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Abstract

Let PG(1, E) be the projective line over the endomorphism ring
E = Endq(Fqt) of the Fq-vector space Fqt . As is well known there is a
bijection Ψ : PG(1, E)→ G2t,t,q with the Grassmannian of the (t− 1)-
subspaces in PG(2t− 1, q). In this paper along with any Fq-linear set
L of rank t in PG(1, qt), determined by a (t− 1)-dimensional subspace
TΨ of PG(2t − 1, q), a subset LT of PG(1, E) is investigated. Some
properties of linear sets are expressed in terms of the projective line
over the ring E. In particular the attention is focused on the relation-
ship between LT and the set L′

T , corresponding via Ψ to a collection
of pairwise skew (t − 1)-dimensional subspaces, with T ∈ L′

T , each
of which determine L. This leads among other things to a charac-
terization of the linear sets of pseudoregulus type. It is proved that
a scattered linear set L related to T ∈ PG(1, E) is of pseudoregulus
type if and only if there exists a projectivity ϕ of PG(1, E) such that
Lϕ
T = L′

T .
Mathematics subject classification (2010): 51E20, 51C05, 51A45, 51B05.

1 Introduction

1.1 Motivation

In this paper linear sets of rank t in the projective line PG(1, qt) are in-
vestigated, where q is a power of a prime p. Such linear sets can be
described by means of the field reduction map F = F2,t,q [15] mapping
any point 〈(a, b)〉qt ∈ PGqt(F2

qt)
∼= PG(1, qt) to the (t − 1)-subspace1 of

∗This work was supported by GNSAGA of Istituto Nazionale di Alta Matematica
“F. Severi” (Rome) and partly done while the first author was Visiting Professor at
the University of Padua, Vicenza, Italy.

1Abbreviation for (t− 1)-dimensional subspace.
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PGq(F2
qt)
∼= PG(2t − 1, q) associated with 〈(a, b)〉qt (considered here as a

t-dimensional Fq-vector subspace). A point set L ⊆ PG(1, qt) is said to be
Fq-linear (or just linear) of rank n if L = B(T ′), where T ′ is an (n − 1)-
subspace of PGq(F2

qt), and

B(T ′) =
{
〈(u, v)〉qt | 〈(u, v)〉q ∈ T ′

}
=
{
P ∈ PG(1, qt) | PF ∩ T ′ 6= ∅

}
. (1)

Additionally, each such T ′ gives rise to the set U(T ′) = B(T ′)F = LF , which
is a collection of (t − 1)-subspaces belonging to the standard Desarguesian
spread D = PG(1, qt)F of PGq(F2

qt).

If a linear set L of rank n in PG(1, qt) has size θn−1 = (qn − 1)/(q − 1)
(which is the maximum size for a linear set of rank n), then L is a scattered
linear set. For generalities on the linear sets the reader is referred to [14],
[15], [16], [17], and [20].

As it has been pointed out in [13, Prop. 2], if L = B(T ′) is a scattered
linear set of rank t in PG(1, qt), then the union of all subspaces in U(T ′) =
LF is a hypersurface Q of degree t in PG(2t − 1, q), and an embedded
product space isomorphic to PG(t − 1, q) × PG(t − 1, q). So, Q has two
partitions in (t − 1)-subspaces. The first one is U(T ′), the second one is
U ′(T ′) = {T ′h | h ∈ F∗qt}, where T ′h = {〈(hu, hv)〉q | 〈(u, v)〉q ∈ T ′}. By

Prop. 3.2, the family U ′(T ′) can be recovered uniquely from U(T ′) and T ′

(disregarding that F2
qt is the underlying vector space of our PG(2t− 1, q)).

For t = n there is an alternative approach to B(T ′) and U(T ′) irrespective
of whether T ′ is scattered or not. It is based on the Fq-endomorphism ring E
of Fqt and the projective line PG(1, E) over this ring. On the one hand, there
is a bijection Ψ between the projective line PG(1, E) and the Grassmannian
G2t,t,q of (t−1)-subspaces of PGq(F2

qt). So, instead of T ′ we may consider its

image under Ψ−1, which is a point T of PG(1, E). On the other hand, we
have a natural embedding ι : PG(1, qt) → PG(1, E). It maps the linear set
B(T ′) to a subset B(T ′)ι =: LT of PG(1, E), which in turn is the preimage
under Ψ of U(T ′). In Section 2, we take up these ideas, but we start with
an equivalent definition, which is in terms of PG(1, E) only, of the set LT .
There we also define a second set L′T ⊂ PG(1, E) in such a way that (L′T )Ψ

equals the set U ′(TΨ) from above in the scattered case. Furthermore, since T
will play a predominant role, B(T ′) = B(TΨ) will frequently also be denoted
by B(T ); mutatis mutandis this applies also to U(T ′) and U ′(T ′).

