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Abstract

In the nineties, A.G. Spera introduced a construction principle for

divisible designs. Using this method, we get series of divisible designs from

finite Laguerre geometries. We show a close connection between some of

these divisible designs and divisible designs whose construction was based

on a conic in a plane of a 3-dimensional projective space.

1 Introduction

One interesting sort of designs is that of divisible designs. In 1992, A. G. Spera
introduced a method to construct these designs by t − R-homogeneous (t − R-
transitive) R-permutation groups ([9]). Here, R denotes an equivalence relation
on the elements of a finite set. Once we have such an R-permutation group
acting on a finite set X , the main problem is the calculation of the parameters
of the divisible design. Especially the determination of the order of the stabilizer
of a chosen base block in the R-permutation group, which is needed for the
calculation of the parameter λ, is often not trivial. For that purpose, we have to
obtain suitable conditions on the construction. There are already several known
examples of constructions using Spera’s construction principle ([9], [8], [4],[3]).
In 1999, R.-H. Schulz and C. Cerroni gave one such construction starting from
a conic in a plane of the 3-dimensional projective space PG(3, q) ([4]).

In this paper, we construct several series of new 3-divisible designs again
using this method but starting from a Laguerre geometry Σ(GF(q), ID(GF(q)))
with ID(GF(q)) being the ring of dual numbers over the finite field GF(q). We
show a close connection between some of these designs and those constructed by
Schulz and Cerroni. We will see that the initial situations of both constructions
are mutually dual and that the parameters of our first series of 3-divisible designs
of Theorem 3.0.1 are equal to the parameters of the series of 3-divisible designs
by Schulz and Cerroni (cf. Theorem 2.1.1) mentioned above. The other series of
Theorem 3.0.1 seem to be new.
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2 Preliminary terms, definitions and results

2.1 About Divisible Designs

Let X be a finite set with an equivalence relation R on its elements. We denote
by [x] the R-equivalence class containing x ∈ X and define S := {[x]|x ∈ X}.

Definition 2.1.1 A subset Y of X is called R-transversal, if |Y ∩[x]| ≤ 1 for all
x ∈ X .

Definition 2.1.2 (Definition of divisible designs) Let t, s, k, λt be positive
integers with t ≤ k < v = |X |. A triple D = (X,B, S) is called t − (s, k, λt)-
divisible design (or t − (s, k, λt)-DD) if

(1) B is a set of R-transversal subsets of X with |B| = k for all B ∈ B;
(2) |[x]| = s for all x ∈ X ;
(3) for every R-transversal t-subset Y of X there exist exactly λt

elements of B containing Y .

The elements of X are called points, those of B blocks, and the elements of
S point classes.

In this paper, we always suppose that every divisible design is simple, that
means that there exist no repeated blocks. Note that a t-divisible design is also
a (t − 1)-divisible design with λt−1 = λt(v − st + s)(k − t + 1)−1. We shall use
this observation and consider as well the 2-divisible designs arising from the
3-divisible designs to be constructed below.
One way of constructing divisible designs is given by the following proposition
of A.G. Spera.

2.1.1 SPERA’s construction principle

Definition 2.1.3 Let G be a group acting on the set X and R an equivalence
relation on X which is G-invariant, that is,

xRy =⇒ xgRyg( for all g ∈ G, x, y ∈ X);

then Λ = (G, X, R) is called an R−group. (The group G induces a permutation
group on X , but not necessarily faithfully.)

Definition 2.1.4 Λ is called t − R-transitive if for any two R-transversal t-
tuples (x1, . . . , xt) and (y1, . . . , yt) of elements of X there exists an element g of
G such that yi = xg

i for i = 1, 2, . . . , t.

Proposition 2.1.1 (A.G. Spera, [9]) Let Λ = (G, X, R) be a finite t − R-
transitive R-group, and let B be an R-transversal subset of X with t ≤ k :=
|B| < v := |X |, then the incidence structure

D(Λ, B) = (X, BG, S) for BG = {Bg | g ∈ G}

is a t − (s, k, λt)-divisible design with s = |[x]| for some x ∈ X, k = |B|, b =

|G|
|GB | and λt = |G|

(

k
t

)(

|GB |

(

v
s

t

)

st

)−1

, where GB denotes the setwise
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stabiliser of B and b the number of blocks of D(Λ, B). Moreover, G induces a
point- and block-transitive automorphism group of D(Λ, B).

