferred to Minkowski and

Laguerre planes: On one hand in a Minkowski plane the subgroup generated by

inversions is n!o!t the full group of circular transformations. This is a

corollary to the following well know facts: Let F be ruled quadric within a

3-dimensional real projective space. Then F is a model for the Minkowski plane

and inversions correspond to automorphic harmonic homologies of F. Any product
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of such homologies preserves the two sides of F, but there are automorphic

collineations of F which interchange the two sides of F. On the other hand

elementary mid-points of circles play a crucial rôle in [9], but circles in a

Laguerre plane fail to have mid-points.
!

In this paper we shall be concerned with opposite circular transforma-

tions; they are characterized by the property that cross ratios are subject to

conjugation, i.e. the only R-automorphism of the underlying R-algebra (complex

numbers, double numbers or dual numbers, respectively) which has order two. A

circular transformation is opposite if, and only if, oriented measured angles

are transformed by the factor -1. We develop a construction for the invariant

points of opposite circular transformations which will work in either of the

three classical circle planes thus emphasizing common properties of these

geometries rather than particular ones.
!

2. Invariant points
!------Let E be the conformal closure of an euclidean, pseudo-euclidean or iso-

tropic affine plane E. Recall that the non-isotropic lines of E extend to
------circles of E passing through the ideal point 8. These circles again will be

called lines. On the other hand isotropic lines of E give rise to generators
------of E.

! ------ ------Let a!:!EtLtE be an opposite circular transformation. If one a-invariant

point is known, then all other invariant points may be found in affine terms;

cf. [9,172] and the remarks made there.
! ------Now suppose that every point XtetE is parallel (i.e. identical or not

acocircular) with its image X .
------If E is a Möbius plane, then at=tid, since parallel points always coin-

cide. This contradicts a being opposite.
------If E is a Minkowiski plane, then the two families of generators are

interchanged, whence at=tid, a contradiction.
------If E is a Laguerre plane, then at$tid is easily seen to be possible. Cf.

e.g. the examples in [8], [17]. The following construction fails to work in
1this case , but the invariant points of a may be found as follows: The map a

------induces a projectivity on the family generators of E, i.e. the isotropic lines

of E and the ideal generator through 8. The fixed elements of this projec-

----------------------------------------------------------------------------------------------------

1The same situation arises for projectivities of a Laguerre plane: The con-
struction given in [14,257] cannot be applied when every point is parallel to
its image point.
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tivity can be constructed by intersecting a circle with a line; see e.g.

[2,63]. If fixed generators do exist, then invariant points on them can be

constructed in affine terms, since generators are affine lines.
!

Any opposite circular transformation is uniquely determined by its action

on three non-parallel points A,B,C which will be chosen subject to the follow-

ing restrictions: Assume that none of A,B,C is invariant and that A is not
a a aparallel to A . Hence we may put Bt=tA . We shall make assumptions on C and C

later on. Finally, we may suppose that Bt=t8. Otherwise E has to be replaced
------ ------by the affine plane E consisting of all points of E which are not parallel toB

B. So this last assumption is not really essential.
! a aGiven non-isotropic lines k1,k2 through A, then k1 ,k2 are non-isotropic

alines again and will pass through B . The following equation of oriented

measured angles holds true:
! a a a a a&(k1,k2;A)t=t-&(k1 ,k2 ;B)t=t&(k1 ,k2 ;B ). (1)

!
We denote by d the restriction of a on the pencil of circles with fundamental

points A and B. The set
! dJ t:=t{X|Xtetknk , k is a non-isotropic line through A}\{B} (2)aff !^is a subset of the affine plane E. In the projective closure E of E this d

gives rise to a projectivity of the pencil of lines through A onto the pencil
aof lines through B and J is contained in the set of points generated byaff

this projectivity. The actual description of J will be done in the dis-aff
cussion below.

!
Let F be a a-invariant point. If F is parallel to B, then F is also

a -1parallel to A and B , because both a and its inverse a preserve parallelism
------of points. Hence such an F does not exist, when either E is a Möbius or

------ aLaguerre plane or E is a Minkowski plane and At$tB . If F is not parallel to

Bt=t8, then F is not parallel to A and FAB is a non-isotropic line, whence
!aFtetJ tntJ .aff aff!