A special example of a scattered linear set L = B(T ) in PG(1, qt) is a
linear set of pseudoregulus type, defined in [6], [18], and further investigated
in [5]. In our setting it is obtained by taking T = E(1, τ), where τ is a
generator of the Galois group Gal(Fqt/Fq). The related hypersurface Q in
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PG(2t− 1, q) has been studied in [13], revealing a high degree of symmetry.
As a matter of fact there are t families S0, S1, . . ., St−1 of (t− 1)-subspaces
partitioning Q [13, Thm. 6] where S0 = U(T ) = LΨ

T and S1 = U ′(T ) =
(L′T )Ψ are defined above. Furthermore, in [13, Cor. 18] it is proved that
the stabilizer of Q inside PΓL2t(q) contains a dihedral subgroup of order
2t acting on such t families of (t − 1)-subspaces. A consequence thereof
is the following result, for which we give a short direct proof in Prop. 3.1:
There is a projectivity of PG(1, E) mapping LT onto L′T . For t ≥ 3 this
turns out to be a characteristic property of the linear sets of pseudoregulus
type (Thm. 3.5). As the projectivities of PG(1, E) and the projectivities of
PGq(F2

qt)
∼= PG(2t−1, q) are in one-to-one correspondence, this leads to the

following:

Theorem. Let L = B(T ′) be a scattered linear set of rank t in PG(1, qt),
with T ′ a (t − 1)-dimensional subspace of PG(2t − 1, q), and t ≥ 3. Then
L is a linear set of pseudoregulus type if, and only if, a projectivity of
PG(2t−1, q) exists mapping the first family U(T ′) of subspaces of the related
embedded product space to the second one U ′(T ′).

Finally, let us mention our incentive for choosing the projective line
PG(1, E) as an algebraic description of the Grassmannian G2t,t,q of (t− 1)-
subspaces of PGq(F2

qt). There are several instances in recent work about
linear sets, for example in [13], where this approach already has been used
successfully, but without explicit mention of PG(1, E). In particular, each
α ∈ E gives rise to the point E(1, α) ∈ PG(1, E) and, consequently, to an
element of the Grassmannian G2t,t,q. This link between E and a certain sub-
set of G2t,t,q is a versatile tool, which is well known from the representation
of translation planes in terms of spread sets [11, Def. 1.10]. As we sketched
above, this link reappears in our setting: An algebraic counterpart of a scat-
tered linear set of pseudoregulus type is a point E(1, τ) ∈ PG(1, E) with the
additional property that τ is a generator of the Galois group Gal(Fqt/Fq).
Last, but not least, the possibility to describe the action of the projective
group of PGq(F2

qt) on the Grassmannian G2t,t,q via projectivities of PG(1, E)
or, said differently, via invertible 2× 2 matrices with entries in E allows us
to accomplish necessary computations in a concise way.

1.2 Notation

Let E = Endq(Fqt) with t ≥ 2 be the ring of Fq-linear endomorphisms of Fqt .
The ring E has the identity 1 ∈ E as its unit element. The multiplicative
group comprising all invertible elements of E will be denoted as E∗.
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Let us briefly recall the definition of the projective line over the ring E,
which will be denoted by PG(1, E), and several basic notions; see [3, 1.3], [8,
3.2], and [9, 1.3]. We start with E2, which is regarded as a left module over
E in the usual way. Elements of E2 are written as rows. This module has
the standard basis ((1, 0), (0,1)), and so it is a free module of rank 2. All
invertible 2×2 matrices with entries in E constitute the general linear group
GL2(E), which acts in a natural way on the elements of E2 from the right
hand side. Now PG(1, E), whose elements will be called points, is defined
as the orbit of the cyclic submodule E(1, 0) (the “starter point”) under the
action of the group GL2(E) on E2. Therefore, any point of PG(1, E) can
be written in the form E(α, β), where the pair (α, β) ∈ E2 is admissible,
i.e., it is the first row of a matrix from GL2(E). Furthermore, if (α′, β′)
is any element of E2 then E(α′, β′) = E(α, β) holds precisely when there
is an element γ ∈ E∗ such that (α′, β′) = (γα, γβ). In this case (α′, β′) is
admissible too.

The projective line PG(1, E) is endowed with a binary distant relation
4 as follows: The relation 4 is the orbit of the pair ((1, 0), (0,1)) under the
(componentwise) action of GL2(E). Thus E(α, β) 4 E(γ, δ) holds if, and
only if,

(
α β
γ δ

)
∈ GL2(E).

The map

Ψ : PG(1, E)→ G2t,t,q : E(α, β) 7→
{
〈(uα, uβ)〉q | u ∈ F∗qt

}
(2)

is a bijection of PG(1, E) onto the Grassmannian G2t,t,q of (t−1)-subspaces of
PGq(F2

qt)
∼= PG(2t−1, q). Any two points of PG(1, E) are distant if, and only

if, their images under Ψ are disjoint (or, said differently, complementary) [1,
Thm. 2.4]. For versions of the previous results in terms of matrix rings we
refer to [3, 10.2], [8, 5.2.3], [9, 4.5], and [10, 500]. See also [21, 123ff.], even
though the terminology used there is quite different from ours.

