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Summary. We show that a central linear mapping of a projectively embedded Eu-
clidean n-space onto a projectively embedded Euclidean m-space is decomposable into a
central projection followed by a similarity if, and only if, the least singular value of a
certain matrix has multiplicity ≥ 2m− n+ 1. This matrix is arising, by a simple manip-
ulation, from a matrix describing the given mapping in terms of homogeneous Cartesian
coordinates.
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1 Introduction

A linear mapping between projectively embedded Euclidean spaces is called central,
if its exceptional subspace is not at infinity. Such a linear mapping is in general
not decomposable into a central projection followed by a similarity. Necessary and
sufficient conditions for the existence of such a decomposition have been given in
[4] for arbitrary finite dimensions; cf. also [1], [2], [3]. However, those results
do not seem to be immediately applicable on a central axonometry, i.e., a central
linear mapping given via an axonometric figure. On the other hand, in a series
of recent papers [5], [6], [7] this problem of decomposition has been discussed for
central axonometries of the Euclidean 3-space onto the Euclidean plane from an
elementary point of view1.

Loosely speaking, the concept of central axonometry is a geometric equivalent
to the algebraic concept of a coordinate matrix for a linear mapping of the underly-
ing vector spaces. However, from the results in [2] and [4] it is also not immediate
whether or not a given matrix describes (in terms of homogeneous Cartesian co-
ordinates) a mapping that permits the above-mentioned factorization. The aim of
this communication is to give a criterion for this.

Let I, J be finite-dimensional Euclidean vector spaces. Given a linear mapping
f : I → J denote by fad : J → I its adjoint mapping. Then fad ◦ f is self-adjoint
with eigenvalues

v1 ≥ · · · ≥ vr > vr+1 = · · · = vn = 0.

Here r equals the rank of f and n = dim I. Moreover, each eigenvalue is writ-
ten down repeatedly according to its multiplicity2. The positive real numbers√
v1, . . . ,

√
vr are frequently called the singular values of f . The multiplicity of

a singular value of f is defined via the multiplicity of the corresponding eigenvalue
of fad ◦ f . It is immediate from the singular value decomposition that f and fad

share the same singular values (counted with their multiplicities). See, e.g., [8].
These results hold true, mutatis mutandis, when replacing f by any real matrix,

say A, and fad by the transpose matrix AT.
1A lot of further references can be found in the quoted papers.
2For a self-adjoint mapping the algebraic and geometric multiplicities of an eigenvalue are

identical. Hence we may unambiguously use the term ‘multiplicity’.
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2 Decompositions

When discussing central linear mappings it will be convenient to consider Euclidean
spaces embedded in projective spaces. Thus let V be an (n + 1)-dimensional real
vector space (3 ≤ n <∞) and I one of its hyperplanes. Assume, furthermore, that I
is equipped with a positive definite inner product (·) so that I is a Euclidean vector
space. In the projective space on V, denoted by P(V), we consider the projective
hyperplane P(I) as the hyperplane at infinity. The absolute polarity in P(I) is
determined by the inner product on I. Hence P(V)\P(I) is a projectively embedded
Euclidean space3. Similarly, let P(W) \ P(J) be an m-dimensional projectively
embedded Euclidean space (2 ≤ m < n <∞). Given a linear mapping

f : V→W (1)

of vector spaces then the associate (projective) linear mapping

φ : P(V) \ P(ker f)→ P(W), IRx 7→ IR(f(x)) (2)

has P(ker f) as its exceptional subspace. In the sequel we shall assume that

ker f 6⊂ I and f(V) = W, (3)

or, in other words, that φ is central and surjective4. Obviously, (3) is equivalent to

f(I) = W. (4)

We recall some results [2], [4]: If T is any complementary subspace of ker f in
V, then denote by

ψT : P(V) \ P(ker f)→ P(T) (5)

the projection with the exceptional subspace P(ker f) onto P(T). The restricted
mapping

φT := φ | P(T) : P(T)→ P(W) (6)

is a collineation and
φ = φT ◦ ψT; (7)

every decomposition of φ into a projection and a collineation is of this form. In the
Euclidean vector space I we have the distinguished subspace

E := f−1(J) ∩ I. (8)

Write
fE : E→ J, x 7→ f(x); (9)

this fE is well-defined and surjective, since E ⊂ f−1(J) and ker f 6⊂ E. The
subspace T can be chosen with φT being a similarity if, and only if, the least
singular value of fE has multiplicity5 ≥ 2m− n+ 1.