Now we have to discuss several cases:
!a dCase 1.1. AtMtB and at least one line k and its image k (cf. (2)) are

not touching in B. In affine terms these two lines are parallel. Then there is

a uniquely determined circle l such that

J t=t{Xtetl|XtMtB}t=tlnE.aff aSo the set of a-invariant points, fix(a) say, is a subset of J nJ . Theaff affa atangent line t of l in A is mapped under a to the circle ABB , whence l and
a aABB are touching in B. Let C be chosen such that both C and C are off the

acircle ABB . Write S for the affine point of intersection of lines ABC and
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a a
BB C . Hence Stetl\{A,B}. Since a is preserving real cross ratios (CR), we

obtain
! a a a a a aCR(A,C,S,B)t=tCR(B,C ,S ,B )t=tCR(B ,S ,C ,B).

!
The cross ratios at either pole of this equation may be interpreted as affine

aratios in E, because Bt=t8. Finding S may be done according to figure 1. Then
a a al is the unique line touching ABB in B and passing through S .

!aIf Ftetlnl , then FtetE and
!a ( )a a a{F} t=t (ABF!n!l)\{A} t=t(BB Fnl )\{B}t=t{F}.9 0 !

So we obtain either two, one or no invariant points in this case.

!!!!! ! !!! !! !!!!!!

!

!

!

!

!

!

!

!

Fig.!1.
!a dCase 1.2. AtMtB and the circles k,k in formula (2) are always touching

in B. Here fix(a)t=to.
!a a dCase 2.1. At$tB , AtNtB and at least one circle k and its image k are

------not touching in B. Then E is either a Minkowski or Laguerre plane. There is a
------uniquely determined generator g of E such that

! aJ t=t{Xtetg|XtMtA, XtMtB }t=tgnE.aff !aIn a Minkowski plane gng is a single point F2 and fix(a)t=t{F1,F2} with F1
abeing the only point parallel to A,B and B . In a Laguerre plane a induces a

projectivity of order two on the set of generators. If one point of g is

fixed, then g is pointwise invariant by (1). Hence we just have to check if

the common point of the circle ABC and g is a-invariant or not.
!a a dCase 2.2. At$tB , AtNtB and k, k are always touching in B, i.e. in

------affine terms these lines are always parallel. Then fix(a)t=to, if E is Möbius

or Laguerre, and fix(a) is given by the only point F that is parallel to A,B
aand B in a Minkowski plane.

!aCase 3.1. At=tB , dt$tid. Then J t=to and thus fix(a)t=to in a Möbiusaff------or Laguerre plane. If however E is a Minkowski plane, then there are exactly
atwo points F1, F2 which are parallel to both B and B and these two points are
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a
a-invariant, since B and B are interchanged.

!aCase 3.2. At=tB , dt=tid: Now J t=tE fails to give us any informationaffaon fix(a). The points A,C,C are one a common line k and a restricted to k is

an involution. Check the sign of the cross ratio
!aCR(C,C ,A,B)tetR\{0}.

!
If this sign is +1, then the projectivity on k is hyperbolic and there

are two invariant points F1, F2 on k which can be found as usual (cf. e.g.
------[2,63]). If E is not Laguerre, then fix(a) is given by the circle orthogonal

to AF1F2 and passing through both F1 and F2. Actually a is the inversion at

that circle. In a Laguerre plane fix(a) is the union of the two generators

passing through F1 and F2, respectively. In [17] this transformation too is

called an inversion.
!

If the sign is -1, then the projectivity on k is elliptic. In a Möbius or

Laguerre plane there are no invariant points. In a Minkowski plane there are

two a-invariant points F1,F2 on the line through A which is orthogonal to ABC
2and fix(a), as before, is a circle .

!
The construction given in case 1.1 is completely independent of the type

of circle plane we work in. Unfortunately in the other cases this "common

feature" is somehow covered up by the different types of parallelism relation
------on E.

!
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