Let ϕ denote a projectivity of PG(1, E), i.e., ϕ is given by a matrix(
α β
γ δ

)
∈ GL2(E) (3)

acting on E2. Then the mapping

ϕ̂ : PGq(F2
qt)→ PGq(F2

qt) : 〈(u, v)〉q 7→ 〈(uα + vγ , uβ + vδ)〉q (4)

is a projective collineation. The action of ϕ̂ on the Grassmannian G2t,t,q is
given by Ψ−1ϕΨ. By [12, 642–643], every projective collineation of PGq(F2

qt)
can be written as in (4) for some matrix from GL2(E).
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Under any projectivity of PG(1, E) the distant relation 4 is preserved.
The obvious counterpart of this observation is the fact that under any pro-
jective collineation of PGq(F2

qt) the complementarity of subspaces from G2t,t,q

is preserved.
If a ∈ Fqt then ρa ∈ E is defined by xρa = ax for all x ∈ Fqt . The

mapping
Fqt → E : a 7→ ρa

is a monomorphism of rings taking 1 ∈ Fqt to the identity 1 ∈ E. The image
of this monomorphism will be denoted by F . We now consider PG(1, F ) as
a subset of PG(1, E) by identifying F (ρa, ρb) with E(ρa, ρb) for all (a, b) ∈
F2
qt \ {(0, 0)}. This allows us to embed the projective line PG(1, qt) in the

projective line PG(1, E) as follows:

ι : PG(1, qt)→ PG(1, E) : 〈(a, b)〉qt 7→ E(ρa, ρb). (5)

Following [2], the image of PG(1, F ) under any projectivity of PG(1, E) is
called an F -chain2 of PG(1, E). In particular, PG(1, qt)ι is an F -chain of
PG(1, E).

Any two distinct points of PG(1, E) are distant precisely when they
belong to a common F -chain [2, Lemma 2.1]. From this we obtain the
following result [8, Thm. 3.4.7], which is a slightly modified version of [2,
Thm. 2.3]:

Proposition 1.1. Given three distinct points P1, Q1, R1 on an F -chain C1

and three distinct points P2, Q2, R2 on an F -chain C2 there is at least one
projectivity π of PG(1, E) with P π1 = P2, Qπ1 = Q2, Rπ1 = R2 and Cπ1 = C2.

2 Scattered points

Definition 2.1. For any point T = E(α, β) ∈ PG(1, E) define:

LT =
{
E(ρa, ρb) | (a, b) ∈ (F2

qt)
∗ s.t. E(ρa, ρb) 64 T

}
;

L′T =
{
T · diag(ρh, ρh) | h ∈ F∗qt

}
.

Also, we introduce the shorthand Th := T · diag(ρh, ρh), where h is as
above. By the proof of Prop. 2.11 below, the point set L′T is the orbit of T
under the group of all projectivities of PG(1, E) that fix PG(1, F ) pointwise.

2Our F -chains are different from the chains in [3] and [9], since F is not contained in
the centre of E.
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The following diagram describes the relationships involving some objects
defined so far. (Note that the right hand side of (1) gives B(T )F = LΨ

T .)

B(T ) ⊂ PG(1, qt) LT ⊂ PG(1, E)

B(T )F ⊂ D LΨ
T ⊂ G2t,t,q

ι

F Ψ

Definition 2.2. A scattered point of PG(1, E) is a point T such that #LT =
θt−1.

A point T ∈ PG(1, E) is scattered if, and only if, B(T ) is a scattered
linear set. A point X = E(ρa, ρb) is distant from T if, and only if, the
(t−1)-subspace XΨ defined by the vector subspace 〈(a, b)〉qt is disjoint from
TΨ.

Example 2.3. If τ is a generator of Gal(Fqt/Fq) and T0 = E(1, τ), then
B(T0) is a scattered linear set of pseudoregulus type [18]. Hence T0 is a
scattered point of PG(1, E).

Definition 2.4. For T ∈ PG(1, E), the set LT will be said of pseudoregulus
type when Lι

−1

T is a linear set of pseudoregulus type.

Any two linear sets of pseudoregulus type are projectively equivalent [6],
[18]. So LT is of pseudoregulus type if and only if LT = LπE(1,τ) where τ is

a generator of Gal(Fqt/Fq) and π is a projectivity of PG(1, F ).

Example 2.5. The point T1 = E(1, σρg + σt−1) with σ : u 7→ uq, g ∈ F∗qt ,
and gθt−1 6= 1 is scattered [19, Thm. 2].

Proposition 2.6. Let T ∈ PG(1, E) \ PG(1, F ). Then Th = Tk for any
h, k ∈ F∗qt such that h−1k ∈ Fq. Furthermore, if T is scattered, then Th4Tk
for any h, k ∈ F∗qt such that h−1k 6∈ Fq.

Proof. If h−1k ∈ F∗q and T = E(α, β), then

Th = E(αρh, βρh) = E(ρh−1kαρh, ρh−1kβρh) = E(αρk, βρk) = Tk.

Let P ′ be the set of all points of PGq(F2
qt)
∼= PG(2t − 1, q) belonging

to the (t − 1)-subspaces of L′T
Ψ. By the previous paragraph, it follows

#P ′ ≤ θ2
t−1, and the equality holds if, and only if, for any h, k the relation

h−1k ∈ Fqt \ Fq implies Th4 Tk.
Let P be the set of all points of PGq(F2

qt) belonging to the (t − 1)-

subspaces in LΨ
T . Then P ⊆ P ′.

