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Abstract

The aim of this paper is to present a constructiorn-divisible designs for > 3, because

such divisible designs seem to be missing in the literature. To this end, tools such as finite
projective spaces and their algebraic varieties are employed. More precisely, in a first step
an abstract construction, calledifting, is developed. It starts from a séf containing a-
divisible design and a grou@@ acting onX. Then several explicit examples are given, where

X is a subset oPG(n, q) andG is a subgroup ofiL,,;+1(¢g). In some caseX is obtained

from a cone with a Veronesean or Arsphere as its basis. In other examplésarises from

a projective embedding of a Witt design. As a result, for any integer?2 infinitely many
non-isomorphig-divisible designs are found.
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1 Introduction

1.1 This paper is concerned with the constructiesivisible designs; see Definition 2.2. We shall
frequently use the shorthand “DD” for “divisible design”. A well known construction 2D

is due to A. G. Spera [27, Proposition 4.6]. It uses a finiteXseif points which is endowed with

an equivalence relatio}, a groupG acting onX, and a subseB of X called the ‘base block’.
Then, under certain conditions, the action(®bn X gives rise to a-divisible design with point

set X, equivalence relatio®, and theGG-orbit of B as set of blocks. If all equivalence classes are
singletons then Spera’s construction turns into a constructiomlesigns due to D. R. Hughes [19,
Theorem 3.4].

C. Cerroni, S. Giese, R. H. Schulz, A. G. Spera, and others successfully made use of Spera’s
construction and obtained example2efand3-DDs. See [5], [6], [7], [8], [11], [12], [24], [25],

[28], and [29]. We refer also to [11, 3.1] for a detailed survey. It seems, however, that no examples
of t-DDs fort > 3 were constructed in this way.

1.2 One of the results in the thesis of S. Giese is a constructionD® which it is called
“Konstruktion (A)” in [11, p. 64]: It starts with a giveR-DD, sayD, a finite projective space
PG(n + 1,q) with a distinguished hyperpland = PG(n,q) and a distinguished poir® <
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PG(n + 1,q) \ H, called theorigin. Assuming that the dimensiom and the prime powey

are sufficiently large, the point set of the givesDD can be mapped bijectively onto a set of
n — 1-spaces off subject to certain technical properties. Then each of these subspaces is joined
with the origin. This gives an isomorphic copy of the giv&DD whose “point set” consists of
hyperplanes oPG(n + 1, ¢) through the origin. Then a ne¥DD, sayD’, can be obtained from
the action of the translation group (with respectid on this model of the gived-DD. See [11,
Satz 3.2.4]. Consequently, the “points” ®f are also hyperplanes &fG(n + 1, ¢), but not all
through the origin. It turns out that this construction can be repeated by embédtding+ 1, q)

as a hyperplane iRG(n + 2, ¢), choosing a new origin iRG(n + 2, q) \ PG(n + 1, ¢), and so on.

In this way infinite series o2-DDs can be obtained from any giveérDD.

Of course, there is also the possibility to start the construction of Giese Wheat-DD (¢ > 2),
since such a structure is als@@D. In [11, Lemma 3.2.18] necessary and sufficient conditions
are given forD’ to be at-DD. However, those conditions are in terms of the new struimather
than the initial structur®, whence they cannot be checked at the very beginning.

1.3 The aim of the present note is to present a construction-@R which generalizes the ideas
from [11]. We start with an abstract group actifigon some seX’, and at-DD embedded inX.
Then, under certain conditions which can be read off from Theorem 2.5, &-bd&wis obtained

via the action ofZ7 on X. This process will be calledalifting.

Several explicit examples farliftings are presented in Section 3. We choosedo be a cone
(without its vertex) in a finite projective spat¥s(n, ¢), andG to be a certain group of matrices.
This approach is still very general, since there are many possibilitie¥ fan particular, when

the base of the cone is chosen to be a Veronese variety, infinitely many non-isontedphstble
designs can be found for any> 2; see Theorem 3.8. The construction of Giese, even after a finite
number of iterations, is just a particular case of our constructioreiffting in a finite projective
space. However, in order to get Giese’s results in their original form, one has to adopt a dual point
of view. Cf. the remarks in 3.2.

2 Construction of ¢-liftings

2.1 Assume thak is a finite set opoints endowed with an equivalence relati@nits equivalence
classes are callgubint classesA subsefy” of X is calledR-transversaif for each point clasg’
we have#(C'NY) < 1. Let us recall the following:

Definition 2.2 Atriple D = (X, B, R) is called a-(s, k, \;)-divisible desigrif there exist positive
integers, s, k, A\; such that the following axioms hold:

(A) B is aset ofR-transversal subsets &f, calledblocks with #B = k for all B € B.
(B) Each point class has size

(C) For eachR-transversat-subsety” C X there exist exactly, blocks containing”.
(D) t < 2, wherev := #X.