Next, we assume that P(T) 6⊂ P(I) is orthogonal to P(ker f). This means
that (T ∩ I)⊥ ⊂ ker f ∩ I or (T ∩ I)⊥ ⊃ ker f ∩ I. Hence ψT is an orthogonal
central projection6. It is easily seen from [2] that φ permits a decomposition into
an orthogonal central projection followed by a similarity if, and only if, all singular
values of fE are equal.

3We do not endow this space with a unit segment.
4This assumption of surjectivity is made ‘without loss of generality’ in most papers on this

subject. It will, however, be essential several times in this paper.
5In [2, Satz 10] this multiplicity is printed incorrectly as 2m− n− 1.
6The central projections used in elementary descriptive geometry are trivial examples of or-

thogonal central projections.
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Finally, we are going to show that the crucial properties of fE can be read off
from another mapping: Denote by

p : I→ E (10)

the orthogonal projection with the kernel E⊥ ⊂ I. Then

(fE ◦ p) ◦ (fE ◦ p)ad = fE ◦ p ◦ pad ◦ (fE)ad = fE ◦ (fE)ad, (11)

since pad is the natural embedding E → I. Thus, by (11) and the results stated
in Section 1, fE and (fE ◦ p)ad have the same singular values (counted with their
multiplicities). Hence, by the surjectivity of fE and (11), all singular values of fE

are equal if, and only if, there exists a real number v > 0 such that

(fE ◦ p) ◦ (fE ◦ p)ad = v idJ. (12)

We shall use this in the next section.

3 A matrix characterization

Introducing homogeneous Cartesian coordinates in P(V) is equivalent to choosing
a basis {b0, . . . ,bn} of V such that {b1, . . . ,bn} ⊂ I is an orthonormal system.
The origin is given by IRb0 and the unit points are IR(b0 +b1), . . . , IR(b0 +bn). In
the same manner we are introducing homogeneous Cartesian coordinates in P(W)
via a basis {c0, . . . , cm}.

Theorem 1 Suppose that f : V →W is inducing a surjective central linear map-
ping φ according to formula (2). Let

A =

 a00 · · · a0n
...

...
am0 · · · amn

 (13)

be the coordinate matrix of f with respect to bases of V and W that are yielding
homogeneous Cartesian coordinates. Write

ai := (ai1, . . . , ain) ∈ IRn for all i = 0, . . . ,m (14)

and

Ã :=

 a1 − a0·a1
a0·a0

a0
...

am − a0·am
a0·a0

a0

 . (15)

Then the following assertions hold true:

1. φ is decomposable into a central projection followed by a similarity if, and only
if, the least singular value of the matrix Ã has multiplicity ≥ 2m− n+ 1.

2. φ is decomposable into an orthogonal central projection followed by a similarity
if, and only if, there exists a real number v > 0 such that

ÃÃT = diag (v, . . . , v). (16)

Proof. We read off from the top row of A that

a00x0 + · · ·+ a0nxn = 0
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is an equation of f−1(J) 6= I so that a0 · a0 6= 0. Write f̃ : I → J for the linear
mapping whose coordinate matrix with respect to {b1, . . . ,bn} and {c1, . . . , cm}
equals Ã. A straightforward calculation shows that

f̃(x) = f(x) for all x ∈ E

and
f̃(a01b1 + · · ·+ a0nbn) = 0,

i.e., E⊥ ⊂ ker f̃ . Thus f̃ equals the mapping fE ◦ p discussed above. Now the proof
is completed by translating formulae (11) and (12) into the language of matrices.

We remark that (3) and the linear independence of a1, . . . , am are equivalent
conditions.

In contrast to the results in [5], [6], [7], the φ-image of the origin IRb0 does not
appear in our characterization. On the other hand, we have

f(E⊥) = IR((a0 · a0)c0 + · · ·+ (a0 · am)cm).

In projective terms this 1-dimensional subspace of W gives the principal point of
the mapping φ. Exactly if the principal point of φ equals the origin IRc0, then Ã
arises from A merely by deleting the top row and the leading column.

References

[1] Brauner H., Zur Theorie linearer Abbildungen, Abh. Math. Sem. Univ. Hamburg
53 (1983), 154–169.

[2] Brauner H., Lineare Abbildungen aus euklidischen Räumen, Beitr. Algebra u.
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