If T is scattered, then #P = θ2
t−1.
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Proposition 2.7. Let T = E(1, β) be a scattered point of PG(1, E). Then
the following assertions hold:

(i) A point P ∈ PG(1, E) belongs to LT if, and only if, an element u ∈ F∗qt
exists such that P = E(1, ρuβ/u);

(ii) the size of the set I = {uβ/u | u ∈ F∗qt} is θt−1;

(iii) for any u, v ∈ F∗qt, u and v are Fq-linearly dependent if, and only if,

uβ/u = vβ/v;

(iv) the dimension of kerβ is at most one;

(v) β is a singular endomorphism if, and only if, E(1, 0) ∈ LT .

Proof. Let P = E(ρa, ρb) be a point. Then P ∈ LT holds precisely when
the (t − 1)-subspaces PΨ and TΨ are not disjoint; that is, there are two
nonzero elements of Fqt , say u and v, such that u = va and uβ = vb. This
is equivalent to a 6= 0 and uβ = a−1bu. This implies (i), and consequently
(v).

The size of I equals the size of LT , and this implies (ii).
If r ∈ F∗q and u ∈ F∗qt , then (ru)β/(ru) = uβ/u. This implies that the

size of the image of the map u ∈ F∗qt 7→ uβ/u ∈ Fqt is at most θt−1, and the
equality holds only if condition (iii) is satisfied. The last condition implies
(iv).

Take notice that (i) and (v) hold irrespective of whether the point T ∈
PG(1, E) is scattered or not.

The following result is merely a reformulation of [13, Prop. 2], with β ∈ E
playing the role of the matrix A from there.

Proposition 2.8. Let T = E(1, β) be a scattered point. For each h ∈ F∗qt,
the map

ε :
(
〈h〉q, 〈(u, uβ)〉q

)
7→ 〈(hu, huβ)〉q (6)

is a projective embedding of the product space PGq(Fqt)×TΨ into PGq(F2
qt),

that is, is an injective mapping such that the image of any line of the product
space is a line of PGq(F2

qt).

Remark 2.9. In the case of non-scattered linear sets, the map ε is not an
embedding, but the image of ε is still a non-injective projection of a Segre
variety [17].
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In [7, Thm. 1] a result similar to the following one is proved in terms of
the matrix group GL2(qt).

Proposition 2.10. Let κ ∈ PΓL2(qt) be a collineation of PG(1, qt) whose
accompanying automorphism η is in Gal(Fqt/Fq). After embedding PG(1, qt)
in PG(1, E) according to (5), the collineation ι−1κι of PG(1, F ) can be ex-
tended to at least one projectivity of PG(1, E). Conversely, the restriction
to PG(1, F ) of any projectivity of PG(1, E) that fixes PG(1, F ) as a set is a
collineation with accompanying automorphism in Gal(Fqt/Fq).

Proof. There is a matrix (mij) ∈ GL2(qt) such that

〈(a, b)〉qt
κ7→ 〈(aη, bη)〉qt · (mij) for all 〈(a, b)〉qt ∈ PG(1, qt).

For all x, a ∈ Fqt we have xaη = (xη
−1
a)η and so ρaη = η−1ρaη. The

permutation of PG(1, E) given by

E(α, β) 7→ E(η−1αη, η−1βη) · (ρmij ) for all E(α, β) ∈ PG(1, E) (7)

is a projectivity, since the automorphism of E acting on α and β is inner. By
construction, this projectivity extends the collineation ι−1κι of PG(1, F ).

Conversely, let π be a projectivity of PG(1, E) that fixes PG(1, F ) as
a set. Since PGL(2, qt) acts (sharply) 3-transitively on PG(1, qt) there is a
(unique) projectivity λ of PG(1, qt) such that the images of E(1, 0), E(0,1),
E(1,1) under ι−1λι and π are the same. We choose matrices (πij) ∈ GL2(E)
and (cij) ∈ GL2(qt) that describe π and λ, respectively. Then (πij) · (ρcij )−1

induces a projectivity of PG(1, E) that fixes each of the points E(1, 0),
E(0,1), E(1,1) and also the F -chain PG(1, F ). So there is a δ ∈ E∗ with

(πij) = diag(δ, δ) · (ρcij )

and for each b ∈ Fqt there is a unique b′ ∈ Fqt such that

E(1, ρb) · diag(δ, δ) = E(δ, ρbδ) = E(1, ρb′) = E(δ, δρb′).

This leads us to δ−1ρbδ = ρb′ for all b ∈ Fqt . Thus the inner automorphism of
E given by δ restricts to an automorphism of the field F . Going back to Fqt
shows that η : Fqt → Fqt : b 7→ b′ is an automorphism of Fqt . Furthermore,
we read off η ∈ Gal(Fqt/Fq) from ρb being in the centre of E for all b ∈ Fq.

Let d := 1δ ∈ F∗qt and choose any b ∈ Fqt . Calculating the image of d

under δ−1ρbδ = ρbη in two ways gives bδ = dbη, whence δ = ηρd. This leads
us finally to

(πij) = diag(η, η) · (ρdρcij ) = diag(η, η) · (ρdcij ). (8)
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We now repeat the first part of the proof with (dcij) instead of (mij). This
gives the projectivity

E(α, β) 7→ E(η−1αη, η−1βη) · (ρdcij ) for all E(α, β) ∈ PG(1, E), (9)

which obviously coincides with π.