Observe that (D) is necessary to avoid the trivial case whefR-transversai-subset exists.



2.3 Sometimes we shall speak of-®D without explicitly mentioning the remainingarameters

s, k, and\;. According to our definition, a block is merely a subsefxaf Hence the DDs which
we are going to discuss asample i.e., we do not take into account the possibility of “repeated
blocks”. Cf. [1, p. 2] for that concept.

A divisible design withs = 1 is called adesign we refer to the two volumes [1] and [2]. In design
theory the parameteris not taken into account, andd1, k, \;)-DD with v points is often called
at-(v, k, \y)-design.

2.4 One possibility to construct divisible designs is given by the following theorem. The ingre-
dients for this construction are a finite s€f a finite groupG acting on.X, and a so-callethase
divisible designsay(X, B, R). Its orbit under the action a¥ will then yield a DD. More precisely,

we can show the following:

Theorem 2.5 (-Lifting) Let.X be afinite set, letbe a fixed positive integer, leX , B, R), where
X C X, be at-(3, k, \,)-divisible design, and le¥' be a group acting oX. Suppose, furthermore,
that the following properties hold:

(a) For eachz € X there is a unique element of, sayz, such that:¢ = ¢,

(b) All orbits z¢, wherez € X, have the same cardinality.

(c) Given any subseY = {y1,vs,...,4:} of X, for whichY := {G1, %2, ..., 7} is an R-
transversak-subset ofX, there exists at least onee G such thaty’d =Y.

(d) All setwise stabilizergy;-, whereY C X is any R-transversalt-subset, have the same
cardinality.

(e) All setwise stabilizers';, whereB € B is any block, have the same cardinality.
Then(X, B, R) with
B:=B={B|BcB,gc G}, R:={(z,7)e X xX|(x,7)eR}, (1)
is at-(s, k, \;)-divisible design, where

#Gy

s = (#7935, A=\ rem

(2)

with arbitrary 7, Y, and B as above.

Proof. It is clear from (a) thafR is a well-defined equivalence relation. Due to (a) and (b), all
its equivalence classes have cardinaligyz®)s, wherez € X can be chosen arbitrarily. This
establishes the first equation in (2).
Next, we show that

VZCcX,VgeG,andvze ZNZ%:7% =7. (3)
To prove this assertion consider= z¢ . Fromz € Z¢ follows z € Z C X, whence (a) yields
7z € 7N X = {7}. Thusz = T which of course mean®’ = 7.
Now letY be anR-transversat-subset ofX. Denote byB one of the\, > 1 blocks of the DD
(X, B, R) containing the point sét. We claim that

VgeG:Y C BY & g€ Gy. 4)
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If Y c B9thenY C BN BY. We infer from (3), applied t&3 c X, that all elements oB N BY
remain fixed under the action of whenceg € G5, the converse is trivial. Next we describe the
stabilizer of the subseB in the subgrougzy-. Taking into account that all our stabilizers are in
fact pointwise stabilizers we read off from C B thatGg C Gy. This shows

Gy NGy =Gy (5)

By combining (4) with (5) we see that the or®“ contains precisely#Gs-)/(#G5) distinct
subsets3¢ passing through'.

If B" # B is another block of X, B, R) throughY then, by#B = #5', there are elements
7 € B\ B'and? € B'\ B. As theG-orbits of7 andz’ are disjoint due to (a), so are the
G-orbits of B andB’. Consequently, the number of blocksBrcontainingy” equals the integex,
as defined in (2).

Finally, letY = {y1, 42, ...,4} C X be anyR-transversat-subset. Define thesubset ¢ X
as in (c). By the definition oR, thisY is anR-transversat-subset ofX . So there is g € G with
Y9 =Y. Hence the number of blocks containingY” is \;, as required. O

We shall refer to the-DD (X, B, R) as at-lifting of the¢-DD (X, B, R) under the action of;.
Clearly,v := #X = (#2%)v, wherev := #X andx € X can be chosen arbitrarily. Note that we
did not exclude the case= 7 in the previous theorem. In this case thBD (X, B, R) is trivial,
sinceX is its only block, and the lifted-DD is transversal.

By construction, the grou@ acts as a group of automorphisms of tHeD (X, B, R). The group

(G acts transitively on the set of blocks if, and only if, the base DD has a unique block.