Remark 2.1.1 To construct divisible designs by using Spera’s proposition, we
need a finite set X with an equivalence relation R on its elements and a finite
t-R-transitive R-permutation group acting on this set. Then, we have to choose
a so called ’base block’ and calculate the parameters.

By using Spera’s proposition, R.-H. Schulz and C. Cerroni constructed the
following series of divisible designs [4].

Theorem 2.1.1 (Schulz, Cerroni) Let q = pn, where p is a prime, and let
n, i ∈ IN with i|n. If q is odd, there exists a 3 − (q, pi + 1, 1) - DD with q2 + q
points, having as a point- and block-transitive automorphism group T G̃ with
G̃ ∼= GO(3, q) and T the translation group of AG(3, q).

By starting from PGO(3, q), which acts 3-transitively on a given conic in a
plane of the 3-dimensional projective space PG(3, q), Schulz and Cerroni con-
structed a 3-R-transitive R-permutation group (R denotes the parallelism re-
lation) of a finite set of affine planes in the corresponding1 3-dimensional affine
space. After choosing a base block, they used Spera’s proposition to construct
these divisible designs.
The whole construction and the proof can be found in [4]. In this paper, we will
describe the idea of the construction in part 4 in order to compare it with our
construction below.

2.2 A Laguerre Geometry over the finite field GF(q)

Definition 2.2.1 A dual number over the finite field GF(q) is an ordered pair
(a, b) with a, b ∈ GF(q) and with the following properties.

Two dual numbers are equal if their components are equal. The rules for
addition and multiplication are:

(i) (a, b) + (a′, b′) := (a + a′, b + b′)

(ii) (a, b) · (a′, b′) := (aa′, ab′ + ba′).

A dual number (a, b) can also be represented either by a matrix
„

a b

0 a

«

with a, b ∈ GF(q) or in the following form: a + bε where ε is any chosen
element satisfying ε2 = 0, for instance ε = (0, 1). The rules for addition and
multiplication correspond to those for matrices.

Remark 2.2.1 As a subring of the ring of matrices, the set of dual numbers
with the given addition and multiplication is a ring with 1. We denote this ring
by ID(GF(q)).

In analogy to Benz ([1], p.24), we have

1The 3-dimensional affine space whose ideal plane is the plane considered above containing

the given conic.
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Proposition 2.2.1 ID(GF(q)) is a commutative local ring.

The only maximal ideal N contains all non-invertible elements of ID(GF(q)).
For any ring R, we define R∗ as the multiplicative group of all invertible elements.
Here R := ID(GF(q))∗ = ID(GF(q)) − N .

Definition 2.2.2 (Laguerre algebra) For K a field, a K-algebra A is called a
Laguerre algebra provided there exists a two-sided ideal M of A with A∗ = A\M
and A = K ⊕ M .

ID(GF(q)) is commutative, hence the above defined ideal N is two-sided.
Furthermore, ID(GF(q)) is the direct sum of the embedded field GF(q) with N ,

where GF(q) is identified with the set of diagonal matrices
„

a 0
0 a

«

(or the set of

pairs (a, 0) or a+0ε with a ∈ GF(q), depending on the manner of representation),
hence we get the well known result

Proposition 2.2.2 ID(GF(q)) is a Laguerre algebra.

Definition 2.2.3 We define the projective line IP(ID(GF(q))) over ID(GF(q))
as the set of all equivalence classes of admissible pairs. Here, we call a pair
(x1, x2), x1, x2 ∈ ID(GF(q)) an admissible pair over ID(GF(q)) if at least one
element is invertible. Two admissible pairs (x1, x2), (y1, y2) are called equivalent
if there exists an element r ∈ R such that xi = ryi, i = 1, 2. We call the
elements of IP(ID(GF(q))) points. Since ID(GF(q)) is a local ring, this definition
of the projective line over ID(GF(q)) is equivalent to that given by Herzer [5] on
p. 785.

Definition 2.2.4 Two points P, Q ∈ IP(ID(GF(q))) with P = R(p1, p2), Q =
R(q1, q2), pi, qi ∈ ID(GF(q)), i = 1, 2 are called parallel if

p1q2 − q1p2 =

∣

∣

∣

∣

p1 p2

q1 q2

∣

∣

∣

∣

/∈ R.