The collineation κ from the previous proposition can be extended in
precisely θt−1 different ways to a projectivity of PG(1, E). Even though this
could be derived easily from well known results about spreads [11, Sect. 1],
we give a short direct proof.

Proposition 2.11. There are precisely θt−1 projectivities of PG(1, E) that
fix PG(1, F ) pointwise.

Proof. Let π be a projectivity of PG(1, E) that fixes PG(1, F ) pointwise.
We repeat the second part of the proof of Prop. 2.10 under this stronger
assumption, while maintaining all notations from there. However, in our
current setting we may choose (cij) = diag(1, 1) ∈ GL2(qt). We are thus led
to (πij) = diag(δ, δ) for some δ ∈ E∗. This δ has to satisfy now δ−1ρbδ = ρb
for all b ∈ Fqt , which in turn gives that η is the trivial automorphism of
Fqt . Letting d := 1δ, as we did before, gives therefore that π is given by the
matrix

(πij) = diag(ρd, ρd) with d ∈ F∗qt .

Conversely, for all d ∈ F∗qt the matrix diag(ρd, ρd) determines a projectiv-
ity of PG(1, E) that fixes PG(1, F ) pointwise. Two matrices of this kind give
rise to the same projectivity if, and only if, they differ by a factor diag(γ, γ),
where γ is an invertible element from the centre of E. This condition for
γ is equivalent to γ = ρf with f ∈ F∗q , whence the assertion follows from
θt−1 = (qt − 1)/(q − 1) = (#F∗qt)/(#F∗q).

Proposition 2.12. If π ∈ PGL2(E) stabilizes PG(1, F ), then LTπ = (LT )π

and L′Tπ = (L′T )π for each T ∈ PG(1, E).

Proof. The first equation can be derived as follows:

LTπ = {P ∈ PG(1, F ) s.t. P 64 T π} = {P π s.t. P ∈ PG(1, F ), P π 64 T π}
= {P π s.t. P ∈ PG(1, F ), P 64 T} = LπT .

Let h ∈ F∗qt . Taking into account the structure of the projectivity π, de-

scribed in (9), T πh = (Thη
−1

)π, whence L′Tπ = (L′T )π.
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Remark 2.13. The investigation of scattered points can be restricted taking
into account that if T is a scattered point of PG(1, E), then there exist a
projectivity π of PG(1, E) and an element β ∈ E∗, such that PG(1, F )π =
PG(1, F ), 1 ∈ Spec(β), and T π = E(1, β) (cf. [18, Rem. 4.2]).

Lemma 2.14. Let s be the greatest element of {1, 2, . . . , t− 1} that divides
t. Then any two distinct F -chains of PG(1, E) have at most qs+ 1 common
points.

Proof. Due to 3 = 21 + 1 ≤ qs + 1 it is enough to consider two dis-
tinct F -chains C1 and C2 with at least three distinct common points. By
Prop. 1.1, we may assume these points to be E(1, 0), E(0,1), E(1,1) and
C1 = PG(1, F ). Applying Prop. 1.1 once more shows that there is a projec-
tivity π of PG(1, E) that fixes each of the points E(1, 0), E(0,1), E(1,1)
and takes C1 to C2. Consequently, there is a δ ∈ E∗ such that

E(α, β)π = E(α, β) diag(δ, δ) = E(δ−1αδ, δ−1βδ) for all E(α, β) ∈ PG(1, E).

This gives

C1 ∩ Cπ1 = {E(1, ρ) | ρ ∈ F ∩ (δ−1Fδ)} ∪ {E(0,1)}.

The intersection F ∩ δ−1Fδ is a proper subfield of F , since δ−1Fδ is an
isomorphic copy of F in E and C1 6= C2 implies F 6= δ−1Fδ. This gives
#(C1 ∩ C2) = #(F ∩ δ−1Fδ) + 1 ≤ qs + 1.

Proposition 2.15. Let T be a scattered point of PG(1, E) and assume that
t ≥ 3. Then LT is contained in no F -chain other than PG(1, F ).

Proof. From t ≥ 3 follows #LT = θt−1 > qt−1 + 1. The assertion is now
immediate from Lemma 2.14.

Remark 2.16. For t = 2 the set LΨ
T is a regulus in PG(3, q) and the F -

chains are precisely the regular spreads in PG(3, q). Choose a point that
is off the hyperbolic quadric H that carries LΨ

T . Then there are as many
regular spreads through LΨ

T as there are external lines to H through the
chosen point. A straightforward counting shows that the number of these
lines is 1

2(q2−q). Thus, unless q = 2, there is more than one F -chain through
LT .

Theorem 2.17. Let T and U be points of PG(1, E), with T a scattered
point. Then the following assertions are equivalent:
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(i) A collineation κ ∈ PΓL2(qt) with companion automorphism η ∈
Gal(Fqt/Fq) exists, such that B(T )κ = B(U);

(ii) LT and LU are projectively equivalent in PG(1, E).

Proof. If κ is given as in (i) then, by the first part of Prop. 2.10, there is a
projectivity of PG(1, E) that takes B(T )ι = LT to B(U)ι = LU .