As has been noted, (3) implies that for all séts~ X the setwisestabilizerG coincides with the
pointwisestabilizer ofZ in G. It is therefore unambiguous to cal; just thestabilizerof Z in G,

a terminology which is adopted below.

We recall from [27] that @-DD can be obtained with Spera’s construction if, and only if, it admits

a group of automorphisms which acts transitively on the set of blocks and transitively on the set
of transversat-subsets of points. The following theorem states that under one additional con-
dition the procedure of-lifting preserves the property thattaDD can be obtained with Spera’s
construction.

Theorem 2.6 Let D = (X, B, R) be thet-lifting of a t-divisible desigrD = (X, B, R) under the
action of G. Assume that there is a group of automorphisms o which acts transitively o
and transitively on the set dR-transversalt-subsets oX. If eachh € H can be extended to an
automorphism ofD, thenD admits a group of automorphisms which acts transitivelyBoand
transitively on the set ofR-transversalt-subsets ofX. HenceD can also be obtained with the
construction of Sperf27, Proposition 4.6]

Proof. Let By, B, € B be blocks. So, by the definition &, there exisy;, g» € G andB;, B, € B
with B; = BY fori € {1,2}. The assumption off gives the existence of an automorphigrof
D such thatB? = B,. HenceB? ez _ g e, the automorphism group @f acts transitively
onB.

The transitivity of the automorphism group Dfon the set ofR-transversat-subsets ofX' can be
shown similarly. O



The following lemma gives a sufficient condition for an extension of an automorphighntofbe
an automorphism db. We shall use it in Theorem 3.4.

Lemma 2.7 Let D = (X, B, R) be thet-lifting of a t-divisible desigrD = (X, B, R) under the
action ofG. Assume that an automorphignof D can be extended to a permutatibrof X which
normalizes the group of automorphismsIdfnduced byG. Thenh is an automorphism adb.

Proof. Sinceh normalizes the automorphism group induced®ythe following holds: For each
g € G there existg/ € G with 29" = 2" for all z € X.

Let B € B be a block. Henc® = B¢ for someg € G and some blocl3 € B. As B" = B"is a
block, so isB" = B" = B,

Suppose that' is a point class oD. HenceC' = Ugec (' for some point clas€’ of D. Therefore

o= Jor = | o = | T

geG g'eG g9'eG

is also a point class db. O

The question arises, whethgroper t-liftings (i.e. X # X) do exist. The next theorem gives an
answer.

Theorem 2.8 Eacht-divisible desigrD = (X, B, R) can be used as base for a progelifting.

Proof. We may assume thaf = {1,2,...,v} is a set of integers. We fix an integer> 1 and
write W := {1,2,...,w}. Let(G;),cx be a family of subgroups (not necessarily distinct) of the
symmetric group ofl/. Assume, furthermore, that ea€h acts transitively o/. We now define

X := X x W, and then we identify € X with the pair(i, 1) € X. LetG be the direct product
Hle G;. An action of G on X is given by defining the image df, j) under(gi, go, - - ., gv)

as (i, j%). Obviously, conditions (a), (b), and (c) in Theorem 2.5 hold. GiverRamansversal
u-subsetZ we obtain that#Z¢ = w". Therefore

#Gi = ﬂ7
wu
whence also the remaining two conditions (d) and (e) are satisfied. So Theorem 2.5 can be applied.
Forw > 1 this yields a propet-lifting. O

It should be noted that the lifted DD from the proof above allows an alternative description without
referring to the grou:: A subset ofX is a block if, and only if, its projection oX is a block of

D. The point classes of the lifted DD are the cartesian products of the point clasBesithf 1V

We shall present other, less trivial, general constructions for prejiféings of an arbitraryt-DD

in 3.10.

2.9 Let s be a positive integer an® = (X, B,R) at-DD. GivenY C X denote byY™ the set
of all x € X for which there exists ap € Y with x R y. ThenD is calleds-hypersimplaf for
every blockB and for everyR-transversat-subseft” contained inB* there exist exactly blocks
By, Bs, ..., Bs containingY” and such thaB; = B* for eachi € {1,2,...,s}; see [28]. The-
liftings described in Theorem 2.5 asenypersimple withs = #Gy /#G . It seems to be an open
problem to find regulat-divisible designs witht > 3 and which are not-hypersimple for any.
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3 Geometric examples of-divisible designs for anyt

In this chapter we focus our attention 6 Ds which arise from point sets in a finite projective or
affine space.

Theorem 3.1 Let ¢ be a fixed positive integer and I& = (X, B, R) be at-(5, k, )\,) divisible
design with the following properties:

(i) X is a set ofy points generating a finite projective spak€i(d, q).
(i) All R-transversak-subsets ofX are independent i C(d, q).
(iii) All blocks inB generate subspaces 81G(d, ¢) with the same dimensigh— 1.