In analogy to the more general definition of chain geometry by Benz in
([1], p. 94), we define, in this paper, the chain geometry Σ(K, D) with K :=
GF(q), D := ID(GF(q)) as an incidence structure whose points are the elements
of IP(D) and whose blocks (chains) are the images of IP(K) under the projective
group of IP(D) (cf. Def. 2.2.5 and [5], p. 790). Since D is a Laguerre algebra,
the following holds:

Proposition 2.2.3 ([5]) Σ(K, D) is a so called Laguerre geometry, i.e., the
parallelism relation is an equivalence relation on IP(D) and every chain of
Σ(K, D) meets every parallel class of points.

Now consider the chain geometry Σ(K, D) whose points are the elements
of the projective line over D. We can partition the points of IP(D) into proper
and improper points depending on the invertiblity of the second component or,
equivalently, on the parallelism to the point R(1, 0). Every proper point can be
represented as R(p, 1), p ∈ D and every improper point as R(1, δε), δ ∈ K.

Proposition 2.2.4 (i) Let P, Q ∈ IP(D) be two proper points with P =
R(p1 + p2ε, 1) and Q = R(q1 + q2ε, 1). They are parallel iff p1 = q1.
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(ii) Improper points are always parallel.

(iii) A proper point is never parallel to an improper point.

The easy proof of this uses P ||Q ⇔

∣

∣

∣

∣

p1 + p2ε 1
q1 + q2ε 1

∣

∣

∣

∣

= p1 − q1 + (p2 − q2)ε /∈

R ⇔ p1 − q1 = 0.

Remark 2.2.2 By the parallelism relation, we get q+1 equivalence classes with
q elements each: {R(x+ bε, 1)|b ∈ K}, with x ∈ K and [R(1, 0)] = {R(1, δε)|δ ∈
K}.

Remark 2.2.3 We can embed the projective line over K into IP(D). The elements
of IP(K) form the following transversal subset of IP(D): K̃ := {R(p1+0ε, 1)|p1 ∈
K} ∪ R(1, 0).

Definition 2.2.5 One defines the projective group of IP(D) as the group of
all regular 2 × 2 matrices with entries in ID(K) factorised by the subgroup

{
„

r 0
0 r

«

| r ∈ R}. We denote it by Γ(D). (cf. [1])

Proposition 2.2.5 ([1]) Γ(D) acts sharply 3-R-transitively on the point set of
IP(D) and preserves parallelism.

By Remark 2.1.1, we are now able to construct a divisible design using
Proposition 2.1.1.

3 Construction of divisible designs from a La-

guerre geometry

Theorem 3.0.1 Let n, i ∈ IN with i|n and let q = pn, where p is a prime.
Then, there exist 3 − (q, k, λ3)-divisible designs, each with q(q + 1) points with
the parameters k and λ3 given in Table 1, where p and i are subject to the
conditions given there. These 3-divisible designs admit Γ(ID(GF(q))) as a point-
and block-transitive automorphism group. The same holds for the corresponding
2-divisible designs.

Proof of Theorem 3.0.1:
Consider the chain geometry Σ(GF(q), ID(GF(q))), q = pn where p is a prime.

We use the same notation as above. By Prop. 2.2.5, we have, with Γ(D), a 3-
R-transitive R-permutation group acting on the point set which consists of the
q2 proper points and q improper points. They are divided into q + 1 parallel
classes with q elements each, giving the points and the point classes of a DD.
By using the sharp 3−R-transitivity and determining the order of the orbit of a
transversal triple, we obtain |Γ(D)| = q4(q2−1). Now we determine the order of
the stabiliser of the considered base block which we choose for the different cases.