Conversely, let π be a projectivity of PG(1, E) that takes LT to LU .
There are two cases:

Case 1: t ≥ 3. From #LT = #LU the point U is scattered. By
Prop. 2.15, each of the sets LT and LU is contained in no F -chain other
than PG(1, F ). Hence PG(1, F ) is invariant under π so that the second
part of Prop. 2.10 shows the existence of a collineation of PG(1, qt) with the
required properties.

Case 2: t = 2. The sets B(T ) and B(U) are two linear sets of rank 2 and
cardinality q + 1, i.e. two Baer sublines of PG(1, q2). These are well known
to be projectively equivalent.

Proposition 2.18. If g 6= 0 and t, q > 3, the sets LT0 and LT1, where T0

and T1 are defined in Examples 2.3 and 2.5, are not projectively equivalent
in PG(1, E).

Proof. The sets B(T0) and B(T1) are not projectively equivalent [18, Ex-
ample 4.6]. Since any linear set in the PΓL2(qt)-orbit of a linear set of
pseudoregulus type is again of pseudoregulus type, B(T0) and B(T1) also
are not equivalent up to collineations. Then the assertion follows from
Thm. 2.17.

3 Characterization of the linear sets of pseudo-
regulus type

Proposition 3.1. [13] Let T ∈ PG(1, E) be such that LT is a set of pseu-
doregulus type. Then there is a ϕ ∈ PGL2(E) such that LϕT = L′T .

Proof. Since up to projectivities in PG(1, qt) there is a unique linear set of
pseudoregulus type [6, 18], it may be assumed that T = E(1, τ) with τ a
generator of Gal(Fqt/Fq). A projectivity ϕ satisfying the thesis is given by
the matrix diag(1, τ) ∈ GL2(E). As a matter of fact, for any u ∈ F∗qt ,

E(ρ1/uτ , τρ1/uτ ) = E(1, ρuτ τρ1/uτ ) = E(1, τρ
uτ2/uτ

) = E(1, ρuτ/u)ϕ,

and by Prop. 2.7 this implies that ϕ maps LT onto L′T .
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The goal of this section is to prove the converse of Prop. 3.1.

Proposition 3.2. Let ε : Π1 × Π2 → Π3 be a projective embedding, where
Πj is a projective space of finite dimension dj ≥ 1 for j = 1, 2, 3. Let U1 be
the set of all d1-subspaces of type (Π1×Q)ε for Q a point in Π2, and U2 the
set of all d2-subspaces of type (P ×Π2)ε for P a point in Π1. Fix any point
S ∈ Π2 and consider the subspace (Π1×S)ε ∈ U1. Under these assumptions
the following assertions hold:

1. A line y of Π3 is contained in some subspace belonging to U1 if, and only
if, there is a d2-regulus Ry in Π3 subject to the following three conditions:

(a) Ry has a transversal line in (Π1 × S)ε.

(b) Ry is contained in U2.

(c) y is a transversal line of Ry.

2. A subspace V of Π3 belongs to U1 if, and only if, V has dimension d1

and for any line y of V there is a d2-regulus Ry subject to the conditions
(a), (b), and (c) from above.

Proof. Our reasoning will be based on the following three facts: (i) due to
the injectivity of ε, each point in the image of ε is incident with a unique
subspace from U1 and a unique subspace from U2; (ii) for any line ` ⊂ Π1

the set
{(P ×Π2)ε | P ∈ `} ⊂ U2 (10)

is a d2-regulus; (iii) the transversal lines of this regulus are precisely the
lines of the form (`×Q)ε with Q varying in Π2.

Ad 1. Let y be a line such that y ⊂ (Π1×R)ε ∈ U1, where R ∈ Π2. Since
the restriction of ε to Π1 ×R is a collineation onto the subspace (Π1 ×R)ε,
there is a unique line `y ⊂ Π1 such that y = (`y × R)ε. By (10), the d2-
regulus Ry := {(P × Π2)ε | P ∈ `y} satisfies (b). Furthermore, both y and
(`y×S)ε ⊂ (Π1×S)ε are transversal lines of Ry, whence conditions (a) and
(c) are satisfied too.

Conversely, assume that for a line y ⊂ Π3 there is a regulus Ry satisfying
the three conditions from above. By (a), there is a line `y ⊂ Π1 for which
(`y×S)ε is a transversal line of Ry. Now (b) implies that Ry can be written
as in (10) with ` to be replaced with `y. Thus (c) shows that there is a point
R ∈ Π2 such that y = (`y ×R)ε. This in turn gives y ⊂ Π1 ×R ∈ U1.

Ad 2. Let V ∈ U1. The dimension of V obviously is d1. Given any line
y ⊂ V there is a regulus Ry with the required properties by the first part of
the proposition.
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For a proof of the converse, we fix a point Y ∈ V and consider an
arbitrary line y ⊂ V through Y . By the first part of the proposition, there
is at least one point R ∈ Π2 such that y ⊂ (Π1 × R)ε ∈ U1. This implies
Y = (X,R)ε for some point X ∈ Π1. The point R does not depend on the
choice of the line y on Y . Consequently, V ⊂ (Π1×R)ε and, due to d1 being
the dimension of V , these two subspaces are identical.