Then for each non-negative integethere exists a-(¢°3, k, ¢°®=9 \,)-divisible design with;*o
points.

Proof. Let ¢ be a non-negative integet, := d + ¢, and identifyPG(d, ¢) with the subspace of
PG(n, ¢) given by the linear system

Tap1 = Tgyp = -+ =T = 0.
Furthermore, choosg C PG(n, ¢) to be the(c — 1)-dimensional subspace
To=x1=---=x9=0.

Next, letG be the multiplicative group formed by all upper triangular matrices of the form

(53 e et ©

where) is any(d + 1) x ¢ matrix with entries iff, = GF(q), 1. stands for an identity matrix of
the indicated size, antldenotes a zero matrix of the appropriate size. The gtdipelementary
abelian, since it is isomorphic to the additive groug®f- 1) x ¢ matrices oveflf,. By writing the
coordinates of points as row vectors, the gréupcts in a natural way (from the right hand side)
on PG(n, q) as a group of projective collineations. The subspéde fixed pointwise, and every
subspace oPG(n, ¢) containingS remains invariant, as a set of points. We obtain

Vo € PG(n,g)\S:2%={a}VvS)\S, (7)

i.e., the orbit of a point: not in S is thec-dimensional affine space which arises from the projective
space{z} Vv S by removing the subspace We definer : PG(n,q) \ S — PG(d, q) to be the
projection through the centrg ontoPG(d, q). By (7), two points ofPG(n, ¢) \ S are in the same
G-orbit if, and only if, their images under coincide.

We shall frequently make use of the followiagxiliary result Let ¢ be an independerit! + 1)-
subset ofPG(n, ¢) which together withS generate®G(n,¢). We claim that there is a unique
matrix in G taking each element @ to its image underr. In order to show this assertion, we
choose gd + 1) x (d + 1) matrix L and a(d + 1) x ¢ matrix M in such a way that the rows
of (L M) represent the points @ (written in some fixed order). Consequently, the rows of the
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matrix (L 0) represent théd + 1) points of Q™ (ordered accordingly). By the exchange lemma,
the points ofQ)™ are also independent, whenkas invertible. We infer from

(L) (5 M) =) ®

'

=g

thatg € G takes each point € Q) to ™ € Q™. Conversely, if a matriy € G takes@ to Q™ then

(L M)-§=(L0),s0j=g.

Finally, we defineX as the union of all orbits“, wherez ranges inX, and proceed by showing
that the assumptions (a)—(e) of Theorem 2.5 are satisfied:

Ad (a): By (7), the projectionr maps each: € X to the only element € X with the required
property.

Ad (b): All orbits 7%, wherez € X, have size according to (7).

Ad (c): LetY be a subset ofX, such thatY is an R-transversat-subset ofX. Due to our
assumption (i), the projectadsubsety’™ = Y of X is independent. Thus it can be extended to a
basis ofPG(d, q) by adding &d —t+ 1)-subsetP. The sety” is independent because its projection
is independent. Moreovefp := Y U P meets the requirement from our auxiliary result. Now the
matrix g from (8) takesy” to Y.

Ad (d): First, letY” C PG(d, q) be thet-set of points given by the firgtvectors of the canonical
basis oﬂFg“. So the pointwise stabilizer of’ in G consists of all matrices

I, 0 0
0 Igy1 K |, 9)
0 0 1.

with an arbitrary(d — ¢ + 1) x ¢ submatrix/ overF,. Obviously, the pointwise and the setwise
stabilizers ofY”" in G coincide.

Next, suppose that c X is anR-transversat-subset, whenc® is independent. S¥ can be
extended to a basis ®fG(d, ¢). There exists @&l + 1) x (n + 1) matrix of the form(L 0) whose
rows represent the points of the chosen basis. Thereby it can be assumed that#hevissire
representatives far. We read off from

(L—l o) (Id+1 M) (L 0 ) _ (Jd+1 L‘1M>
0 I 0 I 0 I 0 I )’
whereM is arbitrary, that
o~ (5 2)e(t 1) meer (4 1)en(t 1)
Hence#G5- does not depend on the choiceYofand (9) shows that
#Gy = ¢t (10)

Ad (e): Choose any block € B. There exists an independefsubsetZ C B. The setwise and
the pointwise stabilizers of and B in G are all the same. We may now proceed as in the proof
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of (d), with ¢, Y’, andY to be replaced by, an adequatg-setZ’, andZ, respectively. Then (10)
gives that
4G5 = g°ld=p+D (11)

has a constant value.
Now )\, = ¢°3~t)\, is immediate from (2), (10), and (11). O

Let us add some remarks on Theorem 3.1.