Let i ∈ IN with i|n where q = pn.
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No.2 k λ3 Conditions

(i) pi + 1 1

(ii) pi pi − 2 pi > 2

(iii) pi − 1 1
2 (pi − 2)(pi − 3)) pi > 3

(iv) pi − 2 1
6 (pi − 2)(pi − 3)(pi − 4)) pi > 4

pi − 3 1
4 (pi − 3)(pi − 4)(pi − 5))

4 6
pi > 7

pi − 3 1
24 (pi − 3)(pi − 4)(pi − 5))

(v) 4 1
p = 3 and pi > 5

pi − 3 1
8 (pi − 3)(pi − 4)(pi − 5))

4 3
p > 3 and pi > 5

pi − 3 1
12 (pi − 3)(pi − 4)(pi − 5))

4 2
pi ≡ 1 mod 3 and pi > 5

Table 1

(i) For L := GF(pi), we embed the projective line over L

IP(L) = PG(1, pi) =: B

into the projective line over D and define it as our base block.
Notice that a projectivity of Γ(D), which maps three distinct points of B
onto points of B, belongs to Γ(L) (cf. [5], Prop. 2.3.1, p.790). Γ(L) acts
sharply 3-transitively on PG(1, pi) and therefore (regarded as a subset
of Γ(D)) on B, too. Hence, the order of the stabiliser of B is |Γ(L)| =
pi(p2i − 1).
In Σ(L, D), three mutually nonparallel points are incident with exactly
one chain (cf. [1], Theorem 1.1, p. 95), and the chains are precisely the
blocks of our divisible design. By Prop. 2.1.1, we get a 3 − (s, k, λ3)-DD
with s = q, k := |B| = pi + 1 and λ3 = 1.

This is also a 2-(q, pi + 1, q(q−1)
pi−1 )-divisible design.

By removing a set M ⊂ B, we define B′ := B \ M as our base block to
construct the DD’s of the cases (ii)-(v). The block B′ should contain at
least three points, therefore, pi has to be big enough.
The stabiliser of B′ in Γ(D) has to be in Γ(L) (see above) and thus to fix
B and hence also M setwise. Therefore,

Γ(D)B′ = Γ(L)M .

Notice that, vice versa, the stabiliser of M in Γ(D) is equal to the stabiliser
of B′ in Γ(D) iff M consists of at least three elements.

(ii) Let B′ := B \ {R(1, 0)}. This is an L-chain minus one point. Γ(L) acts
sharply 3-transitively on B, hence |Γ(L)| = |Γ(L)R(1,0)|(p

i + 1), and

2The number refers to the corresponding part of the proof below.

6



therefore |Γ(L)B′ | = pi(pi − 1).
By Proposition 2.1.1, we get a 3 − (s, k, λ3)-divisible design with s = q,

k := |B′| = pi and λ3 = |Γ|
|Γ

B′ |

(

pi

3

)

/

[(

q2+q

q

3

)

q3

]

= pi − 2.

This is also a 2-(q, pi, q(q − 1))-divisible design.

(iii) Let B′ := B \ {R(1, 0),R(0, 1)}.
From the sharp 3-transitivity of Γ(L) and the number of possible permutations
of the elements of M , we know |Γ(L){R(1,0),R(0,1)}| = 2(pi−1). Therefore,
by Proposition 2.1.1, we get a 3 − (s, k, λ3)-divisible design with s = q,
k := |B′| = pi − 1 and λ3 = 1

2 (pi − 2)(pi − 3).

This is also a 2-(q, pi − 1, 1
2 (pi − 2)q(q − 1))-divisible design.

(iv) Let B′ := B \ {R(1, 0),R(0, 1),R(1, 1)}.
Similar to (iii), we can conclude |Γ(L){R(1,0),R(0,1),R(1,1)}| = 6 from the
sharp 3-transitivity of Γ(L) and the fact that there exist 3! = 6 possible
permutations of the elements of M . Now, we get a 3 − (s, k, λ3)-divisible
design with s = q, k := |B′| = pi − 2 and λ3 = 1

6 (pi − 2)(pi − 3)(pi − 4).

This is also a 2-(q, pi − 2, 1
6 (pi − 2)(pi − 3)q(q − 1))-divisible design.

(v) Let B′ := B \ {R(1, 0),R(0, 1),R(1, 1),R(x, 1)}, with x ∈ L \ {0, 1}.
In analogy to the cases above, the stabiliser of B′ in Γ(L) corresponds
to the stabiliser of M in Γ(L). Two 4-tuples of points are projectively
equivalent iff their cross-ratios are equal. The four points of M allow 24
permutations, but they determine only the following six cross-ratios:

x, 1/x, 1 − x, 1/(1 − x), (x − 1)/x, x/(x − 1) (∗)

In any case, the cross-ratio of the four points is invariant under a projective
group of order 4 isomorphic to Z2 × Z2 ([6], p.119/120).