Clearly, analogous statements hold, where the roles of U1 and U2 are
interchanged. We will refer to U1 and U2 in Prop. 3.2 as to the maximal sub-
spaces of the embedded product space (Π1×Π2)ε. Notice that such subspaces
are defined with respect to the embedding, since (Π1 × Π2)ε may contain
further maximal subspaces. Prop. 3.2 implies:

Proposition 3.3. Let U1 and V be a collection of d1-subspaces and a d2-
subspace in a projective space Π, respectively, where d1 and d2 are positive
integers. There exists at most one collection U2 of d2-subspaces of Π with
V ∈ U2, and such that U1 and U2 are the collections of maximal subspaces
of an embedded product space.

Remark 3.4. By Prop. 3.2, a point P ∈ PG(1, E) is in L′T if, and only
if, no line of PΨ is irregular as defined in [14] with respect to the scattered
subspace TΨ.

Theorem 3.5. Let T = E(1, β) be a scattered point, where β ∈ E∗, let
t ≥ 3 and suppose that there exists a projectivity ϕ ∈ PGL2(E) such that
LϕT = L′T . Then LT is of pseudoregulus type.

Proof. We split the proof into four steps.
Step 1. First we fix some matrix (ϕij) ∈ GL2(E) that describes ϕ. Then

we choose any point U ∈ PG(1, E) such that Uϕ ∈ LT . The point Uϕ is
non-distant to all points of L′T , whence U is non-distant to all (namely θt−1)
points of LT . So U is scattered and LT = LU . Also, there is a γ ∈ E∗

satisfying
U = E(1, γ).

According to (4), the matrix (ϕij) describes also that projective collineation
ϕ̂ of PGq(F2

qt) whose action on the Grassmannian PG(1, E)Ψ coincides with

Ψ−1ϕΨ. It can be deduced from Prop. 2.8 that for any scattered point
X ∈ PG(1, E), LΨ

X and (L′X)Ψ are the two collections of maximal subspaces
of an embedded product space. So, a repeated application of Prop. 3.3
implies:

13



(a) LΨ
T is the unique collection of maximal subspaces of an embedded

product space, containing UϕΨ, the other collection being (L′T )Ψ.

(b) (L′U )Ψ is the unique collection of maximal subspaces of an embedded
product space, containing UΨ, the other one being LΨ

U = LΨ
T .

By applying ϕ̂ to (b), one obtains:

(c) (L′U )ϕΨ is the unique collection of maximal subspaces of an embedded

product space, containing UϕΨ, the other one being LϕΨ
T = (L′T )Ψ.

By (a) and (c)
(L′U )ϕ = LT = LU . (11)

Step 2. LetH be the subgroup GL2(E) formed by all matrices diag(ρh, ρh)
with h ∈ F∗qt . Also, let Λ be the associated group of projectivities of
PG(1, E). Both H ∼= F∗qt and Λ ∼= F∗qt/F

∗
q are cyclic. Now, for all h, k ∈ F∗qt

the equality E(ρh, γρh) = E(ρk, γρk) holds precisely when h and k are Fq-
linearly dependent (cf. Prop. 2.6). Consequently we have shown: the cyclic
group Λ acts regularly on L′U and fixes LU = LT pointwise.

Consider now the subgroup

H ′ := (ϕij)
−1 ·H · (ϕij)

of GL2(E) and the corresponding group Λ′ := ϕ−1Λϕ of projectivities. By
the above, the group Λ′ is cyclic, acts regularly on LT , and fixes L′T point-
wise. From t ≥ 3 and Prop. 2.15 the F -chain PG(1, F ) is invariant under
the action of Λ′. Since Λ′ has order θt−1, which is the size of the orbit LT ,
the group Λ′ acts faithfully on PG(1, F ).

Step 3. Let us choose any element h ∈ F∗qt . The projectivity π given by
the matrix

(πij) := (ϕij)
−1 · diag(ρh, ρh) · (ϕij) ∈ GL2(E)

fixes PG(1, F ), as a set. We therefore can repeat the second part of the proof
of Prop. 2.10 up to (8). By this formula3, there exists an automorphism
η ∈ Gal(Fqt/Fq) and an invertible matrix (cij) ∈ GL2(qt) such that

(πij) = diag(η, η) · (ρcij ) ∈ H ′. (12)

We claim that η = 1. In order to verify this assertion, we fix any element
u ∈ F∗qt . The point E(ρu, ρuβ ) is in LT , which is invariant under π ∈ Λ′

3Take notice that the elements cij that are used now play the role of the elements dcij
that appear in (8).

14



by Step 2. This implies that there is a v ∈ F∗qt such that E(ρu, ρuβ )π =

E(ρv, ρvβ ). Furthermore, L′T is fixed pointwise under π. So, the associated
projective collineation π̂ of PGq(F2

qt) sends for all k ∈ F∗qt the point

〈(uk, uβk)〉q = E(ρu, ρuβ )Ψ ∩ E(ρk, βρk)
Ψ

to the point
E(ρv, ρvβ )Ψ ∩ E(ρk, βρk)

Ψ = 〈(vk, vβk)〉q.