3.2 The only reason for including condition (i) is to simplify matters. We could also drop it and
carry out our construction in the join ¢f and the subspace generatedy

It is easily seen that thelifting process of Theorem 3.1 can be iterated. Given a bd3B we

may first apply &-lifting for some fixed integer; > 0. This gives a secondDD which can be

used as the base DD for a secardting for some fixed integer, > 0. Thet-DD obtained in this

way may also be reached in a single step from the initial base DD by applytifliag with the
integerc := ¢y + co.

Suppose that = 2, ¢ = 1. By removing the assumption (i), we obtain a variation of Theorem 3.1
which yields once more results from [11, Theorem 3.2.7]. In order illustrate how the settings in
[11] (hyperplanes of an affine space, translation group) correspond to our settings, we merely have
to adopt a dual point of view: Each poiptof PG(n, q) gives rise to the star of hyperplanes of
PG(n, q) with vertexp or, said differently, a single hyperplanel(n, ¢)*. In this way we obtain

a bijective correspondence Bf:(n, q) (as a set of points) with the set of hyperplanes of its dual
spacePG(n, q)*. Due toc = 1 the subspacé corresponds to a hyperplane € (n, ¢)* which

can be considered as being at infinity. The gréupcts on the dual space as the corresponding
translation group. For an arbitratyandc = 1 our Theorem improves [11, Proposition 3.2.9].

There is a particular case, where we can give an alternative description of the divisible design
(X, B,R) from Theorem 3.1.

Corollary 3.3 Lett be any positive integer and I&f be ak-set of points generating the projective
spacePG(d, q), such that each-subset of is independent, where< k. We embed®G(d, ¢) as

a subspace i*G(n, ¢), wheren = d + ¢ for some positive integet, and choose any subspate
of PG(n, ¢) complementary witl*G(d, ¢). Define(X, B, R) as follows.

(i) X is the cone with basiX and vertexS, but without its verte)s.
(i) B is the set of all section® N D, whereD is complementary witl§.
(i) R:={(z,2") e X x X | {z} v S ={2'} v S}

This (X, B, R) is a transversat-(¢°, k, ¢°“~+1))-divisible design.

Proof. Let B := {X} and letR be the diagonal relation oK. The triple(X, B, R) is a trivial
transversal-(1, k, 1)-DD with 7 = k points and just one block. Defir&, B, R) as in the proof
of Theorem 3.1, wherg = d + 1. By (7), the point sefX and the equivalence relatidhcan be
described as in (i) and (iii), respectively. The auxiliary result in the proof of Theorem 3.1 shows
thatG acts transitively on the set of complementsseivhence (ii) characterizes the set of blocks.
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Next, we compare the lifting from the proof of Theorem 3.1 with Spera’s construction.

Theorem 3.4 Under the assumptions of Theoredrl suppose that there exists a grolipof
collineations ofPG(d, ¢) which acts onX as an automorphism group of the basBD D. Fur-
thermore, we assume thhtacts transitively on the sé of blocks and transitively on the set of
R-transversalt-subsets ofX. Then thet-lifting from the proof of TheorerB.1 yieldst-divisible
designs which can also be obtained with Spera’s constru¢idnProposition 4.6]

Proof. Let J C I'Lgi1(q) be the group of those semilinear bijections which give rise to
collineations inI’. (In our settingl'Ly41(¢) = GLa+1(q) x Aut(F,), i.e., a semilinear trans-
formation appears as a pair consisting of a regular matrix and an automorphigm ©hen

J = {(diag(P, L), ) | (P,¢) € J} C TLysa(q)

is a group of semilinear transformations which yields a collineation group(&fn, ¢), sayT".
For eachy € T there is at least one extensionlin SinceX andS remain invariant under the
collineations inl’, so does the seY. A straightforward computation shows that

j7'Gj=Gforall j € J; (12)

here we identify eacly € G with (g,idp,) € I'Ly,41(¢). We infer from Lemma 2.7 thdf acts
on X as an automorphism group of the lifteeDD D. Thus Theorem 2.6 can be applied to
the automorphism group db given byT. Altogether, we obtain the required result: Spera’s
construction can be applied 16, R, an arbitrarily chosetB € B as base block, and the group
(G, J) of semilinear transformations generatedd®ynd.J. O

If the collineation group’ from the above has the additional property to act transitively on the set of
R-transversal-tuples ofX then(G, .J) will even act transitively on the set B-transversal-tuples

of X. For, if (y1,y2, ..., y:) is such &-tuple then there is an elemept G taking (yi, y2, - - ., y¢)

to theR-transversat-tuple (v¢, », . . . ,»7) according to assumption (c) in Theorem 2.5.