(a) If all six values of (∗) are different, then the stabiliser of B′ consists
only of these four elements since 24 = 6·4. This case occurs if the four
points form neither a harmonic nor an equianharmonic quadruple.
If p is even, no harmonic quadruple exists, so x can be any element
of GF(pi) \ {0, 1} which is not a solution of x2 − x + 1 = 0. We can
choose a suitable point R(x, 1) since there exist at most two solutions
of this equation and since pi > 5 is assumed.
To get such a point if p is odd, we have to assume that x is neither an
element of {0, 1,−1, 1/2, 2} nor a solution of x2 − x + 1 = 0; hence,
pi > 7 is sufficient.

(b) If at least two of the values of (∗) are equal, the four points form a
harmonic quadruple if the values of the cross-ratios are {−1, 1/2, 2} or
an equianharmonic one if x = 1/(1−x) (or equivalently x = (x−1)/x)
or both, which is called superharmonic by Hirschfeld ([6]) and which
occurs if and only if p = 3. In this case, the stabiliser of B′ is the
symmetric group S4 of order 24.
A harmonic quadruple where p > 3 is stabilized by the dihedral group
D4 of order 8. Equianharmonic quadruples exist precisely when pi ≡ 1
mod 3 and their stabiliser is the alternating group A4 of order 12 ([6],
p.121).
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Let B′ be a 4-subset of B, then we get the same groups as stabilisers as
above. By Proposition 2.1.1, we get the divisible designs of Theorem 3.1.1,
part (v).

2

Remark 3.0.4 A.G. Spera constructed divisible designs from a finite local K-
algebra A with K = GF(q) and J its Jacobson radical (with |A| = qn, |J | =
qj , n, j ∈ IN). In the special case K ∼= A/J , where A is a Laguerre algebra, he
obtained a transversal 3 − (qj , q + 1, 1)-DD as in case (i) (cf. [10]).

4 Comparing both constructions

In the introduction, we already mentioned a connection between our construction
and that of Schulz and Cerroni [4]. Since this connection is not obvious, we
mention another representation of the Laguerre geometry Σ(GF(q), ID(GF(q))).
After that, we give a short description of Schulz and Cerroni’s construction
which will show the duality.

Similar to Blaschke’s Cylinder-Model ([2], [1]) in the real 3-space, it is
possible to embed Σ(K, D) in a 3-dimensional projective space Ψ (cf. [7]). By
using the more general case showed by Hotje [7], we can identify the elements
of IP(D) with the elements of a quadratic cone O, except its vertex E, in the
3-dimensional projective space Ψ. Similar to Blaschke’s Cylinder-Model, two
points are parallel iff they lie on the same generator 3 of O [7]. Consider a plane
in Ψ, whose intersection with O is exactly the point E, then all points of the
cylinder Z := O \ E are affine points of the 3-dimensional affine space whose
ideal plane is the plane considered above. Such a plane exists since no finite field
is quadratically closed. Z consists of q + 1 lines (generators) each containing q
points and intersecting the ideal plane in E. Each line contains precisely one
parallel class of points.

Now, keeping this in mind, we turn to Schulz and Cerroni’s construction
[4]. Consider a conic O in the ideal plane E′ of the 3-dimensional affine space
AG(3, q). There is a unique tangent at each point of O which determines precisely
one parallel class of affine planes. Planes of the same parallel class all intersect
E′ in the appropriate tangent. In this way, one gets q + 1 parallel classes each
consisting of q planes which are the points of the constructed divisible designs.
By dualising Ψ, we obtain the situation of this construction in which the plane
E′ is dual to the point E and the planes of one parallel class correspond to
the points of one generator of Z, respectively. The series of divisible designs of
Theorem 3.0.1, part (i) possess the same parameters as the series constructed by
Schulz and Cerroni (cf. Theorem 2.1.1). They seem to be mutually dual, whereas
the other series of divisible designs of Theorem 3.0.1, arising from different base
blocks, seem to be new.

3A generator of O is a line which is completely contained in O.
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