Therefore, for each k ∈ F∗qt there is an element xk ∈ F∗q such that

((uk)η, (uβk)η) · (cij) = xk(vk, v
βk).

As F2
qt is also a vector space over Fqt , this can be rewritten in the form

kη(uη, uβη) · (cij) = xkk(v, vβ).

Letting k := 1 gives (uη, uβη) · (cij) = x1(v, vβ) so that kηx1(v, vβ) =
xkk(v, vβ). We thus have arrived at

kη = (xk/x1)k for all k ∈ F∗qt .

This means that each k ∈ F∗qt is an eigenvector of the Fq-linear mapping
η ∈ E. Thus η has a unique eigenvalue, i.e., xk/x1 is a constant that does
not depend on k. Finally, 1η = 1 shows that this constant is equal to 1.

Step 4. We maintain all notions from the previous step (with η = 1),
under the additional assumption that h is a generator of the multiplicative
group F∗qt . There are three possibilities for the matrix (cij) ∈ GL2(qt):

First, assume that (cij) has a single eigenvalue in Fqt . Then, since (cij)
cannot be a scalar multiple of the identity matrix, it is similar to a matrix
of the form

a

(
1 b
0 1

)
with a, b ∈ F∗qt .

Due to CharFqt = p, the p-th power of this matrix is diag(ap, ap), which gives
that Λ′ acts on PG(1, F ) as a cyclic permutation group of order p. Since LT
is an orbit under this action, we obtain the contradiction #LT = θt−1 ≤ p.

Next, assume that (cij) has no eigenvalue in Fqt , whence it has two
distinct eigenvalues z 6= z in Fq2t ⊃ Fqt . Here denotes the unique non-
trivial automorphism in Gal(Fq2t/Fqt). So, over Fq2t , the matrix (cij) is
similar to diag(z, z). Let w be a generator of the multiplicative group F∗q2t .
We consider the matrix group {diag(ws, ws) | s = 1, . . . , q2t − 1} of order
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q2t − 1. It acts as a group Ω of projectivities on PG(1, q2t). The kernel
of this action comprises all matrices diag(ws, ws) with ws = ws = ws or,
equivalently, with ws ∈ F∗qt . Hence we have

#Ω =
q2t − 1

qt − 1
= qt + 1.

The powers of diag(z, z) constitute a matrix group and give rise to a sub-
group of Ω. This subgroup is isomorphic to Λ′, and therefore its order is
θt−1. This gives that θt−1 divides qt + 1, which is impossible due to

(q − 1) θt−1 = qt − 1 < qt + 1 < qt + qt−1 + · · ·+ q = q θt−1.

By the above, (cij) has two distinct eigenvalues a, b in F∗qt and so there

is a matrix (mij) ∈ GL2(qt) such that

diag(a, b) = (mij)
−1 · (cij) · (mij).

Let (µij) = (ρmij ) ∈ GL2(E) and let µ ∈ PGL2(E) be the projectivity given
by (µij). It fixes the F -chain PG(1, F ) as a set. We therefore obtain that
Tµ is a scattered point and the equality LµT = LTµ (cf. Prop. 2.12). The
group

H ′′ := (µij)
−1 ·H ′ · (µij) = {diag(ρa, ρb)

s | s = 1, 2, . . . , qt − 1}

induces the cyclic group Λ′′ := µ−1Λ′µ of projectivities, which acts regularly
on LµT and fixes the points E(1, 0) and E(0,1). So LµT contains none of these
points, whence we have

Tµ = E(1, δ) with δ ∈ E∗.

The matrix group generated by diag(1, ρb/a) also induces the group Λ′′. So
the order of b/a in the multiplicative group F∗qt is θt−1. There is an element
e ∈ F∗qt such that

b/a = eq−1.

This allows us to give another group of matrices that induces Λ′′, namely
the group generated by

ρe diag(1, ρb/a) = diag(ρe, ρeσ), (13)

where σ ∈ Gal(Fqt/Fq) is given by x 7→ xq.
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Finally, let d := 1δ. Then E(1, ρd) ∈ LµT and, by writing the action of
Λ′′ in terms of the powers of the matrix from (13), we obtain

LµT = {E(1, ρd) diag(ρu, ρuσ) = E(ρu, ρuσd) | u = es, s = 1, 2, . . . , θt−1}.

Thus LµT is contained in LW , where

W := E(1, σρd).

This implies, due to #LµT = #LW , that LT is projectively equivalent to LW ,
which is of pseudoregulus type.

It should be noted that in Step 4 in the proof above the choice of a
generator h of the multiplicative group F∗qt serves the sole purpose that the

projectivity related to the matrix (ρcij ) is a generator of the group Λ′ acting
regularly on LT . Bearing this in mind, the following proposition can be
extrapolated:

Proposition 3.6. Let L be a scattered linear set of rank t in PG(1, qt). If
there exists a cyclic subgroup of PGL2(qt) acting regularly on L, then L is
of pseudoregulus type.

On the other hand, any linear set of pseudoregulus type is projectively
equivalent to {〈(1, uq−1)〉qt | u ∈ F∗qt} [6], [18]. Hence the converse of
Prop. 3.6 can be proved directly.
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