Examples 3.5 (a) Thesmall Witt desigriVy, = (X, B, R) is a5-(1,6,1)-DD (i.e. a design) with
v = 12 points. By a result of H. S. M. Coxeter [10}/;> can be embedded iRG(5, 3) in such
a way that the following properties hold: (¥ generateG(5,3). (ii) All 5-subsets ofX are
independent. (i) All blocks span hyperplanesf(5,3). In fact, the blocks are thosE32
hyperplane sections of which contain more than three points 8t We refer to [13], [22], [31],
and [32] for further properties of this model @f;,.

We can apply Theorem 3.1 to constraet3©, 6, 1)-DDs with 12 - 3¢ points fromiV/;s.

By [10], each automorphism &, can be extended in a unique way to a a collineatiof@f5, 3)
leaving invariant the seX. The automorphism group 6%, is the Mathieu group\/;,. So we
have a collineation group which acts sharply-transitively onX. Since each block is uniquely
determined by five of its points, all blocks are in one orbifoBy Theorem 3.4, this implies that
the lifted 5-DDs could also be obtained with the construction of Spera.

(b) LetX be asin (a). Corollary 3.3, applied to the S&tyields the existence &f(3°, 12, 3°)-DDs
with the same set of points and the same point classes as in (a), but with a different set of blocks.
As before, the lifted DDs could also be obtained with the construction of Spera.
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(c) Thelarge Witt designit,, = (X, B, R) is a5-(1,8,1)-DD (i.e. a design) withv = 24 points
and 758 blocks. An embedding i?G(11,2) is due to J. A. Todd [31]. It has the following
properties: ()X generate®G(11,2). (ii) All 5-subsets ofY are independent. (iii) All blocks
span6-dimensional subspaces 81G(11,2). The automorphism group di,, is the Mathieu
group M, which actsh-transitively on the point set di/,4. Each automorphism d#/y, extends

to a unique collineation dPG(11, 2); see [31]. Mutatis mutandis, it is now possible to proceed as
in (a) and (b).

(d) Any field extensior¥ . /F,, h > 1, gives rise to @hain geometrny(F,, F . ); see, for example,

[3, pp. 40-41] (“Mdbiusraum”) or [17]. Such a chain geometry i$<l,q + 1,1)-DD (i.e. a
design) withg” + 1 points. We speak of chains rather than blocks in this context. The following
is due to G. Lunardon [21, p. 307]: This design can be embedde@:{a" — 1, ¢) as an algebraic
variety, sayX, called anmh-sphere Any three distinct points oK are independent. Furthermore,
all its chains span subspaces with a constant dimensiafq, »}. (The chains on thé-sphere
are normal rational curves; see 3.6 below.) Hence Theorem 3.1 can be applied to cGABsct
from this embedded chain geometry. Observe that it remains open from [21] whetherdwmilbt
always generateG (2" — 1, q).

Each semilinear automorphism of this chain geometry extends to a collineatit@(aef — 1, q).

The group of these collineations meets the conditions from Theorem 3.4, whence one could also
apply Spera’s construction to obtain the liftédDs.

We add in passing that fa¥ = 2 an h-sphere is just an elliptic quadric IRG(3, ¢) and the
associated design is a miqueliaroMus plane. Cf. also [11, pp. 48-50], where the dase 2,

c =1, g odd is treated from a dual point of view.

If we disregard the chains on thesphere then Corollary 3.3 givesseDD with block sizeq” + 1.

(e) Any generating seX of PG(d, q) yields a2-DD according to Corollary 3.3.

3.6 We proceed by showing that the assumptions of Corollary 3.3 can be realized for each integer
t > 2if X is chosen as an appropriaferonese variety

Suppose that three integetsn > 1, ¢ > 2, and a finite field, are given. We letl = ("*'~') —1

and consider the projective spaeéi(d, q). Itsd + 1 coordlnates will be indexed by the g8t ;,_,

of all sequences = (eg, €1, . . ., €,,) Of NON-negative integers satisfyiag+e; +- - - +e, =t —1;

the coordinates are written in some fixed order. Vemnese mapping given by

Umi-1: PG(m,q) — PG(d,q) : Fy(zo, z1, ..., Zm) — Folt o Yepernems - - )5 (23)

whereye, e, ... = g’z - - a8, Its image is known as &eronese varietyor, for short a
Veroneseah\?m,t_l(q). AV, , is also called amormal rational curve

There is a widespread literature on Veronese varieties. We refer to [16] for a coordinate-free
definition of the Veronese mapping which allows to derive its essential properties in a very elegant
way. See also [15]. The case of a finite ground field is presented in [18, Chapter 25}far

and in [9] for arbitraryt. Many references, in particular to the older literature (over the real and
complex numbers), can also be found in [14].

For the reader’s convenience we present now two results together with their short proofs. The first
coincides with [9, Corollary 2.6], the second seems to be part of the folklore.

Lemma 3.7 The following assertions hold:
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(a) The Veroneseal,, ;—1(q) spansPG(d, q) if, and only if,t < ¢ + 1.

(b) The Veronese mappin@3) maps anyt > 2 distinct points of PG(m, ¢) to ¢ independent
points of PG(d, q).

Proof. Ad (a): Each family(a.)ccE,, ,_, With entries inF,, but not all zero, correspondsiG(d, q)
to a hyperplane, say/, with equation)___.,  acy. = 0, and inPG(m, ) to an algebraic
hypersurface, sa¥, with degree — 1 which is given by

€0 .€1 e .
Z a60,61 ,,,,, emxo l‘l . 'Ifnqlﬂ — 0

6eE‘m,tfl

A point p of PG(m, q) is in F if, and only if, its Veronese image is i. Clearly, all hyperplanes
of PG(d, ¢) and all hypersurfaces with degree- 1 of PG(m, ¢) arise in this way.

By a result of G. Tallini [30, p. 433—434] there are hypersurfaces of any degree 1 containing
all points of PG(m, ¢), but no such hypersurfaces of degree less thanl. By the above, this
means thav,, ,_(¢) does not spalRG(d, ¢) precisely whert — 1 > ¢ + 1.

Ad (b): Letpy, po, ..., p: bet > 2 distinct points ofPG(m, ¢). Choose one of them, say. There
exist (not necessarily distinct) hyperplangsof PG(m, ¢), such thap; € Z; andp, ¢ Z; for all
i€ {1,2,....;t =1} If 3 ciyz; = 0 are equations for thes thenHZ;}(Zj c;;jxy) = 0 gives
a hypersurfac&F of degreet — 1 which containspy, ps, ... p;_1, but notp,. We infer from the
the proof of (a) that there is a hyperplafleof PG(d, ¢) which contains the Veronese images of
p1, P2, - - - Pi—1, DUt NOt the image of;. Thus the image af; is not in the span of the remaining
image points. O

Theorem 3.8 For any integert > 2 there exist infinitely many non-isomorphic transversal
divisible designs.

Proof. Fix anyt > 2 and choose any integet > 1. There is a prime powersuch that < ¢ + 1.
The VeroneseaW,,; ; hask := ¢ +¢™ ' +---+1 > g+ 1 > t points, and it spanBG(d, q) by
Lemma 3.7 (a). We read off from Lemma 3.7 (b) that apgints ofV,,, , ; =: X are independent.
So the assumptions of Corollary 3.3 are satisfiedc Ams in the set of non-negative integers, we
obtain infinitely many non-isomorphic transversdt®, k, ¢°*~**1)-DDs. O

Lettingm = ¢ = 1 in the above proof yields a DD which is contained in a cone with a one-point
vertex over a normal rational curvg, ;_, in PG(t — 1,¢q). These DDs are finite analogues of
tubular circle planeq23, p. 398]. We refer also to [7] (dual point of view) and [12] for the case
whenm = ¢ =1 andt = 3.

An alternative proof of Theorem 3.8 is provided by the construction from Theorem 2.8. One
may start there with a trivigtDD with point setX := {1,2,...,7}, B := {X}, and the diagonal
relation ask. Then, asv varies in the set of non-negative integers, infinitely many non-isomorphic
t-DDs are obtained. However, this approach gives tritdiBIDs, becauseveryR-transversab-
subset of such &DD turns out to be a block. The DDs which arise from the proof of 3.8 are trivial
if, and only if, the VeroneseaW,, ;_, is a basis oPG(d, ¢), i.e. fork = d + 1.

In the previous proof we could also choakeo be asubsebf Vv, ; with at least elements. This
would also give &-DD by applying the construction of Corollary 3.3 to the subspace generated by
X . We confine our attention to one particular case.
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Example 3.9 In PG(d, ¢), i.e. the ambient space of the Veronesé&an, ., let us arrange the
coordinates in such a way that the finst+ 1 coordinates belong to the sequences

(t—1,0,0,...0),(t—2,1,0,...0),...,(t—2,0,...,0,1) € Epy_1.

The order of the remaining coordinates is immaterial. As before, we embKdh, ¢) via the
Veronese mapping (13) RG(d, q), and thenPG(d, q) in PG(n, ¢) via the canonical embedding
(cf. the proof of Theorem 3.1). Furthermore, we ti@ (m, ¢) into an affine space by considering
zo = 0 as itshyperplane at infinityThe Veronese image of an affine paify{(1, x1, o, . . . T,,) IS

F (1,21, 20, ...Zm, *%,...,%,0,0,...,0).
7,-/ N—_——
Here the entries marked with an asterisk are polynomials im,, . .., z,,. Let X be the set of all

such points.

The minimum degree of a hypersurfacelifz(m, ¢) containingall points of AG(m, q) is ¢q. The
proof is similar to the one for the projective case [30]. So, providedtthatg, the setX spans
PG(d,q); see also Lemma 3.7 (a). Hence, for< ¢ we obtain at-(¢¢, ¢™, ¢““~*+1))-DD by
applying Corollary 3.3.

The action ofG on X = X is as follows: Any matrixg := (IdOH Q”) as in (6) takes

Fo(l, 21, Z0, .. Ty %, o %, Y1, Y2, - -5 Ye)s (14)
d
to
Fq(17$1>$27---$m,*a---7*a91+P1,y2+P27--->yc+Pc)> (15)
d

where eactP;, j € {1,2,...,c}, denotes a polynomial imy, xs, . . . , z,,, with degree< ¢ — 1. The
coefficients ofP; are the entries in thgth column of /.

However, this DD admits an alternative description which avoids Veroneseans and projective
spaces. We simply delete the blockdf m coordinates and go over to inhomogeneous coor-
dinates in (14) and (15). This amounts to applying a projection which Mapgectively onto
AG(m + ¢, q). We use this bijection to obtain an isomorphic DD and an isomorphic action of the
groupG on AG(m + ¢, q). Itis given by

(T1, T2y Ty Y15 Y2, - - - Ye) AN (1,22, Ty 1 + Pryys + Py oo,y + P.).

Hence the blocks aAG(m + ¢, q) are precisely the graphs of all theuples of polynomial func-
tionsF;* — I, with degree< ¢ — 1, whereas the point classes are the cosets of the subspace
Ty = Ty = -+ = 2, = 01in IF;”*C. In particular, whenn = ¢ = 1 then the unique block
through anR-transversat-subset ofAG(2, ¢) is just the graph of the polynomial function with
degree< ¢t — 1 which is obtained by the interpolation formula of Lagrange. Compare with [23,
p. 399-400] for similar results over the real numbers. See also [20] for a detailed investigation of
this “geometry of polynomials”.
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Example 3.10 Let (X, B, R) be anyt-DD with 7 points,t > 2. There is a prime powey such
thatg + 1 > © > t. We consider the normal rational cur¥Vg;_, in PG(t — 1,¢); it hasq + 1
points. So we can identifX' with a subset o, ; ;. Now it is easy to verify the conditions from
Theorem 3.1, because ahglistinct points ofX form a basis oPG(t — 1, ¢).

Whent = 2 thenV,,_; = PG(1,q) is a projective line. In this particular case the result can be
found in [11, Bemerkung 3.2.2].

Example 3.11 Let C be ajv, x]-linear code orF, of minimum weightt + 1 > 3. It is well known

(cf. for example [4]) that is associated with a-set, sayX, of points inPG(v — k — 1, ¢), such

that everyt-subset ofX is independent and there exists a dependent 1)-subset ofX. By
Corollary 3.3, for eacl > 1 we obtain a transversal(¢°, v, ¢¢*=**)-DD.

On the other hand, eaadhDD determines a constant weight code. See [26] and the references
given there. Thus, according to our construction, we can link two concepts from coding theory and
it would be interesting to know more about this connection.

3.12 In order to apply the construction of DDs according to Theorem 3.1 with an appropriate
one could also embed a given DD in an arc, an oval, a hyperoval, an ovoid, a cap ofkin@ny

t points are independent), etc. Thus many more DDs can be constructed.

The groupG used in the proof of Theorem 3.1 is elementary abelian and it yields a so-dakéd
translation groupof the lifted DD. See [11, Chapter 5], where characterizations of DDs admitting
such a group can also be found.

Another promising setting for 2:lifting (according to Theorem 2.5) could be to use the projective
line over a finite (not necessarily commutative) local ring¥sand a suitable subgroup of the
general linear grougsLs(R) asG. Such a group need not be elementary abelian. Here some
overlap with the work of Spera [28], who considered the projective line over a finite local algebra
and the full groupGLy(R), is to be expected.
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